Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Background

The integration of artificial intelligence and machine learning holds great promise for enhancing healthcare institutions and providing fresh perspectives on the origins and advancement of long-term illnesses. In the healthcare sector, artificial intelligence and machine learning are used to address supply and demand concerns, genomic applications, and new advancements in drug development, cancer, and heart disease.

Objectives

The article explores the ways that machine learning, AI, precision medicine, and genomics are changing healthcare. The essay also discusses how AI's examination of various patient data could enhance healthcare institutions, provide fresh insights into chronic conditions, and advance precision medicine. The potential uses of machine learning for genome analysis are also examined in the paper, particularly about genetic biomarker-based disease risk and symptom prediction.

Discussion

The challenges posed by the phenotype-genotype relationship are examined, as well as the significance of comprehending disease pathways in order to create tailored treatments. Moreover, it offers a streamlined and modularized method that predicts how genotypes affect cell properties using machine-learning models, enabling the development of personalized drugs. The collective feedback highlights the rapid interdisciplinary growth of medical genomics following the completion of the Human Genome Project. It also emphasizes how important genomic data is for improving healthcare outcomes and facilitating personalized medicine.

Conclusion

The study's conclusions point to a revolutionary shift in healthcare: the application of AI/ML to illness control. Even though these innovations have a lot of potential benefits, problems like algorithm interpretability and ethical issues need to be worked out before they can be successfully incorporated into routine medical practice. Using machine learning in medicine has enormous potential benefits for the biotech industry. Further research, ongoing regulatory frameworks, and collaboration between medical professionals and data analysts are necessary to fully utilize machine learning as well as artificial intelligence in disease management.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855297767240408053500
2024-04-24
2025-09-23
Loading full text...

Full text loading...

