Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Background

Diabetes is a serious and chronic metabolic disorder that is a result of a complex interaction of genetic and environmental factors. Diabetes mellitus has become a worldwide pandemic. Drug discovery has been complicated by the high cost and time required for developing new drugs/agents. In the last 30 years, the number of FDA-approved medications has declined, boosting interest in drug repositioning or repurposing. Repurposing existing drugs may be a significant tool for lowering the financial burden that most nations bear while treating diabetic mellitus.

Objectives

This comprehensive review aims to elucidate the repurposed pharmaceutical agents for the treatment of Diabetes Mellitus along with the diverse array of validation techniques employed in the process.

Methods

For this review purpose, the authors have gone through a vast number of article sources from various scientific databases like Google Scholar, PubMed, and Web of Science.

Results

Drug repurposing led to the discovery of a few anti-diabetic drugs which has been widely used for other pharmacological effects. Several medications, including celecoxib, buspirone, berberine, diacerein, methazolamide, and bromocriptine, have been effective in treating diabetic mellitus by various mechanisms like decreasing insulin resistance, hyperglycemia, inhibiting glucagon secretion and improving insulin sensitivity.

Conclusion

The field of drug repurposing exhibits significant potential in tackling the obstacles presented by T2DM and other complex diseases. The conventional approaches to drug development have often been characterized by prolonged durations and high costs, resulting in significant delays in the discovery of effective medicines for conditions like T2DM. However, the strategy of drug repurposing presents a more streamlined and economically advantageous method for drug development.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855292471240319055530
2024-03-27
2025-10-03
Loading full text...

Full text loading...

