Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Traditional medicine in many countries, including those where (L.) Pierreis grown, uses the plant for a wide variety of purposes, including the treatment of piles, skin problems, and wounds. The objective of the present study was to discuss the medicinal value and chemical composition of flavonoids obtained from . All parts of the plant contain several phytoconstituents responsible for biological activity. These compounds include numerous types of flavonoid derivatives, such as flavones and flavans, as well as terpenes, steroids, and fatty acids. The information required about the plant and advancement in therapeutics was gathered from Pubmed, ScienceDirect and Cochrane Library. Many different types of biological activity, including antioxidant, antibacterial, anti-inflammatory, and anti-diabetic properties, have been observed in plant products from this species in pharmacological research. However, more research into the plant's phytochemical profile and the complicated pharmacological effects is required. This is because our current understanding of the plant's chemical ingredients and the methods by which they exhibit certain biological activities is limited. Thus, information regarding active constituents is required to develop novel therapeutics and additional research on the toxicity of the other chemicals identified from this plant is necessary.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855288101240320061757
2024-04-01
2025-10-03
Loading full text...

Full text loading...

References

  1. DeganiE. PrasadM.V.R. ParadkarA. A critical review of Pongamia pinnata multiple applications: From land remediation and carbon sequestration to socioeconomic benefits.J. Environ. Manage.202232411629710.1016/j.jenvman.2022.116297 36174475
    [Google Scholar]
  2. IslamA.K.M.A. ChakrabartyS. YaakobZ. Koroch (Pongamia pinnata): A promising Unexploited resources for the tropics and subtropics. Cristina GonçalvesA. SousaA. MalicoI. Forest Biomass-from Trees to Energy.LondonIntechOpen202110.5772/intechopen.93075
    [Google Scholar]
  3. Clemen-PascualL.M. MacahigR.A.S. RojasN.R.L. Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants.Toxicol. Rep.20229223510.1016/j.toxrep.2021.12.002 34976744
    [Google Scholar]
  4. UsharaniK.V. NaikD. ManjunathaR.L. Pongamia pinnata (L.): Composition and advantages in agriculture: A review.J. Pharmacogn. Phytochem.2019821812187
    [Google Scholar]
  5. SinghA. BhattG. GujreN. Karanjin.Phytochemistry202118311264110.1016/j.phytochem.2020.112641 33421890
    [Google Scholar]
  6. ThakurS. KauravH. ChaudharyG. Karanj (pongamia pinnata) – An ayurvedic and modern overview: karanj (pongamia pinnata).Asian J. Pharm. Clin. Res.2021146142110.22159/ajpcr.2021.v14i6.41367
    [Google Scholar]
  7. BadoleS.L. PatilK.Y. Chapter 34 - Pongamia pinnata (Linn.) Pierre and inflammation.In: Watson RR, Preedy VR, Zibadi SBT-P in HH and D, editors. San DiegoAcademic Press2014
    [Google Scholar]
  8. SikarwarM. PatilM.B. Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats.Int. J. Ayurveda Res.20101419920410.4103/0974‑7788.76780 21455444
    [Google Scholar]
  9. Al MuqarrabunL.M.R. AhmatN. RuzainaS.A.S. IsmailN.H. SahidinI. Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: A review.J. Ethnopharmacol.2013150239542010.1016/j.jep.2013.08.041 24016802
    [Google Scholar]
