Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Leishmaniasis represents a pool of debilitating clinical manifestations affecting several individuals globally. The disease remains a serious global health and affects individuals in tropical and subtropical regions. The disease is endemic in several areas of South America, East Africa, the Indian sub-continent and the Mediterranean basin. The bite of female Phlebotomine sand establishes the infection of the parasite within human flies belonging to the family (subfamily: ) of class Diptera. Several species of parasite serve as the infectious trigger associated with varying clinical presentation of the disease. The immune response against the different parasitizing species varies, resulting in a complex response by innate immune cells. The present review summarizes some of the key innate immune effector cells involved during the infection with the parasite in a quest to provide a deeper understanding of -mediated immunobiology. The review also summarizes an up-to-date understanding of several strategies adopted by the parasite to evade immune response mediated by altering the functioning of some key innate immune effector cells. A better understanding of these immuno-biological events within the infected individual would help formulate immune-therapeutical interventions against the disease.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855295089240322081903
2024-04-02
2025-10-03
Loading full text...

Full text loading...

References

  1. AkhoundiM. KuhlsK. CannetA. A historical overview of the classification, evolution, and dispersion of leishmania parasites and sandflies.PLoS Negl. Trop. Dis.2016103e000434910.1371/journal.pntd.0004349 26937644
    [Google Scholar]
  2. EncisoA.A.J. MarzochiM.C. MoreiraJ.S. SchubachA.O. MarzochiK.B. On the origin and spread of cutaneous and mucosal leishmaniasis, based on pre- and post- colombian historical source.Hist. Cienc. Saude Manguinhos200310385288210.1590/S0104‑59702003000300004 14994709
    [Google Scholar]
  3. World Health Organization fact sheet on Leishmaniasishttps://www.who.int/news-room/fact-sheets/detail/leishmaniasis2023
  4. KendrickK.R. The biology and control of Phlebotomine sand flies.Clin. Dermatol.199917327928910.1016/S0738‑081X(99)00046‑2 10384867
    [Google Scholar]
  5. DuqueA.G. DescoteauxA. Leishmania survival in the macrophage: Where the ends justify the means.Curr. Opin. Microbiol.201526324010.1016/j.mib.2015.04.007 25988701
    [Google Scholar]
  6. de MenezesJ.P.B. GuedesC.E.S. PetersenA.L.O.A. FragaD.B.M. VerasP.S.T. Advances in development of new treatment for leishmaniasis.BioMed Res. Int.2015201511110.1155/2015/815023 26078965
    [Google Scholar]
  7. PolonioT. EfferthT. Leishmaniasis: Drug resistance and natural products (review).Int. J. Mol. Med.2008223277286 18698485
    [Google Scholar]
  8. SinghN. KumarM. SinghR.K. Leishmaniasis: Current status of available drugs and new potential drug targets.Asian Pac. J. Trop. Med.20125648549710.1016/S1995‑7645(12)60084‑4 22575984
    [Google Scholar]
  9. NassifW.P. MelloD.T.F.P. NavasconiT.R. Safety and efficacy of current alternatives in the topical treatment of cutaneous leishmaniasis: A systematic review.Parasitology20171448995100410.1017/S0031182017000385 28367792
    [Google Scholar]
  10. HirayamaD. IidaT. NakaseH. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis.Int. J. Mol. Sci.20171919210.3390/ijms19010092 29286292
    [Google Scholar]
  11. JordanK.A. HunterC.A. Regulation of CD8+ T cell responses to infection with parasitic protozoa.Exp. Parasitol.2010126331832510.1016/j.exppara.2010.05.008 20493842
    [Google Scholar]
  12. LeónB. BravoL.M. ArdavínC. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania.Immunity200726451953110.1016/j.immuni.2007.01.017 17412618