References

  1. SchatzM.C. LangmeadB. The DNA data deluge.IEEE Spectr.2013507283310.1109/MSPEC.2013.6545119 24920863
    [Google Scholar]
  2. WatsonJ.D. CrickF.H.C. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid.Nature1953171435673773810.1038/171737a0 13054692
    [Google Scholar]
  3. LanderE.S. LintonL.M. BirrenB. Initial sequencing and analysis of the human genome.Nature2001409682286092110.1038/35057062 11237011
    [Google Scholar]
  4. ManolioT.A. ChisholmR.L. OzenbergerB. Implementing genomic medicine in the clinic: The future is here.Genet. Med.201315425826710.1038/gim.2012.157 23306799
    [Google Scholar]
  5. GuttmacherA.E. CollinsF.S. Welcome to the genomic era.N. Engl. J. Med.20033491099699810.1056/NEJMe038132 12954750
    [Google Scholar]
  6. HeJ. BaxterS.L. XuJ. XuJ. ZhouX. ZhangK. The practical implementation of artificial intelligence technologies in medicine.Nat. Med.2019251303610.1038/s41591‑018‑0307‑0 30617336
    [Google Scholar]
  7. BelloG.A. DawesT.J.W. DuanJ. Deep-learning cardiac motion analysis for human survival prediction.Nat. Mach. Intell.2019129510410.1038/s42256‑019‑0019‑2 30801055
    [Google Scholar]
  8. SchorkN.J. Artificial intelligence and personalized medicine.Precision Medicine in Cancer Therapy.Berlin, HeidelbergSpringerLink2019265283
    [Google Scholar]
  9. FiracativeC. Invasive fungal disease in humans: Are we aware of the real impact?Mem. Inst. Oswaldo Cruz2020115e200430
    [Google Scholar]
  10. RitchieM.D. de AndradeM. KuivaniemiH. The foundation of precision medicine: Integration of electronic health records with genomics through basic, clinical, and translational research.Front. Genet.2015610410.3389/fgene.2015.00104 25852745
    [Google Scholar]
  11. SbonerA. ElementoO. A primer on precision medicine informatics.Brief. Bioinform.201617114515310.1093/bib/bbv032 26048401
    [Google Scholar]
  12. ZeeshanS. XiongR. LiangB.T. AhmedZ. 100 years of evolving gene–disease complexities and scientific debutants.Brief. Bioinform.202021388590510.1093/bib/bbz038 30972412
    [Google Scholar]
  13. KarczewskiK.J. SnyderM.P. Integrative omics for health and disease.Nat. Rev. Genet.201819529931010.1038/nrg.2018.4 29479082
    [Google Scholar]
  14. TorkamaniA. AndersenK.G. SteinhublS.R. TopolE.J. High-definition medicine.Cell2017170582884310.1016/j.cell.2017.08.007 28841416
    [Google Scholar]
  15. EstevaA. RobicquetA. RamsundarB. A guide to deep learning in healthcare.Nat. Med.2019251242910.1038/s41591‑018‑0316‑z 30617335
    [Google Scholar]
  16. RajkomarA. OrenE. ChenK. Scalable and accurate deep learning with electronic health records.NPJ Digit. Med.2018111810.1038/s41746‑018‑0029‑1 31304302
    [Google Scholar]
  17. WangG. PuP. ShenT. An efficient gene bigdata analysis using machine learning algorithms.Multimedia Tools Appl.20207915-169847987010.1007/s11042‑019‑08358‑7
    [Google Scholar]
  18. RothS.C. What is genomic medicine?J. Med. Libr. Assoc.2019107344244810.5195/jmla.2019.604 31258451
    [Google Scholar]
  19. ChingT. HimmelsteinD.S. Beaulieu-JonesB.K. Opportunities and obstacles for deep learning in biology and medicine.J. R. Soc. Interface2018151412017038710.1098/rsif.2017.0387 29618526
    [Google Scholar]
  20. TengH. CaoM.D. HallM.B. DuarteT. WangS. CoinL.J.M. Chiron: Translating nanopore raw signal directly into nucleotide sequence using deep learning.Gigascience201875giy03710.1093/gigascience/giy037 29648610
    [Google Scholar]
  21. BožaV. BrejováB. VinařT. DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads.PLoS One2017126e017875110.1371/journal.pone.0178751 28582401
    [Google Scholar]
  22. BasileA.O. RitchieM.D. Informatics and machine learning to define the phenotype.Expert Rev. Mol. Diagn.201818321922610.1080/14737159.2018.1439380 29431517
    [Google Scholar]
  23. Beaulieu-JonesB.K. GreeneC.S. Semi-supervised learning of the electronic health record for phenotype stratification.J. Biomed. Inform.20166416817810.1016/j.jbi.2016.10.007 27744022
    [Google Scholar]
  24. LibbrechtM.W. NobleW.S. Machine learning applications in genetics and genomics.Nat. Rev. Genet.201516632133210.1038/nrg3920 25948244
    [Google Scholar]
  25. RaghuM. SchmidtE. A survey of deep learning for scientific discovery.arXiv:2003117552020
    [Google Scholar]
  26. PortugalI. AlencarP. CowanD. The use of machine learning algorithms in recommender systems: A systematic review.Expert Syst. Appl.20189720522710.1016/j.eswa.2017.12.020