  10. LimayeD.B. Karanjin part I: A crystalline constituent of the oil from Pongamia glabra.Proceedings of the 12th Indian Academy and Science CongressIndia1925118125
    [Google Scholar]
  11. TalapatraS.K. MallikA.K. TalapatraB. Pongaglabol, a new hydroxyfuranoflavone, and aurantiamide acetate, a dipeptide from the flowers of Pongamia glabra.Phytochemistry19801961199120210.1016/0031‑9422(80)83083‑4
    [Google Scholar]
  12. PathakV.P. SainiT.R. KhannaR.N. Isopongachromene, a chromenoflavone from pongamia glabra seeds.Phytochemistry198322130830910.1016/S0031‑9422(00)80118‑1
    [Google Scholar]
  13. SahaM.M. MallikU.K. MallikA.K. A chromenoflavanone and two caffeic esters fromPongamia glabra.Phytochemistry199130113834383610.1016/0031‑9422(91)80130‑S
    [Google Scholar]
  14. TanakaT. IinumaM. YukiK. FujiiY. MizunoM. Flavonoids in root bark of Pongamia pinnata.Phytochemistry199231399399810.1016/0031‑9422(92)80055‑J
    [Google Scholar]
  15. RangaswamiS. RaoJ.V. SeshadriT.R. Kanugin, a crystalline component of the roots of Pongamia glabra.IndiaThe Indian Academy of Sciences1942319322
    [Google Scholar]
  16. RowL.R. New flavones from Pongamia pinnata (L.) Merr.Australian J Sci Res19525754759
    [Google Scholar]
  17. AnejaR. KhannaR.N. SeshadriT.R. 23. 6-Methoxyfuroflavone, a new component of the seeds of Pongamia glabra.J. Chem. Soc.1963116310.1039/jr9630000163
    [Google Scholar]
  18. KhannaR.N. SeshadriT.R. Pongaglabrone, a new component of the seeds of Pongamia glabra: its constitution and synthesis.Tetrahedron196319121922510.1016/0040‑4020(63)80024‑1
    [Google Scholar]
  19. YadavP.P. AhmadG. MauryaR. Furanoflavonoids from Pongamia pinnata fruits.Phytochemistry200465443944310.1016/j.phytochem.2003.09.011 14759538
    [Google Scholar]
  20. RaoR.R. TiwariA.K. ReddyP.P. New furano flavanoids, intestinala-glucosidase inhibitory and free-radical (DPPH) scavenging, activity from antihyperglycemic root extract of Derris indica (Lam.).Bioorg. Med. Chem.2009175170517510.1016/j.bmc.2009.05.051 19515570
    [Google Scholar]
  21. MukerjeeS.K. SarkarS.C. SeshadriT.R. The structure and synthesis of pongachromene, a new component of Pongamia glabra.Tetrahedron19692551063106910.1016/S0040‑4020(01)82679‑X 5347529
    [Google Scholar]
  22. LakhsmiG. SrimannarayanaG. RaoN.V.S. Pongaflavone, a new chromenochromone and an analog of Karanjin isolated from Pongamia pinnata (Linn.) Pierre (syn. Pongamia glabra).Indian J. Chem.1974128
    [Google Scholar]
  23. ChibberS.S. DuttS.K. Candidin, a pyranoflavone from Tephrosia Candida seeds.Phytochemistry1981206146010.1016/0031‑9422(81)80074‑X
    [Google Scholar]
  24. AhmadG. YadavP.P. MauryaR. Furanoflavonoid glycosides from Pongamia pinnata fruits.Phytochemistry200465792192410.1016/j.phytochem.2004.01.020 15081295
    [Google Scholar]
  25. MarzoukM.S.A. IbrahimM.T. El-GindiO.R. BakrM.S.A. Isoflavonoids glycosides and rotenoids from Pongamia pinnata leaves. Zeitschrft.Naturforsch200863c17
    [Google Scholar]
  26. KoysomboonS. van AltenaI. KatoS. ChantraprommaK. Antimycobacterial flavonoids from Derris indica.Phytochemistry200667101034104010.1016/j.phytochem.2006.03.019 16730034
    [Google Scholar]
  27. SemaltyA. SemaltyM. KumarP. MirS.R. AliM. AminS. Isolation and hypoglycemic activity of a novel pongamia flavonyl flavonol from Pongamia pinnata pods.Int. J. Pharmacol.20128426527010.3923/ijp.2012.265.270
    [Google Scholar]