References

  1. KaulK. TarrJ.M. AhmadS.I. KohnerE.M. ChibberR. Introduction to diabetes mellitus.In: Diabetes. New York: Advances in Experimental Medicine and BiologySpringer201377111110.1007/978‑1‑4614‑5441‑0_1
    [Google Scholar]
  2. BandayM.Z. SameerA.S. NissarS. Pathophysiology of diabetes: An overview.Avicenna J. Med.202010417418810.4103/ajm.ajm_53_20
    [Google Scholar]
  3. BarbhuiyaP.A. SenS. PathakM.P. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: A comprehensive review.Phytochem. Rev.202310.1007/s11101‑023‑09912‑w
    [Google Scholar]
  4. CadeW.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting.Phys. Ther.200888111322133510.2522/ptj.20080008
    [Google Scholar]
  5. Diagnosis and classification of diabetes mellitus.Diabetes Care201033Suppl. 1S62S6910.2337/dc10‑S062
    [Google Scholar]
  6. AlamU. AsgharO. AzmiS. MalikR.A. General aspects of diabetes mellitus.Handb. Clin. Neurol.201412621122210.1016/B978‑0‑444‑53480‑4.00015‑1
    [Google Scholar]
  7. DeFronzoR.A. FerranniniE. GroopL. Type 2 diabetes mellitus.Nat. Rev. Dis. Primers2015111501910.1038/nrdp.2015.19
    [Google Scholar]
  8. Galicia-GarciaU. Benito-VicenteA. JebariS. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275
    [Google Scholar]
  9. GinterE. SimkoV. Type 2 diabetes mellitus, pandemic in 21st century.Adv. Exp. Med. Biol.2013771425010.1007/978‑1‑4614‑5441‑0_6
    [Google Scholar]
  10. WildS. RoglicG. GreenA. SicreeR. KingH. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030.Diabetes Care20042751047105310.2337/diacare.27.5.1047
    [Google Scholar]
  11. PaulA. KumarM. DasP. GuhaN. RudrapalM. ZamanM.K. Drug repurposing – A search for novel therapy for the treatment of diabetic neuropathy.Biomed. Pharmacother.202215611384610.1016/j.biopha.2022.113846
    [Google Scholar]
  12. AkterN. Diabetic peripheral neuropathy: Epidemiology, physiopathology, diagnosis and treatment.Delta Med Coll J201971354810.3329/dmcj.v7i1.40619
    [Google Scholar]
  13. SchreiberA.K. NonesC.F. ReisR.C. ChichorroJ.G. CunhaJ.M. Diabetic neuropathic pain: Physiopathology and treatment.World J. Diabetes20156343244410.4239/wjd.v6.i3.432
    [Google Scholar]
  14. HofmannJ. The potential for isoenzyme‐selective modulation of protein kinase C.FASEB J.199711864966910.1096/fasebj.11.8.9240967
    [Google Scholar]
  15. MeierM. MenneJ. HallerH. Targeting the protein kinase C family in the diabetic kidney: lessons from analysis of mutant mice.Diabetologia200952576577510.1007/s00125‑009‑1278‑y
    [Google Scholar]
  16. VincentA.M. RussellJ.W. LowP. FeldmanE.L. Oxidative stress in the pathogenesis of diabetic neuropathy.Endocr. Rev.200425461262810.1210/er.2003‑0019
    [Google Scholar]
  17. VincentA.M. CallaghanB.C. SmithA.L. FeldmanE.L. Diabetic neuropathy: Cellular mechanisms as therapeutic targets.Nat. Rev. Neurol.201171057358310.1038/nrneurol.2011.137
    [Google Scholar]
  18. DewanjeeS. DasS. DasA.K. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets.Eur. J. Pharmacol.201883347252310.1016/j.ejphar.2018.06.034
    [Google Scholar]
  19. SoldatenkovV.A. ChasovskikhS. PotamanV.N. TrofimovaI. SmulsonM.E. DritschiloA. Transcriptional repression by binding of poly(adp-ribose) polymerase to promoter sequences.J. Biol. Chem.2002277166567010.1074/jbc.M108551200
    [Google Scholar]
  20. YuS.W. WangH. PoitrasM.F. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor.Science2002297557925926310.1126/science.1072221
    [Google Scholar]
  21. TranD.H. MayH.I. LiQ. Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling.Nat. Commun.2020111177110.1038/s41467‑020‑15640‑y
    [Google Scholar]
  22. MilewskiS. Glucosamine-6-phosphate synthase—the multi-facets enzyme.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.20021597217319210.1016/S0167‑4838(02)00318‑7
    [Google Scholar]
  23. KrieglsteinK. StrelauJ. SchoberA. SullivanA. UnsickerK. TGF-β and the regulation of neuron survival and death.J. Physiol. Paris2002961-2253010.1016/S0928‑4257(01)00077‑8