    [Google Scholar]
  13. PetersN.C. EgenJ.G. SecundinoN. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies.Science2008321589197097410.1126/science.1159194 18703742
    [Google Scholar]
  14. KayeP. ScottP. Leishmaniasis: Complexity at the host–pathogen interface.Nat. Rev. Microbiol.20119860461510.1038/nrmicro2608 21747391
    [Google Scholar]
  15. LiuD. UzonnaJ.E. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response.Front. Cell. Infect. Microbiol.201228310.3389/fcimb.2012.00083 22919674
    [Google Scholar]
  16. GainetJ. MartinC.S. BrionM. HakimJ. PocidaloG.M.A. ElbimC. Interleukin-8 production by polymorphonuclear neutrophils in patients with rapidly progressive periodontitis: An amplifying loop of polymorphonuclear neutrophil activation.Lab. Invest.1998786755762 9645766
    [Google Scholar]
  17. ZandbergenV.G. HermannN. LaufsH. SolbachW. LaskayT. Leishmania promastigotes release a granulocyte chemotactic factor and induce interleukin-8 release but inhibit gamma interferon-inducible protein 10 production by neutrophil granulocytes.Infect. Immun.20027084177418410.1128/IAI.70.8.4177‑4184.2002 12117926
    [Google Scholar]
  18. LimaG.M.A.C. VallochiA.L. SilvaU.R. BevilacquaE.M.A.F. KifferM.M.F. AbrahamsohnI.A. The role of polymorphonuclear leukocytes in the resistance to cutaneous Leishmaniasis.Immunol. Lett.1998642-314515110.1016/S0165‑2478(98)00099‑6 9870666
    [Google Scholar]
  19. NovaisF.O. SantiagoR.C. BáficaA. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection.J. Immunol.2009183128088809810.4049/jimmunol.0803720 19923470
    [Google Scholar]
  20. RitterU. MeißnerA. ScheidigC. KörnerH. CD8α‐ and Langerin‐negative dendritic cells, but not Langerhans cells, act as principal antigen‐presenting cells in leishmaniasis.Eur. J. Immunol.20043461542155010.1002/eji.200324586 15162423
    [Google Scholar]
  21. NgL.G. HsuA. MandellM.A. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites.PLoS Pathog.2008411e100022210.1371/journal.ppat.1000222 19043558
    [Google Scholar]
  22. HeinzelF.P. SchoenhautD.S. RerkoR.M. RosserL.E. GatelyM.K. Recombinant interleukin 12 cures mice infected with Leishmania major.J. Exp. Med.199317751505150910.1084/jem.177.5.1505 8097524
    [Google Scholar]
  23. SypekJ.P. ChungC.L. MayorS.E. Resolution of cutaneous leishmaniasis: Interleukin 12 initiates a protective T helper type 1 immune response.J. Exp. Med.199317761797180210.1084/jem.177.6.1797 8098733
    [Google Scholar]
  24. StebutV.E. BelkaidY. JakobT. SacksD.L. UdeyM.C. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: Implications for the initiation of anti-Leishmania immunity.J. Exp. Med.199818881547155210.1084/jem.188.8.1547 9782133
    [Google Scholar]
  25. MarovichM.A. McDowellM.A. ThomasE.K. NutmanT.B. IL-12p70 production by Leishmania major-harboring human dendritic cells is a CD40/CD40 ligand-dependent process.J. Immunol.2000164115858586510.4049/jimmunol.164.11.5858 10820265
    [Google Scholar]
  26. BrittinghamA. ChenG. McGwireB.S. ChangK.P. MosserD.M. Interaction of Leishmania gp63 with cellular receptors for fibronectin.Infect. Immun.19996794477448410.1128/IAI.67.9.4477‑4484.1999 10456889
    [Google Scholar]
  27. ChakrabortyP. GhoshD. BasuM.K. Modulation of macrophage mannose receptor affects the uptake of virulent and avirulent Leishmania donovani promastigotes.J. Parasitol.20018751023102710.1645/0022‑3395(2001)087[1023:MOMMRA]2.0.CO;2 11695359
    [Google Scholar]
  28. PolandoR. DixitU.G. CarterC.R. The roles of complement receptor 3 and Fcγ receptors during Leishmania phagosome maturation.J. Leukoc. Biol.201393692193210.1189/jlb.0212086 23543768
    [Google Scholar]