  28. LiL. LiX. ShiC. Pongamone A–E, five flavonoids from the stems of a mangrove plant, Pongamia pinnata.Phytochemistry200667131347135210.1016/j.phytochem.2006.05.016 16814820
    [Google Scholar]
  29. MittalO.P. SeshadriT.R. 426. Demethoxykanugin: A new crystalline compound from Pongamia glabra.J. Chem. Soc.19562176217810.1039/jr9560002176
    [Google Scholar]
  30. YinH. ZhangS. WuJ. Pongaflavanol: A prenylated flavonoid from Pongamia pinnata with a modified ring A.Molecules2006111078679110.3390/11100786 17971755
    [Google Scholar]
  31. Carcache-BlancoE.J. KangY.H. ParkE.J. Constituents of the stem bark of Pongamia pinnata with the potential to induce quinone reductase.J. Nat. Prod.20036691197120210.1021/np030207g 14510596
    [Google Scholar]
  32. MagalhãesA.F. TozziA.M.A. MagalhãesE.G. NogueiraM.A. QueirozS.C.N. Flavonoids from Lonchocarpus latifolius roots.Phytochemistry200055778779210.1016/S0031‑9422(00)00300‑9 11190397
    [Google Scholar]
  33. MinakawaT. ToumeK. AhmedF. Constituents of Pongamia pinnata isolated in a screening for activity to overcome tumor necrosis factor-related apoptosis-inducing ligand-resistance.Chem. Pharm. Bull.201058111549155110.1248/cpb.58.1549 21048354
    [Google Scholar]
  34. do NascimentoM.C. MorsW.B. Chalcones of the root bark of Derris sericea.Phytochemistry197211103023302810.1016/0031‑9422(72)80097‑9
    [Google Scholar]
  35. GuptaR.K. KrishnamurtiM. Chromenoflavanones from Milletia ovalifolia.Phytochemistry19761512201110.1016/S0031‑9422(00)88883‑4
    [Google Scholar]
  36. SultanaS. IlyasM. A flavanone from Lannea acida.Phytochemistry198625496396410.1016/0031‑9422(86)80040‑1
    [Google Scholar]
  37. KitagawaI. ZhangR. HoriK. TsuchiyaK. ShibuyaH. Indonesian medicinal plants. II. Chemical structures of Pongapinones A and B, two new phenylpropanoids from the bark of Pongamia pinnata (Papilionaceae).Chem. Pharm. Bull. (Tokyo)19924082041204310.1248/cpb.40.2041 1423757
    [Google Scholar]
  38. DasS TiwariGJ GhoshA In silico analysis of new flavonoids from Pongamia pinnata with a therapeutic potential for age-related macular degeneration.3 Biotech20201012536
    [Google Scholar]
  39. MirS.R. AliM. Reassessment of structures of flavonoids isolated from the fruits of Pongamia pinnata (L.) Pierre.J. Pharmacogn. Phytochem.201656265269
    [Google Scholar]
  40. PonmuthumariammalS. KanagalakshmiK. MuthusubramanianS. VanangamudiA. Isolation of two new flavonoids from the chloroform extract.Int. J. Curr. Res.2017955034150343
    [Google Scholar]
  41. AmorosM. SimõsC.M.O. GirreL. SauvagerF. CormierM. Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis.J. Nat. Prod.199255121732174010.1021/np50090a003 1338212
    [Google Scholar]
  42. PhrutivorapongkulA. LipipunV. RuangrungsiN. Studies on the chemical constituents of stem bark of Millettia leucantha: isolation of new chalcones with cytotoxic, anti-herpes simplex virus and anti-inflammatory activities.Chem. Pharm. Bull200351218719010.1248/cpb.51.187 12576653
    [Google Scholar]
  43. PlaperA. GolobM. HafnerI. OblakM. ŠolmajerT. JeralaR. Characterization of quercetin binding site on DNA gyrase.Biochem. Biophys. Res. Commun.2003306253053610.1016/S0006‑291X(03)01006‑4 12804597
    [Google Scholar]
  44. AlamS. SarkarZ. IslamA. Synthesis and studies of antibacterial activity of pongaglabol.J. Chem. Sci.20041161293210.1007/BF02708210
    [Google Scholar]
