Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Cerebral ischemia stands as a significant global cause of both mortality and morbidity among adults, ranking second in mortality rates. Neuroinflammation, a dynamic and intricate process, emerges rapidly after ischemia onset and persists for several days. This cascade begins with the activation of microglia and astrocytes, alongside immune cell infiltration, triggering the release of cytokines and initiating an inflammatory response within the brain. These events ultimately contribute to secondary brain injury, potentially expanding the area of damage beyond the initial affected region. This sustained inflammatory state contributes to blood-brain barrier disruption and cerebral edema, exacerbating neuronal damage and impeding neuroplasticity, ultimately worsening neurological deficits. However, the response of inflammation during ischemia is twofold, potentially offering benefits by clearing cellular debris and facilitating tissue regeneration. This review aims to dissect the roles of both novel and established pro-inflammatory and anti-inflammatory mediators in cerebral ischemia, offering critical insights for the development of effective therapeutic, diagnostic, and prognostic strategies.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855313800240627051827
2024-07-08
2025-10-03
Loading full text...

Full text loading...

References

  1. KimJ. ThayabaranathanT. DonnanG.A. Global Stroke Statistics 2019.Int. J. Stroke202015881983810.1177/1747493020909545 32146867
    [Google Scholar]
  2. WeinT. LindsayM.P. CôtéR. Canadian stroke best practice recommendations: Secondary prevention of stroke, sixth edition practice guidelines, update 2017.Int J Stroke201813442044310.1177/1747493017743062 29171361
    [Google Scholar]
  3. ZhaoH. HanZ. JiX. LuoY. Epigenetic regulation of oxidative stress in ischemic stroke.Aging Dis.20167329530610.14336/AD.2015.1009 27330844
    [Google Scholar]
  4. LuW. ChenZ. WenJ. Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells.Biomed. Pharmacother.202417011584710.1016/j.biopha.2023.115847 38016362
    [Google Scholar]
  5. AnfinogenovaN.D. QuinnM.T. SchepetkinI.A. AtochinD.N. Alarmins and c-Jun N-Terminal Kinase (JNK) signaling in neuroinflammation.Cells2020911235010.3390/cells9112350 33114371
    [Google Scholar]
  6. RamiroL. SimatsA. García-BerrocosoT. MontanerJ. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management.Ther. Adv. Neurol. Disord.20181110.1177/1756286418789340 30093920
    [Google Scholar]
  7. RayasamA. HsuM. KijakJ.A. KisselL. HernandezG. SandorM. FabryImmune responses in stroke: How the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures?Immunology2018153363376
    [Google Scholar]
  8. TirandiA. SguraC. CarboneF. MontecuccoF. LiberaleL. Inflammatory biomarkers of ischemic stroke.Intern. Emerg. Med.202318372373210.1007/s11739‑023‑03201‑2 36745280
    [Google Scholar]
  9. MaidaC.D. NorritoR.L. DaidoneM. TuttolomondoA. PintoA. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches.Int. J. Mol. Sci.20202118645410.3390/ijms21186454 32899616
    [Google Scholar]
  10. ZhangH. ShangJ. LiW. GaoD. ZhangJ. Increased expression of VCAM1 on brain endothelial cells drives blood–brain barrier impairment following chronic cerebral hypoperfusion.ACS Chem. Neurosci.202415102028204110.1021/acschemneuro.4c00039 38710594
    [Google Scholar]
  11. SperaP.A. EllisonJ.A. FeuersteinG.Z. BaroneF.C. IL-10 reduces rat brain injury following focal stroke.Neurosci. Lett.1998251318919210.1016/S0304‑3940(98)00537‑0 9726375
    [Google Scholar]
  12. BloemerJ. PinkyP.D. GovindarajuluM. Role of adiponectin in central nervous system disorders.Neural Plast.2018201811510.1155/2018/4593530 30150999
    [Google Scholar]
  13. BaroneF.C. ArvinB. WhiteR.F. Tumor necrosis factor-α. A mediator of focal ischemic brain injury.Stroke19972861233124410.1161/01.STR.28.6.1233 9183357