  29. SantosJ.L. AndradeA.A. DiasA.A.M. Differential sensitivity of C57BL/6 (M-1) and BALB/c (M-2) macrophages to the stimuli of IFN-gamma/LPS for the production of NO: Correlation with iNOS mRNA and protein expression.J. Interferon Cytokine Res.200626968268810.1089/jir.2006.26.682 16978073
    [Google Scholar]
  30. IniestaV. NietoC.G.L. MolanoI. Arginase I induction in macrophages, triggered by Th2‐type cytokines, supports the growth of intracellular Leishmania parasites.Parasite Immunol.200224311311810.1046/j.1365‑3024.2002.00444.x 11982856
    [Google Scholar]
  31. MüllerI. KropfP. EtgesR.J. LouisJ.A. Gamma interferon response in secondary Leishmania major infection: Role of CD8+ T cells.Infect. Immun.19936193730373810.1128/iai.61.9.3730‑3738.1993 8359894
    [Google Scholar]
  32. ZaphC. UzonnaJ. BeverleyS.M. ScottP. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites.Nat. Med.200410101104111010.1038/nm1108 15448686
    [Google Scholar]
  33. ColpittsS.L. DaltonN.M. ScottP. IL-7 receptor expression provides the potential for long-term survival of both CD62Lhigh central memory T cells and Th1 effector cells during Leishmania major infection.J. Immunol.200918295702571110.4049/jimmunol.0803450 19380817
    [Google Scholar]
  34. MauriC. BosmaA. Immune regulatory function of B cells.Annu. Rev. Immunol.201230122124110.1146/annurev‑immunol‑020711‑074934 22224776
    [Google Scholar]
  35. de MenezesJ.P. SaraivaE.M. da Rocha-AzevedoB. The site of the bite: Leishmania interaction with macrophages, neutrophils and the extracellular matrix in the dermis.Parasit. Vectors20169126410.1186/s13071‑016‑1540‑3 27146515
    [Google Scholar]
  36. GurungP. KannegantiT.D. Innate immunity against Leishmania infections.Cell. Microbiol.20151791286129410.1111/cmi.12484 26249747
    [Google Scholar]
  37. BatesP. RogersM. New insights into the developmental biology and transmission mechanisms of Leishmania.Curr. Mol. Med.20044660160910.2174/1566524043360285 15357211
    [Google Scholar]
  38. CruzF.L. RicardoD.D. GomesD.C.O. MorrotA. de-LimaF.C.G. de Matos GuedesH.L. How to B(e)-1 Important Cell During Leishmania Infection.Front. Cell. Infect. Microbiol.2020942410.3389/fcimb.2019.00424 31993374
    [Google Scholar]
  39. SmeltS.C. CotterellS.E.J. EngwerdaC.R. KayeP.M. B cell-deficient mice are highly resistant to Leishmania donovani infection, but develop neutrophil-mediated tissue pathology.J. Immunol.200016473681368810.4049/jimmunol.164.7.3681 10725726
    [Google Scholar]
  40. WanasenN. XinL. SoongL. Pathogenic role of B cells and antibodies in murine Leishmania amazonensis infection.Int. J. Parasitol.2008383-441742910.1016/j.ijpara.2007.08.010 17959178
    [Google Scholar]
  41. DeakE. JayakumarA. ChoK.W. Murine visceral leishmaniasis: IgM and polyclonal B‐cell activation lead to disease exacerbation.Eur. J. Immunol.20104051355136810.1002/eji.200939455 20213734
    [Google Scholar]
  42. OmachiS. FujiiW. AzumaN. B-cell activating factor deficiency suppresses splenomegaly during Leishmania donovani infection.Biochem. Biophys. Res. Commun.2017489452853310.1016/j.bbrc.2017.06.005 28583852
    [Google Scholar]
  43. GotoY. SanjobaC. OmachiS. MatsumotoY. Elevation of serum B-cell activating factor levels during visceral leishmaniasis.Am. J. Trop. Med. Hyg.201491591291410.4269/ajtmh.14‑0260 25157121
    [Google Scholar]
  44. KolaczkowskaE. KubesP. Neutrophil recruitment and function in health and inflammation.Nat. Rev. Immunol.201313315917510.1038/nri3399 23435331
    [Google Scholar]
  45. HurrellB.P. RegliI.B. CottierT.F. Different Leishmania Species Drive Distinct Neutrophil Functions.Trends Parasitol.201632539240110.1016/j.pt.2016.02.003 26944469
    [Google Scholar]
  46. BrinkmannV. ReichardU. GoosmannC. Neutrophil extracellular traps kill bacteria.Science200430356631532153510.1126/science.1092385 15001782
    [Google Scholar]