  45. NagaprashanthaL.D. VatsyayanR. SinghalJ. Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxelin prostate cancer.Biochem. Pharmacol.2011821100110910.1016/j.bcp.2011.07.078 21803027
    [Google Scholar]
  46. BakiM.A. SadikG. Mondal Kamsh, Mosaddik MA, Rahman MM. Methylkarranjic acid and pongamol from Derris indica seeds and their anti-bacterial activity.Dhaka Univ J Pharm Sci19706191310.3329/dujps.v6i1.337
    [Google Scholar]
  47. RameshthangamP. RamasamyP. Antiviral activity of bis(2-methylheptyl)phthalate isolated from Pongamia pinnata leaves against White Spot Syndrome Virus of Penaeus monodon Fabricius.Virus Res.20071261-2384410.1016/j.virusres.2007.01.014 17328984
    [Google Scholar]
  48. PatelP.P. TrivediN.D. Karanjin ameliorates DSS induced colitis in C57BL/6 mice.Int. J. Pharm. Sci. Res.2015648664874
    [Google Scholar]
  49. RoyR. PalD. SurS. MandalS. SahaP. PandaC.K. Pongapin and Karanjin, furanoflavanoids of Pongamia pinnata, induce G2/M arrest and apoptosis in cervical cancer cells by differential reactive oxygen species modulation, DNA damage, and nuclear factor kappa‐light‐chain‐enhancer of activated B cell signaling.Phytother. Res.20193341084109410.1002/ptr.6302 30834631
    [Google Scholar]
  50. GuoJ.R. ChenQ.Q. LamC.W.K. ZhangW. Effects of karanjin on cell cycle arrest and apoptosis in human A549, HepG2 and HL-60 cancer cells.Biol. Res.20154814010.1186/s40659‑015‑0031‑x 26209237
    [Google Scholar]
  51. MichaelisM. RothweilerF. NerreterT. SharifiM. GhafourianT. CinatlJ. Karanjin interferes with ABCB1, ABCC1, and ABCG2.J. Pharm. Pharm. Sci.20141719210510.18433/J3BW2S 24735762
    [Google Scholar]
  52. JoshiP. SonawaneV.R. WilliamsI.S. Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository.MedChemComm20189237138210.1039/C7MD00388A 30108931
    [Google Scholar]
  53. ScottJ.G. ForoozeshM. HopkinsN.E. AlefantisT.G. AlworthW.L. Inhibition of cytochrome P450-6D1 by alkynylarenes, methylenedioxyarenes, and other substituted aromatics.Pestic. Biochem. Physiol.2000671637110.1006/pest.2000.2475
    [Google Scholar]
  54. VermaM. PradhanS. SharmaS. NaikS.N. PrasadR. Efficacy of karanjin and phorbol ester fraction against termites (Odontotermes obesus).Int. Biodeterior. Biodegradation201165687788210.1016/j.ibiod.2011.05.007
    [Google Scholar]
  55. TamrakarA.K. YadavP.P. TiwariP. MauryaR. SrivastavaA.K. Identification of pongamol and karanjin as lead compounds with antihyperglycemic activity from Pongamia pinnata fruits.J. Ethnopharmacol.2008118343543910.1016/j.jep.2008.05.008 18572336
    [Google Scholar]
  56. BholaneD.A. HiremathD.V.V. A critical review on Karanja (Pongamia pinnata) and its medicinal properties.J Ayurveda Int Med Sci20205194202
    [Google Scholar]
  57. SharmaA. KaushikN. RathoreH. Karanja (Milletia pinnata (L.) Panigrahi): A tropical tree with varied applications.Phytochem. Rev.202019364365810.1007/s11101‑020‑09670‑z
    [Google Scholar]
  58. Kumar YadavK. GuptaN. KumarA. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects.Ecol. Eng.201812027429810.1016/j.ecoleng.2018.05.039
    [Google Scholar]
  59. MajumdarD. PandyaB. AroraA. DharaS. Potential use of karanjin (3-methoxy furano-2′,3′,7,8-flavone) as a nitrification inhibitor in different soil types.Arch. Agron. Soil Sci.2004504-545546510.1080/03650340410001689406
    [Google Scholar]
  60. LaleA. KulkarniD.K. A mosquito repellent karanj Kunapa from pongamia pinnata.Asian Agrihist.201014207211
    [Google Scholar]
  61. SahrawatK.L. MukerjeeS.K. Nitrification inhibitors.Plant Soil1977471273610.1007/BF00010365