    [Google Scholar]
  24. FoilesP.G. FoundsH.W. VasanS. Therapeutic potential of AGE inhibitors and breakers of AGE protein cross-links.Expert Opin. Investig. Drugs200110111977198710.1517/13543784.10.11.1977
    [Google Scholar]
  25. YaoD. TaguchiT. MatsumuraT. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A.J. Biol. Chem.200728242310383104510.1074/jbc.M704703200
    [Google Scholar]
  26. XuJ.T. TuH.Y. XinW.J. LiuX.G. ZhangG.H. ZhaiC.H. Activation of phosphatidylinositol 3-kinase and protein kinase B/Akt in dorsal root ganglia and spinal cord contributes to the neuropathic pain induced by spinal nerve ligation in rats.Exp. Neurol.2007206226927910.1016/j.expneurol.2007.05.029
    [Google Scholar]
  27. RebeloR. PolóniaB. SantosL.L. VasconcelosM.H. XavierC.P.R. Drug repurposing opportunities in pancreatic ductal adenocarcinoma.Pharmaceuticals202114328010.3390/ph14030280
    [Google Scholar]
  28. PushpakomS. IorioF. EyersP.A. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168
    [Google Scholar]
  29. AgrawalP. Artificial intelligence in drug discovery and development.J. Pharmacovigil.201861210.4172/2329‑6887.1000e173
    [Google Scholar]
  30. TurnerN. ZengX.Y. OsborneB. RogersS. YeJ.M. Repurposing drugs to target the diabetes epidemic.Trends Pharmacol. Sci.201637537938910.1016/j.tips.2016.01.007
    [Google Scholar]
  31. HamedS. BennettC.L. DemiotC. UllmannY. TeotL. DesmoulièreA. Erythropoietin, a novel repurposed drug: An innovative treatment for wound healing in patients with diabetes mellitus.Wound Repair Regen.2014221233310.1111/wrr.12135
    [Google Scholar]
  32. OsakweO. RizviS.A.A. Social aspects of drug discovery, development and commercialization.Academic Press2016xviixx10.1016/B978‑0‑12‑802220‑7.00017‑X
    [Google Scholar]
  33. NakkaN. ThummaG. NagillaS. BoggulaN. BakshiV. GangarapuK. Repurposing of linagliptin similar FDA approved drugs as antidiabetic agents.Letters in Applied NanoBioScience20211042766277610.33263/LIANBS104.27662776
    [Google Scholar]
  34. KumarM. OkomboJ. MambweD. Multistage antiplasmodium activity of astemizole analogues and inhibition of hemozoin formation as a contributor to their mode of action.ACS Infect. Dis.20195230331510.1021/acsinfecdis.8b00272
    [Google Scholar]
  35. ChancellorM. VersiE. DvergstenC. TolerS. Clinical efficacy and tolerability of the nicotinic channel modulator dexmecamylamine in subjects with overactive bladder.J. Urol.201519451329133510.1016/j.juro.2015.06.035
    [Google Scholar]
  36. LeeH.M. KimY. Drug repurposing is a new opportunity for developing drugs against neuropsychiatric disorders.Schizophr. Res. Treatment2016201611210.1155/2016/6378137
    [Google Scholar]
  37. EtterJ.F. SchneiderN.G. An internet survey of use, opinions and preferences for smoking cessation medications: Nicotine, varenicline, and bupropion.Nicotine Tob. Res.2013151596810.1093/ntr/nts084
    [Google Scholar]
  38. ToshnerM. SpiekerkoetterE. BogaardH. HansmannG. NikkhoS. PrinsK.W. Repurposing of medications for pulmonary arterial hypertension.Pulm. Circ.202010411210.1177/2045894020941494
    [Google Scholar]
  39. RêgoD.F. PavanL.M.C. EliasS.T. De Luca CantoG. GuerraE.N.S. Effects of metformin on head and neck cancer: A systematic review.Oral Oncol.201551541642210.1016/j.oraloncology.2015.01.007
    [Google Scholar]
  40. JanssensM.M.L. Astemizole.Clin. Rev. Allergy1993111356310.1007/BF02802293
    [Google Scholar]
  41. JanssensF. JanssenM.A.C. AwoutersF. NiemegeersC.J.E. Vanden BusscheG. Chemical development of astemizole‐like compounds.Drug Dev. Res.198681-4273610.1002/ddr.430080105
    [Google Scholar]
  42. AlverlindS. BarassinS. DalénP. Clinical pharmacokinetics of the nicotinic channel modulator dexmecamylamine (TC-5214) in subjects with various degrees of renal impairment.Clin. Drug Investig.201434745746510.1007/s40261‑014‑0195‑0
    [Google Scholar]