  47. FuchsT.A. AbedU. GoosmannC. Novel cell death program leads to neutrophil extracellular traps.J. Cell Biol.2007176223124110.1083/jcb.200606027 17210947
    [Google Scholar]
  48. KirchnerT. MöllerS. KlingerM. SolbachW. LaskayT. BehnenM. The impact of various reactive oxygen species on the formation of neutrophil extracellular traps.Mediators Inflamm.2012201211010.1155/2012/849136 22481865
    [Google Scholar]
  49. RochaelN.C. CostaG.A.B. NascimentoM.T.C. Classical ROS-dependent and early/rapid ROS-independent release of Neutrophil Extracellular Traps triggered by Leishmania parasites.Sci. Rep.2015511830210.1038/srep18302 26673780
    [Google Scholar]
  50. RegliI.B. PasselliK. HurrellB.P. CottierT.F. Survival Mechanisms Used by Some Leishmania Species to Escape Neutrophil Killing.Front. Immunol.20178155810.3389/fimmu.2017.01558 29250059
    [Google Scholar]
  51. GabrielC. McMasterW.R. GirardD. DescoteauxA. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps.J. Immunol.201018574319432710.4049/jimmunol.1000893 20826753
    [Google Scholar]
  52. CostaG.A.B. VieiraD.T.S. SilvaP.R. MesquitaF.A.L. FernandesM.J.R. SaraivaE.M. 3′-nucleotidase/nuclease activity allows Leishmania parasites to escape killing by neutrophil extracellular traps.Infect. Immun.20148241732174010.1128/IAI.01232‑13 24516114
    [Google Scholar]
  53. HurrellB.P. SchusterS. GrünE. Rapid sequestration of leishmania mexicana by neutrophils contributes to the development of chronic lesion.PLoS Pathog.2015115e100492910.1371/journal.ppat.1004929 26020515
    [Google Scholar]
  54. ChagasA.C. OliveiraF. DebrabantA. ValenzuelaJ.G. RibeiroJ.M.C. CalvoE. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma.PLoS Pathog.2014102e100392310.1371/journal.ppat.1003923 24516388
    [Google Scholar]
  55. BarrientosL. BignonA. GueguenC. Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells.J. Immunol.2014193115689569810.4049/jimmunol.1400586 25339673
    [Google Scholar]
  56. RemaleyA.T. KuhnsD.B. BasfordR.E. GlewR.H. KaplanS.S. Leishmanial phosphatase blocks neutrophil O-2 production.J. Biol. Chem.198425918111731117510.1016/S0021‑9258(18)90841‑0 6088532
    [Google Scholar]
  57. TuwaijriA.A.S. MoflehA.I.A. MahmoudA.A. Effect of Leishmania major on human polymorphonuclear leucocyte function in vitro.J. Med. Microbiol.199032318919310.1099/00222615‑32‑3‑189 2374156
    [Google Scholar]
  58. WenzelA. ZandbergenV.G. Lipoxin A4 receptor dependent leishmania infection.Autoimmunity200942433133310.1080/08916930902828239 19811292
    [Google Scholar]
  59. PlaggeM. LaskayT. Early production of the neutrophil-derived lipid mediators ltb 4 and lxa 4 is modulated by intracellular infection with Leishmania major.BioMed Res. Int.201720171810.1155/2017/2014583 29181388
    [Google Scholar]
  60. SaleiN. HellbergL. KöhlJ. LaskayT. Enhanced survival of Leishmania major in neutrophil granulocytes in the presence of apoptotic cells.PLoS One2017122e017185010.1371/journal.pone.0171850 28187163
    [Google Scholar]
  61. AgaE. KatschinskiD.M. ZandbergenV.G. Inhibition of the spontaneous apoptosis of neutrophil granulocytes by the intracellular parasite Leishmania major.J. Immunol.2002169289890510.4049/jimmunol.169.2.898 12097394
    [Google Scholar]
  62. SarkarA. AgaE. BussmeyerU. Infection of neutrophil granulocytes with Leishmania major activates ERK 1/2 and modulates multiple apoptotic pathways to inhibit apoptosis.Med. Microbiol. Immunol.20132021253510.1007/s00430‑012‑0246‑1 22661217
    [Google Scholar]
  63. CharmoyM. AudersetF. AllenbachC. CottierT.F. The prominent role of neutrophils during the initial phase of infection by Leishmania parasites.J. Biomed. Biotechnol.201020101810.1155/2010/719361 19884987
    [Google Scholar]