    [Google Scholar]
  62. ShejawalN. MenonS. ShailajanS. Bioavailability of karanjin from Pongamia pinnata L. in Sprague dawley rats using validated RP-HPLC method.J. Appl. Pharm. Sci.201443101410.7324/JAPS.2014.40303
    [Google Scholar]
  63. BernoudT PiccirilliA MagneJ. Process for Pongamol enrichment of Karanja.A.U. Patent 2016296922A2019
  64. VismayaW. Sapna EipesonW. ManjunathaJ.R. SrinivasP. Sindhu KanyaT.C. Extraction and recovery of karanjin: A value addition to karanja (Pongamia pinnata) seed oil.Ind. Crops Prod.201032211812210.1016/j.indcrop.2010.03.011
    [Google Scholar]
  65. GoreV.K. SatyamoorthyP. Determination of Pongamol and Karanjin in Karanja Oil by reverse phase hplc.Anal. Lett.200033233734610.1080/00032710008543056
    [Google Scholar]
  66. PantM. SharmaS. DubeyS. NaikS.N. PatanjaliP.K. Utilization of biodiesel by-products for mosquito control.J. Biosci. Bioeng.2016121329930210.1016/j.jbiosc.2015.07.010 26296531
    [Google Scholar]
  67. WylieP. GresshofP. MuirheadG. FritschS. BinksR. BowmanK. A technical and economic appraisal of Pongamia Pinnata in Northern Australia.In: AgriFutures Australia. AustraliaWagga Wagga, NSW2021
    [Google Scholar]
  68. KumarP. MirS.R. SemaltyA. Isolation and characterization of novel flavonoid from methanolic extract of pongamia pinnata pods.Res. J. Phytochem.201481212410.3923/rjphyto.2014.21.24
    [Google Scholar]
  69. MajumdarD. Unexploited botanical nitrification inhibitors prepared from Karanja plant.Nat. Prod. Radiance2007715867
    [Google Scholar]
  70. JainA. JainP. BajajS. MajumdarA. SoniP. Chemoprofiling and antioxidant activity of edible curcuma species.Food and Humanity202311027103910.1016/j.foohum.2023.08.023
    [Google Scholar]
  71. ArshadN. RashidN. AbsarS. AbbasiM. SaleemS. MirzaB. UV-absorption studies of interaction of karanjin and karanjachromene with ds. DNA: Evaluation of binding and antioxidant activity.Open Chem.201311122040204710.2478/s11532‑013‑0327‑z
    [Google Scholar]
  72. BoseM. ChakrabortyM. BhattacharyaS. MukherjeeD. MandalS. MishraR. Prevention of arthritis markers in experimental animal and inflammation signalling in macrophage by Karanjin isolated from Pongamia pinnata seed extract.Phytother. Res.20142881188119510.1002/ptr.5113 24399783
    [Google Scholar]
  73. TanakaT. IkedaT. KakuM. A new lignan glycoside and phenylethanoid glycosides from Strobilanthes cusia bremek.Chem. Pharm. Bull.200452101242124510.1248/cpb.52.1242 15467245
    [Google Scholar]
  74. PatilP. PrasadK. NitinM. RaoK.S. Anti-ulcer and anti-secretory properties of the Pongamia Pinnata root extract with relation to anti-oxidant studies.Res. J. Pharm. Biol. Chem. Sci.201012235244
    [Google Scholar]
  75. OsmanM. WaniS. BalloliS.S. SreedeviT. RaoC.S. D’SilvaE. Pongamia seed cake as a valuable source of plant nutrients for sustainable agriculture.Indian J. Fert.2009522532
    [Google Scholar]
  76. GigliottiM. Schmidt-TraubG. BastianoniS. The sustainable development goals encyclopedia of ecology.In: Encyclopedia of Ecology.2nd EdElsevier2018426431
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855288101240320061757
Loading
/content/journals/cdth/10.2174/0115748855288101240320061757
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diabetes; flavans; flavones; flavonoids; herbal approach; Pongamia pinnata
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test