  43. CooperB.R. WangC.M. CoxR.F. NortonR. SheaV. FerrisR.M. Evidence that the acute behavioral and electrophysiological effects of bupropion (wellbutrin) are mediated by a noradrenergic mechanism.Neuropsychopharmacology199411213314110.1038/npp.1994.43
    [Google Scholar]
  44. DhillonS. YangL.P.H. CurranM.P. Bupropion.Drugs200868565368910.2165/00003495‑200868050‑00011
    [Google Scholar]
  45. ChappleC.R. CardozoL. NittiV.W. SiddiquiE. MichelM.C. Mirabegron in overactive bladder: A review of efficacy, safety, and tolerability.Neurourol. Urodyn.2014331173010.1002/nau.22505
    [Google Scholar]
  46. MohantyS. RashidM.H.A. MohantyC. SwayamsiddhaS. Modern computational intelligence based drug repurposing for diabetes epidemic.Diabetes Metab. Syndr.202115410218010.1016/j.dsx.2021.06.017
    [Google Scholar]
  47. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x
    [Google Scholar]
  48. RudrapalM. ChetiaD. Endoperoxide antimalarials: Development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold.Drug Des. Devel. Ther.2016103575359010.2147/DDDT.S118116
    [Google Scholar]
  49. KalitaJ. ChetiaD. RudrapalM. Design, synthesis, antimalarial activity and docking study of 7-chloro-4- (2-(substituted benzylidene)hydrazineyl)quinolines.Med. Chem.202016792893710.2174/1573406415666190806154722
    [Google Scholar]
  50. ShivaprasadC. KalraS. Bromocriptine in type 2 diabetes mellitus.Indian J. Endocrinol. Metab.20111551710.4103/2230‑8210.83058
    [Google Scholar]
  51. MohamedW.R. El SherbinyG.A. ZakiH.F. El SayedM.E. Possible modulation of the antidiabetic effect of rosiglitazone by buspirone.Bull. Fac. Pharm. Cairo Univ.2012501737910.1016/j.bfopcu.2012.04.001
    [Google Scholar]
  52. ZhangM. LuoH. XiZ. RogaevaE. Drug repositioning for diabetes based on “omics” data mining.PLoS One2015105e012608210.1371/journal.pone.0126082
    [Google Scholar]
  53. ShippeyE.A.III WaglerV.D. CollamerA.N. Hydroxychloroquine: An old drug with new relevance.Cleve. Clin. J. Med.201885645946710.3949/ccjm.85a.17034
    [Google Scholar]
  54. RempenaultC. CombeB. BarnetcheT. Clinical and structural efficacy of hydroxychloroquine in rheumatoid arthritis: A systematic review.Arthritis Care Res.2020721364010.1002/acr.23826
    [Google Scholar]
  55. SunL. LiuM. LiR. Hydroxychloroquine, a promising choice for coronary artery disease?Med. Hypotheses2016935710.1016/j.mehy.2016.04.045
    [Google Scholar]
  56. WangP. BurikhanovR. JayswalR. Neoadjuvant administration of hydroxychloroquine in a phase 1 clinical trial induced plasma Par-4 levels and apoptosis in diverse tumors.Genes Cancer201895-619019710.18632/genesandcancer.181
    [Google Scholar]
  57. SheikhbahaieF. AminiM. GharipourM. AminoroayaA. TaheriN. The effect of hydroxychloroquine on glucose control and insulin resistance in the prediabetes condition.Adv. Biomed. Res.20165114510.4103/2277‑9175.187401
    [Google Scholar]
  58. PareekA. ChandurkarN. ThomasN. Efficacy and safety of hydroxychloroquine in the treatment of type 2 diabetes mellitus: A double blind, randomized comparison with pioglitazone.Curr. Med. Res. Opin.20143071257126610.1185/03007995.2014.909393
    [Google Scholar]
  59. BaidyaA. ChakravartiH.N. SaraogiR.K. Efficacy of maximum and optimum doses of hydroxychloroquine added to patients with poorly controlled type 2 diabetes on stable insulin therapy along with glimepiride and metformin: Association of high-sensitive C-reactive protein (Hs-CRP) and glycosylated haemoglobin (HbA1c).Endocrinol. Metab. Syndr.20187128310.4172/2161‑1017.1000283
    [Google Scholar]
  60. SinhaN. BalaylaG. Hydroxychloroquine and COVID-19.Postgrad. Med. J.202096113955055510.1136/postgradmedj‑2020‑137785
    [Google Scholar]
  61. ArendR.C. Londoño-JoshiA.I. GangradeA. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer.Oncotarget2016752868038681510.18632/oncotarget.13466
    [Google Scholar]
  62. ChenW. MookR.A.Jr PremontR.T. WangJ. Niclosamide: Beyond an antihelminthic drug.Cell. Signal.201841899610.1016/j.cellsig.2017.04.001
    [Google Scholar]