    [Google Scholar]
  14. LoddickS.A. TurnbullA.V. RothwellN.J. Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat.J. Cereb. Blood Flow Metab.199818217617910.1097/00004647‑199802000‑00008 9469160
    [Google Scholar]
  15. ZhangF. WangS. SignoreA.P. ChenJ. Neuroprotective effects of leptin against ischemic injury induced by oxygen-glucose deprivation and transient cerebral ischemia.Stroke20073882329233610.1161/STROKEAHA.107.482786 17600230
    [Google Scholar]
  16. BehrouzifarS. VakiliA. BandegiA.R. KokhaeiP. Neuroprotective nature of adipokine resistin in the early stages of focal cerebral ischemia in a stroke mouse model.Neurochem. Int.20181149910710.1016/j.neuint.2018.02.001 29408288
    [Google Scholar]
  17. JayarajR.L. AzimullahS. BeiramR. JalalF.Y. RosenbergG.A. Neuroinflammation: friend and foe for ischemic stroke.J. Neuroinflammation201916114210.1186/s12974‑019‑1516‑2 31291966
    [Google Scholar]
  18. LakhanS.E. KirchgessnerA. TepperD. LeonardA. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke.Front. Neurol.20134323210.3389/fneur.2013.00032 23565108
    [Google Scholar]
  19. OkadaY. CopelandB.R. MoriE. TungM.M. ThomasW.S. del ZoppoG.J. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion.Stroke199425120221110.1161/01.STR.25.1.202 7505494
    [Google Scholar]
  20. SandovalK.E. WittK.A. Blood-brain barrier tight junction permeability and ischemic stroke.Neurobiol. Dis.200832220021910.1016/j.nbd.2008.08.005 18790057
    [Google Scholar]
  21. BurguillosM.A. SvenssonM. SchulteT. Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation.Cell Rep.20151091626163810.1016/j.celrep.2015.02.012 25753426
    [Google Scholar]
  22. TangS.C. ArumugamT.V. XuX. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits.Proc. Natl. Acad. Sci.200710434137981380310.1073/pnas.0702553104 17693552
    [Google Scholar]
  23. YanaiH. BanT. WangZ. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses.Nature200946272699910310.1038/nature08512 19890330
    [Google Scholar]
  24. LieszA. BauerA. HoheiselJ.D. VeltkampR. Intracerebral interleukin-10 injection modulates post-ischemic neuroinflammation: An experimental microarray study.Neurosci. Lett.2014579182310.1016/j.neulet.2014.07.003 25019688
    [Google Scholar]
  25. WangW. Exploring the neuroprotective effects of lithium in ischemic stroke: A literature review.Int. J. Med. Sci.202421228410.7150/ijms.88195
    [Google Scholar]
  26. GarciaJ.M. StillingsS.A. LeclercJ.L. Role of interleukin-10 in acute brain injuries.Front. Neurol.2017824410.3389/fneur.2017.00244 28659854
    [Google Scholar]
  27. WuW. LuoZ. ShenD. IL-10 protects against OPC ferroptosis by regulating lipid reactive oxygen species levels post stroke.Redox Biol.20246910298210.1016/j.redox.2023.102982 38070317
    [Google Scholar]
  28. WangJ. ChangR.C.C. ChuJ.M.T. WongG.T.C. Is adiponectin deficiency a critical factor for sevoflurane induced neurocognitive dysfunction?Med. Hypotheses202418211124110.1016/j.mehy.2023.111241
    [Google Scholar]
  29. KhoramipourK. Adiponectin: Structure, physiological functions, role in diseases, and effects of nutrition.Nutrients2021134118010.3390/nu13041180
    [Google Scholar]
  30. YueH. ZhangQ. ChangS. ZhaoX. WangM. LiW. Adiponectin protects against myocardial ischemia–reperfusion injury: a systematic review and meta-analysis of preclinical animal studies.Lipids Health Dis.20242315110.1186/s12944‑024‑02028‑w 38368320
    [Google Scholar]
  31. WangZ. LiB. WangY. MaimaitiliA. DangmurenjiafuG. QinH. The association between serum adiponectin and 3-month outcome after ischemic stroke.Cardiovasc. Diabetol.201918111010.1186/s12944‑024‑02028‑w 38368320
    [Google Scholar]
  32. TuW.J. QiuH.C. LiuY.K. LiuQ. ZengX. ZhaoJ. Elevated levels of adiponectin associated with major adverse cardiovascular and cerebrovascular events and mortality risk in ischemic stroke.Cardiovasc. Diabetol.202019112510.1186/s12933‑020‑01096‑3 32771014