    [Google Scholar]
  27. BharadwajA. GuptaM. ShakyaA. A Critical Review On Nanotechnology: A Technique in Cancer Detection and Prophylaxis.Nano Life2023133233000410.1142/S1793984423300042
    [Google Scholar]
  28. SeahJ.C.Y. TangJ.S.N. KitchenA. GaillardF. DixonA.F. Chest radiographs in congestive heart failure: Visualizing neural network learning.Radiology2019290251452210.1148/radiol.2018180887 30398431
    [Google Scholar]
  29. PlayfordD. BordinE. TalbotL. MohamadR. AndersonB. StrangeG. Analysis of aortic stenosis using artificial intelligence.Heart Lung Circ.201827S21610.1016/j.hlc.2018.06.390
    [Google Scholar]
  30. NarulaS. ShameerK. Salem OmarA.M. DudleyJ.T. SenguptaP.P. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography.J. Am. Coll. Cardiol.201668212287229510.1016/j.jacc.2016.08.062 27884247
    [Google Scholar]
  31. OhtaY. YunagaH. KitaoS. FukudaT. OgawaT. Detection and classification of myocardial delayed enhancement patterns on mr images with deep neural networks: A feasibility study.Radiol. Artif. Intell.201913e18006110.1148/ryai.2019180061 33937791
    [Google Scholar]
  32. IsinA. OzdaliliS. Cardiac arrhythmia detection using deep learning.Procedia Comput. Sci.201712026827510.1016/j.procs.2017.11.238
    [Google Scholar]
  33. AttiaZ.I. KapaS. Lopez-JimenezF. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram.Nat. Med.2019251707410.1038/s41591‑018‑0240‑2 30617318
    [Google Scholar]
  34. GallowayC.D. ValysA.V. ShreibatiJ.B. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram.JAMA Cardiol.20194542843610.1001/jamacardio.2019.0640 30942845
    [Google Scholar]
  35. Przewlocka-KosmalaM. MarwickT.H. DabrowskiA. KosmalaW. Contribution of cardiovascular reserve to prognostic categories of heart failure with preserved ejection fraction: A classification based on machine learning.J. Am. Soc. Echocardiogr.2019325604615.e610.1016/j.echo.2018.12.002 30718020
    [Google Scholar]
  36. NgoT.A. LuZ. CarneiroG. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance.Med. Image Anal.20173515917110.1016/j.media.2016.05.009 27423113
    [Google Scholar]
  37. MortazaviB.J. DowningN.S. BucholzE.M. Analysis of machine learning techniques for heart failure readmissions.Circ. Cardiovasc. Qual. Outcomes20169662964010.1161/CIRCOUTCOMES.116.003039 28263938
    [Google Scholar]
  38. BhattacharyaM. LuD.Y. KudchadkarS.M. Identifying ventricular arrhythmias and their predictors by applying machine learning methods to electronic health records in patients with hypertrophic cardiomyopathy (HCM-VAr-risk model).Am. J. Cardiol.2019123101681168910.1016/j.amjcard.2019.02.022 30952382
    [Google Scholar]
  39. EraslanG. AvsecŽ. GagneurJ. TheisF.J. Deep learning: New computational modelling techniques for genomics.Nat. Rev. Genet.201920738940310.1038/s41576‑019‑0122‑6 30971806
    [Google Scholar]
  40. HoD.S.W. SchierdingW. WakeM. SafferyR. O’SullivanJ. Machine learning SNP based prediction for precision medicine.Front. Genet.20191026710.3389/fgene.2019.00267 30972108
    [Google Scholar]
  41. OguzC. SenS.K. DavisA.R. FuY.P. O’DonnellC.J. GibbonsG.H. Genotype-driven identification of a molecular network predictive of advanced coronary calcium in ClinSeq® and Framingham Heart Study cohorts.BMC Syst. Biol.20171119910.1186/s12918‑017‑0474‑5 29073909
    [Google Scholar]
  42. LiuJ. XuH. ChenQ. Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine.EBioMedicine20194345445910.1016/j.ebiom.2019.04.040 31060901
    [Google Scholar]
  43. AhmedS ChoiKY LeeJJ Ensembles of patch-based classifiers for diagnosis of Alzheimer diseases.IEEE Access20197733737338310.1109/ACCESS.2019.2920011
    [Google Scholar]
  44. HariharanM. PolatK. SindhuR. A new hybrid intelligent system for accurate detection of Parkinson’s disease.Comput. Methods Programs Biomed.2014113390491310.1016/j.cmpb.2014.01.004 24485390
    [Google Scholar]
  45. KumarD JainN KhuranaA Automatic detection of white blood cancer from bone marrow microscopic images using convolutional neural networks.IEEE Access2020814252114253110.1109/ACCESS.2020.3012292
    [Google Scholar]
  46. CoudrayN. OcampoP.S. SakellaropoulosT. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning.Nat. Med.201824101559156710.1038/s41591‑018‑0177‑5 30224757
    [Google Scholar]
  47. HuttunenM.J. HassanA. McCloskeyC.W. Automated classification of multiphoton microscopy images of ovarian tissue using deep learning.J. Biomed. Opt.20182361710.1117/1.JBO.23.6.066002 29900705