  64. GomesR.F.L. PetersN.C. DebrabantA. SacksD.L. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response.PLoS Pathog.201282e100253610.1371/journal.ppat.1002536 22359507
    [Google Scholar]
  65. LaskayT. ZandbergenV.G. SolbachW. Neutrophil granulocytes – Trojan horses for Leishmania major and other intracellular microbes?Trends Microbiol.200311521021410.1016/S0966‑842X(03)00075‑1 12781523
    [Google Scholar]
  66. LaskayT. van ZandbergenG. SolbachW. Neutrophil granulocytes as host cells and transport vehicles for intracellular pathogens: Apoptosis as infection-promoting factor.Immunobiology20082133-418319110.1016/j.imbio.2007.11.010 18406366
    [Google Scholar]
  67. ZandbergenV.G. KlingerM. MuellerA. Cutting edge: Neutrophil granulocyte serves as a vector for Leishmania entry into macrophages.J. Immunol.2004173116521652510.4049/jimmunol.173.11.6521 15557140
    [Google Scholar]
  68. RitterU. FrischknechtF. ZandbergenV.G. Are neutrophils important host cells for Leishmania parasites?Trends Parasitol.2009251150551010.1016/j.pt.2009.08.003 19762280
    [Google Scholar]
  69. ScianimanicoS. DesrosiersM. DermineJ.F. MéresseS. DescoteauxA. DesjardinsM. Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes.Cell. Microbiol.199911193210.1046/j.1462‑5822.1999.00002.x 11207538
    [Google Scholar]
  70. WilsonJ. HuynhC. KennedyK.A. Control of parasitophorous vacuole expansion by LYST/Beige restricts the intracellular growth of Leishmania amazonensis.PLoS Pathog.2008410e100017910.1371/journal.ppat.1000179 18927622
    [Google Scholar]
  71. DesjardinsM. DescoteauxA. Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan.J. Exp. Med.1997185122061206810.1084/jem.185.12.2061 9182677
    [Google Scholar]
  72. DermineJ.F. ScianimanicoS. PrivéC. DescoteauxA. DesjardinsM. Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis.Cell. Microbiol.20002211512610.1046/j.1462‑5822.2000.00037.x 11207568
    [Google Scholar]
  73. LodgeR. DialloT.O. DescoteauxA. Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane.Cell. Microbiol.20068121922193110.1111/j.1462‑5822.2006.00758.x 16848789
    [Google Scholar]
  74. VinetA.F. FukudaM. TurcoS.J. DescoteauxA. The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V.PLoS Pathog.2009510e100062810.1371/journal.ppat.1000628 19834555
    [Google Scholar]
  75. HolmA. TejleK. MagnussonK.E. DescoteauxA. RasmussonB. Leishmania donovani lipophosphoglycan causes periphagosomal actin accumulation: correlation with impaired translocation of PKCalpha and defective phagosome maturation.Cell. Microbiol.20013743944710.1046/j.1462‑5822.2001.00127.x 11437830
    [Google Scholar]
  76. WinbergM.E. HolmÅ. SärndahlE. Leishmania donovani lipophosphoglycan inhibits phagosomal maturation via action on membrane rafts.Microbes Infect.200911221522210.1016/j.micinf.2008.11.007 19070677
    [Google Scholar]
  77. VermaJ.K. RastogiR. MukhopadhyayA. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494.PLoS Pathog.2017136e100645910.1371/journal.ppat.1006459 28650977
    [Google Scholar]
  78. CasgrainP.A. MartelC. McMasterW.R. MottramJ.C. OlivierM. DescoteauxA. Cysteine Peptidase B Regulates Leishmania mexicana Virulence through the Modulation of GP63 Expression.PLoS Pathog.2016125e100565810.1371/journal.ppat.1005658 27191844
    [Google Scholar]
  79. AliH.Z. HardingC.R. DennyP.W. Endocytosis and Sphingolipid Scavenging in Leishmania mexicana Amastigotes.Biochem. Res. Int.201220121810.1155/2012/691363 21941657
    [Google Scholar]
  80. RabhiS. RabhiI. TrentinB. Lipid droplet formation, their localization and dynamics during leishmania major macrophage infection.PLoS One2016112e014864010.1371/journal.pone.0148640 26871576
    [Google Scholar]
  81. IniestaV. NietoG.L.C. CorralizaI. The inhibition of arginase by N(omega)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages.J. Exp. Med.2001193677778410.1084/jem.193.6.777 11257143