  63. HanP. ShaoM. GuoL. Niclosamide ethanolamine improves diabetes and diabetic kidney disease in mice.Am. J. Transl. Res.20181010711084
    [Google Scholar]
  64. TaoH. ZhangY. ZengX. ShulmanG.I. JinS. Niclosamide ethanolamine–induced mild mitochondrial uncoupling improves diabetic symptoms in mice.Nat. Med.201420111263126910.1038/nm.3699
    [Google Scholar]
  65. OgawaS. TakeuchiK. SugimuraK. Bezafibrate reduces blood glucose in type 2 diabetes mellitus.Metabolism200049333133410.1016/S0026‑0495(00)90176‑8
    [Google Scholar]
  66. Scottish intercollegiate guidelines network. British guideline on the management of asthma.Thorax201469Suppl. 11192
    [Google Scholar]
  67. AriasA.M.P. BisschopP.H. AckermansM.T. Aminophylline stimulates insulin secretion in patients with type 2 diabetes mellitus.Metabolism20015091030103510.1053/meta.2001.25800
    [Google Scholar]
  68. GaurA.S. NagamaniS. TanneeruK. Molecular property diagnostic suite for diabetes mellitus (MPDSDM): An integrated web portal for drug discovery and drug repurposing.In: J. Biomed. Inform.20188511412510.1016/j.jbi.2018.08.003
    [Google Scholar]
  69. RazayG. WilcockG.K. Galantamine in Alzheimer’s disease.Expert Rev. Neurother.20088191710.1586/14737175.8.1.9
    [Google Scholar]
  70. AliM.A. El-AbharH.S. KamelM.A. AttiaA.S. Antidiabetic effect of galantamine: novel effect for a known centrally acting drug.PLoS One2015108e013464810.1371/journal.pone.0134648
    [Google Scholar]
  71. MohammedN.S. HussainS.A. Effect of low doses of captopril or losartan in improving glycemic control by oral hypoglycemic agents in type 2 diabetes mellitus patients.PhD Thesis2008
    [Google Scholar]
  72. EckelR.H. HenryR.R. YueP. Effect of ranolazine monotherapy on glycemic control in subjects with type 2 diabetes.Diabetes Care20153871189119610.2337/dc14‑2629
    [Google Scholar]
  73. RosenthalT. ErlichY. RosenmannE. CohenA. Effects of enalapril, losartan, and verapamil on blood pressure and glucose metabolism in the cohen-rosenthal diabetic hypertensive rat.Hypertension19972961260126410.1161/01.HYP.29.6.1260
    [Google Scholar]
  74. PoudelR. KafleN. Verapamil in diabetes.Indian J. Endocrinol. Metab.201721578878910.4103/ijem.IJEM_190_17
    [Google Scholar]
  75. FogariR. ZoppiA. CorradiL. LazzariP. MugelliniA. LusardiP. Comparative effects of lisinopril and losartan on insulin sensitivity in the treatment of non-diabetic hypertensive patients.Br. J. Clin. Pharmacol.199846546747110.1046/j.1365‑2125.1998.00811.x
    [Google Scholar]
  76. YusufS. GersteinH. HoogwerfB. Ramipril and the development of diabetes.JAMA2001286151882188510.1001/jama.286.15.1882
    [Google Scholar]
  77. MahfozA.M. El-LatifH.A.A. AhmedL.A. HassaneinN.M. ShokaA.A. Anti-diabetic and renoprotective effects of aliskiren in streptozotocin-induced diabetic nephropathy in female rats.Naunyn Schmiedebergs Arch. Pharmacol.2016389121315132410.1007/s00210‑016‑1299‑2
    [Google Scholar]
  78. De FeoP. TorloneE. PerrielloG. Short-term metabolic effects of the ace-inhibitor benazepril in type 2 diabetes mellitus associated with arterial hypertension.Diabete Metab.199218283288
    [Google Scholar]
  79. RajputM.A. AliF. ZehraT. ZafarS. KumarG. The effect of proton pump inhibitors on glycaemic control in diabetic patients.J. Taibah Univ. Med. Sci.202015321822310.1016/j.jtumed.2020.03.003
    [Google Scholar]
  80. ZimmermannL.M. BaptistaM.S. TardivoJ.P. PinhalM.A. Type II diabetes patients under sildenafil citrate: Case series showing benefits and a side effect.Case Rep. Med.202020201510.1155/2020/4065452
    [Google Scholar]
  81. BaharA. KashiZ. DaneshpourE. AkhaO. AlaS. Effects of cabergoline on blood glucose levels in type 2 diabetic patients.Medicine20169540e481810.1097/MD.0000000000004818
    [Google Scholar]
  82. LeesA.J. SternG.M. Sustained bromocriptine therapy in previously untreated patients with Parkinson’s disease.J. Neurol. Neurosurg. Psychiatry198144111020102310.1136/jnnp.44.11.1020