    [Google Scholar]
  48. BrinkerT.J. HeklerA. EnkA.H. Deep neural networks are superior to dermatologists in melanoma image classification.Eur. J. Cancer2019119111710.1016/j.ejca.2019.05.023 31401469
    [Google Scholar]
  49. KasebA.O. SánchezN.S. SenS. Molecular profiling of hepatocellular carcinoma using circulating cell-free DNA.Clin. Cancer Res.201925206107611810.1158/1078‑0432.CCR‑18‑3341 31363003
    [Google Scholar]
  50. RoyH. PandaS.P. PandaS.K. N-trimethyl chitosan and tripalmitin loaded solid lipid nanoparticles of tofacitinib citrate: Characterization and in-vivo anti-inflammatory assessment.J. Drug Deliv. Sci. Technol.20238710478910.1016/j.jddst.2023.104789
    [Google Scholar]
  51. JayaramS. GuptaM.K. RajuR. GautamP. SirdeshmukhR. Multi-omics data integration and mapping of altered kinases to pathways reveal gonadotropin hormone signaling in glioblastoma.OMICS2016201273674610.1089/omi.2016.0142 27930095
    [Google Scholar]
  52. GoelA. Current understanding and future prospects on Berberine for anticancer therapy.Chem. Biol. Drug Des.2023102117720010.1111/cbdd.14231 36905314
    [Google Scholar]
  53. NamH. ChungB.C. KimY. LeeK. LeeD. Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification.Bioinformatics200925233151315710.1093/bioinformatics/btp558 19783829
    [Google Scholar]
  54. GaoQ. ZhuH. DongL. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma.Cell20191792561577.e2210.1016/j.cell.2019.08.052 31585088
    [Google Scholar]
  55. DelenD. WalkerG. KadamA. Predicting breast cancer survivability: A comparison of three data mining methods.Artif. Intell. Med.200534211312710.1016/j.artmed.2004.07.002 15894176
    [Google Scholar]
  56. LuT.P. KuoK.T. ChenC.H. Developing a prognostic gene panel of epithelial ovarian cancer patients by a machine learning model.Cancers (Basel)201911227010.3390/cancers11020270 30823599
    [Google Scholar]
  57. AzuajeF. KimS.Y. Perez HernandezD. DittmarG. Connecting histopathology imaging and proteomics in kidney cancer through machine learning.J. Clin. Med.2019810153510.3390/jcm8101535 31557788
    [Google Scholar]
  58. MadhukarN.S. ElementoO. Bioinformatics approaches to predict drug responses from genomic sequencing.Cancer Systems Biology: Methods and Protocols.New York CitySpringerLink2019277296
    [Google Scholar]
  59. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  60. SahaS. SasoL. ArmaganG. Cancer prevention and therapy by targeting oxidative stress pathways.Molecules20232811429310.3390/molecules28114293 37298769
    [Google Scholar]
  61. ShenM.W. ArbabM. HsuJ.Y. Predictable and precise template-free CRISPR editing of pathogenic variants.Nature2018563773364665110.1038/s41586‑018‑0686‑x 30405244
    [Google Scholar]
  62. VasalS. JainS. VermaA. COVID-AI: An artificial intelligence system to diagnose COVID 19 disease.J Eng Res Technol2020916
    [Google Scholar]
  63. GoudaW. YasinR. COVID-19 disease: CT Pneumonia Analysis prototype by using artificial intelligence, predicting the disease severity.Egypt. J. Radiol. Nucl. Med.202051119610.1186/s43055‑020‑00309‑9
    [Google Scholar]
  64. OwaisM. ArsalanM. ChoiJ. MahmoodT. ParkK.R. Artificial intelligence-based classification of multiple gastrointestinal diseases using endoscopy videos for clinical diagnosis.J. Clin. Med.20198798610.3390/jcm8070986 31284687
    [Google Scholar]
  65. LuoH. XuG. LiC. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: A multicentre, case-control, diagnostic study.Lancet Oncol.201920121645165410.1016/S1470‑2045(19)30637‑0 31591062
    [Google Scholar]
  66. ChenJ. RemullaD. NguyenJ.H. Current status of artificial intelligence applications in urology and their potential to influence clinical practice.BJU Int.2019124456757710.1111/bju.14852 31219658
    [Google Scholar]
  67. KeenanT. ClemonsT. DomalpallyA. Retinal specialist versus artificial intelligence detection of retinal fluid from OCT: Age-related eye disease study 2: 10-year follow-on study.Ophthalmology2020128110010910.1016/j.ophtha.2020.06.038 32598950
    [Google Scholar]
  68. LiuY. KohlbergerT. NorouziM. Artificial intelligence-based breast cancer nodal metastasis detection.Arch. Pathol. Lab. Med.2019143785986810.5858/arpa.2018‑0147‑OA 30295070
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855297767240408053500
Loading
/content/journals/cdth/10.2174/0115748855297767240408053500
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test