    [Google Scholar]
  82. HuynhC. AndrewsN.W. Iron acquisition within host cells and the pathogenicity of Leishmania.Cell. Microbiol.200810229330010.1111/j.1462‑5822.2007.01095.x 18070118
    [Google Scholar]
  83. HuynhC. SacksD.L. AndrewsN.W. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes.J. Exp. Med.2006203102363237510.1084/jem.20060559 17000865
    [Google Scholar]
  84. MittraB. CortezM. HaydockA. RamasamyG. MylerP.J. AndrewsN.W. Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels.J. Exp. Med.2013210240141610.1084/jem.20121368 23382545
    [Google Scholar]
  85. MittraB. SilvaL.M.F. de MenezesP.B.J. JensenJ. MichailowskyV. AndrewsN.W. A trypanosomatid iron transporter that regulates mitochondrial function is required for leishmania amazonensis virulence.PLoS Pathog.2016121e100534010.1371/journal.ppat.1005340 26741360
    [Google Scholar]
  86. MittraB. SilvaL.M.F. MiguelD.C. de MenezesP.B.J. AndrewsN.W. The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence.J. Biol. Chem.201729229123241233810.1074/jbc.M116.772624 28550086
    [Google Scholar]
  87. BoitzJ.M. GilroyC.A. OlenyikT.D. Arginase is essential for survival of leishmania donovani promastigotes but not intracellular amastigotes.Infect. Immun.2017851e00554e1610.1128/IAI.00554‑16 27795357
    [Google Scholar]
  88. BadirzadehA. TaheriT. TaslimiY. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites.PLoS Negl. Trop. Dis.2017117e000577410.1371/journal.pntd.0005774 28708893
    [Google Scholar]
  89. ColottiG. IlariA. Polyamine metabolism in Leishmania: From arginine to trypanothione.Amino Acids201140226928510.1007/s00726‑010‑0630‑3 20512387
    [Google Scholar]
  90. PinkovichG.A. BalnoC. StrasserR. An arginine deprivation response pathway is induced in leishmania during macrophage invasion.PLoS Pathog.2016124e100549410.1371/journal.ppat.1005494 27043018
    [Google Scholar]
  91. NandanD. ReinerN.E. Attenuation of gamma interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovani: Selective inhibition of signaling through Janus kinases and Stat1.Infect. Immun.199563114495450010.1128/iai.63.11.4495‑4500.1995 7591091
    [Google Scholar]
  92. NandanD. LoR. ReinerN.E. Activation of phosphotyrosine phosphatase activity attenuates mitogen-activated protein kinase signaling and inhibits c-FOS and nitric oxide synthase expression in macrophages infected with Leishmania donovani.Infect. Immun.19996784055406310.1128/IAI.67.8.4055‑4063.1999 10417174
    [Google Scholar]
  93. BlanchetteJ. RacetteN. FaureR. SiminovitchK.A. OlivierM. Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-γ-triggered JAK2 activation.Eur. J. Immunol.199929113737374410.1002/(SICI)1521‑4141(199911)29:11<3737:AID‑IMMU3737>3.0.CO;2‑S 10556830
    [Google Scholar]
  94. ForgetG. GregoryD.J. WhitcombeL.A. OlivierM. Role of host protein tyrosine phosphatase SHP-1 in Leishmania donovani-induced inhibition of nitric oxide production.Infect. Immun.200674116272627910.1128/IAI.00853‑05 17057094
    [Google Scholar]
  95. RuhlandA. KimaP.E. Activation of PI3K/Akt signaling has a dominant negative effect on IL-12 production by macrophages infected with Leishmania amazonensis promastigotes.Exp. Parasitol.20091221283610.1016/j.exppara.2008.12.010 19186178
    [Google Scholar]
  96. SilvaC.T.C. VivariniÁ.C. MiquelineM. SantosD.G.R. TeixeiraK.L. SalibaA.M. The human parasite Leishmania amazonensis downregulates iNOS expression via NF-κB p50/p50 homodimer: Role of the PI3K/Akt pathway.Open Biol.20155915011810.1098/rsob.150118
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855295089240322081903
Loading
/content/journals/cdth/10.2174/0115748855295089240322081903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test