    [Google Scholar]
  83. VanceM.L. EvansW.S. ThornerM.O. Drugs five years later: Bromocriptine.Ann. Intern. Med.19841001789110.7326/0003‑4819‑100‑1‑78
    [Google Scholar]
  84. FultonB. BrogdenR.N. Buspirone.CNS Drugs199771688810.2165/00023210‑199707010‑00007
    [Google Scholar]
  85. HanJ. LinH. HuangW. Modulating gut microbiota as an anti-diabetic mechanism of berberine.Med. Sci. Monit.2011177RA164RA16710.12659/MSM.881842
    [Google Scholar]
  86. VillarM.M. Martínez-AbundisE. Preciado-MárquezR.O. González-OrtizM. Effect of diacerein as an add-on to metformin in patients with type 2 diabetes mellitus and inadequate glycemic control.Arch. Endocrinol. Metab.201761218819210.1590/2359‑3997000000242
    [Google Scholar]
  87. PavelkaK. BruyèreO. CooperC. Diacerein: Benefits, risks and place in the management of osteoarthritis. An opinion-based report from the ESCEO.Drugs Aging2016332758510.1007/s40266‑016‑0347‑4
    [Google Scholar]
  88. KonstantopoulosN. MoleroJ.C. McGeeS.L. Methazolamide is a new hepatic insulin sensitizer that lowers blood glucose in vivo.Diabetes20126182146215410.2337/db11‑0578
    [Google Scholar]
  89. ChenR. QianY. LiR. Methazolamide calcium phosphate nanoparticles in an ocular delivery system.Yakugaku Zasshi2010130341942410.1248/yakushi.130.419
    [Google Scholar]
  90. DaviesN.M. McLachlanA.J. DayR.O. WilliamsK.M. Clinical pharmacokinetics and pharmacodynamics of celecoxib: A selective cyclo-oxygenase-2 inhibitor.Clin. Pharmacokinet.200038322524210.2165/00003088‑200038030‑00003
    [Google Scholar]
  91. Food and Drug AT2DMinistrationNew drug application #20998: Clinical pharmacology/biopharmaceutics review section celecoxib. Bethesda (MD): FDA.1998Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/20998.cfm
  92. GongL. ThornC.F. BertagnolliM.M. GrosserT. AltmanR.B. KleinT.E. Celecoxib pathways.Pharmacogenet. Genomics201222431031810.1097/FPC.0b013e32834f94cb
    [Google Scholar]
  93. NaderM. SaidS. HelalM. Interactions of celecoxib with different antidiabetic drugs in diabetic rats. Bulletin of Pharmaceutical Sciences.Assiut2016397386
    [Google Scholar]
  94. AhmadS. QaziS. RazaK. Translational bioinformatics methods for drug discovery and drug repurposing.Translational Bioinformatics in Healthcare and Medicine.Elsevier202112713910.1016/B978‑0‑323‑89824‑9.00010‑0
    [Google Scholar]
  95. ImamiA.S. McCullumsmithR.E. O’DonovanS.M. Strategies to identify candidate repurposable drugs: COVID-19 treatment as a case example.Transl. Psychiatry202111159110.1038/s41398‑021‑01724‑w
    [Google Scholar]
  96. McConkeyB.J. SobolevV. EdelmanM. The performance of current methods in ligand-protein docking.Curr. Sci.200283845855
    [Google Scholar]
  97. HaidichA.B. Meta-analysis in medical research.Hippokratia2010142937
    [Google Scholar]
  98. AgrawalP. Advantages and challenges in drug re-profiling.J. Pharmacovigilance2015S2e002
    [Google Scholar]
  99. TaleviA. BelleraC.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics.Expert Opin. Drug Discov.202015439740110.1080/17460441.2020.1704729
    [Google Scholar]
  100. TartagliaL.A. Complementary new approaches enable repositioning of failed drug candidates.Expert Opin. Investig. Drugs200615111295129810.1517/13543784.15.11.1295
    [Google Scholar]
  101. OpreaT.I. BaumanJ.E. BologaC.G. Drug repurposing from an academic perspective.Drug Discov. Today Ther. Strateg.201183-4616910.1016/j.ddstr.2011.10.002
    [Google Scholar]
  102. SchulerJ. FallsZ. MangioneW. HudsonM.L. BruggemannL. SamudralaR. Evaluating the performance of drug-repurposing technologies.Drug Discov. Today2022271496410.1016/j.drudis.2021.08.002
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855292471240319055530
Loading
/content/journals/cdth/10.2174/0115748855292471240319055530
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diabetes mellitus; Drug development; pharmaceutical agents; repurposed drugs; T2DM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test