    [Google Scholar]
  33. BaiH. ZhaoL. LiuH. Adiponectin confers neuroprotection against cerebral ischemia-reperfusion injury through activating the cAMP/PKA-CREB-BDNF signaling.Brain Res. Bull.201814314515410.1016/j.brainresbull.2018.10.013 30395885
    [Google Scholar]
  34. JüttnerA.A. Ataei AtaabadiE. GolshiriK. Adiponectin secretion by perivascular adipose tissue supports impaired vasodilation in a mouse model of accelerated vascular smooth muscle cell and adipose tissue aging.Vascul. Pharmacol.202415410728110.1016/j.vph.2024.107281 38320678
    [Google Scholar]
  35. ZhaoY. ZhuQ. BiC. YuanJ. ChenY. HuX. Bibliometric analysis of tumor necrosis factor in post-stroke neuroinflammation from 2003 to 2021.Front. Immunol.202213104068610.3389/fimmu.2022.1040686 36389810
    [Google Scholar]
  36. BrásJ.P. BravoJ. FreitasJ. TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity.Cell Death Dis.202011641510.1038/s41419‑020‑2626‑6 32488063
    [Google Scholar]
  37. ZhuH. JianZ. ZhongY. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition.Front. Immunol.20211271494310.3389/fimmu.2021.714943 34367186
    [Google Scholar]
  38. BonettiN.R. Diaz-CañestroC. LiberaleL. Tumour necrosis factor-α inhibition improves stroke outcome in a mouse model of rheumatoid arthritis.Sci. Rep.201991217310.1038/s41598‑019‑38670‑z 30778120
    [Google Scholar]
  39. ClausenB.H. DegnM. SivasaravanaparanM. Conditional ablation of myeloid TNF increases lesion volume after experimental stroke in mice, possibly via altered ERK1/2 signaling.Sci. Rep.2016612929110.1038/srep29291 27384243
    [Google Scholar]
  40. MartínezC. Supplementation with a symbiotic induced neuroprotection and improved memory in rats with ischemic stroke.Biomedicines2024121209
    [Google Scholar]
  41. BoutinH. LeFeuvreR.A. HoraiR. AsanoM. IwakuraY. RothwellN.J. Role of IL-1α and IL-1β in ischemic brain damage.J. Neurosci.200121155528553410.1523/JNEUROSCI.21‑15‑05528.2001 11466424
    [Google Scholar]
  42. LemarchandE. Selective deletion of interleukin-1 alpha in microglia regulates neuronal responses and neurorepair processes after experimental ischemic stroke.bioRxiv202410.1101/2024.02.16.580635
    [Google Scholar]
  43. LoddickS.A. RothwellN.J. Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat.J. Cereb. Blood Flow Metab.199616593294010.1097/00004647‑199609000‑00017 8784237
    [Google Scholar]
  44. KazmiS. Salehi-PourmehrH. Sadigh-EteghadS. FarhoudiM. The efficacy and safety of interleukin-1 receptor antagonist in stroke patients: A systematic review.J. Clin. Neurosci.202412012012810.1016/j.jocn.2024.01.009 38237490
    [Google Scholar]
  45. LiberaleL. BonettiN.R. PuspitasariY.M. Postischemic administration of IL-1α neutralizing antibody reduces brain damage and neurological deficit in experimental stroke.Circulation2020142218718910.1161/CIRCULATIONAHA.120.046301 32658615
    [Google Scholar]
  46. CaiW. HuM. LiC. FOXP3+ macrophage represses acute ischemic stroke-induced neural inflammation.Autophagy20231941144116310.1080/15548627.2022.2116833 36170234
    [Google Scholar]
  47. YangY. WuW. WangL. DingY. Lack of association between interleukin-1 receptor antagonist gene 86-bp VNTR polymorphism and ischemic stroke.Medicine20189731e1175010.1097/MD.0000000000011750 30075593
    [Google Scholar]
  48. KowalskiR.G. LedreuxA. VioletteJ. Abstract 106: Circulating interleukin-6 levels early during active stroke estimate time of stroke onset: potential new clinical biomarker tool from a mobile stroke unit.Stroke202455Suppl. 1A106A610.1161/str.55.suppl_1.106
    [Google Scholar]
  49. MaidaC.D. Molecular pathogenesis of ischemic and hemorrhagic strokes: Background and therapeutic approaches.Preprints20242024202404123910.20944/preprints202404.1239.v1
    [Google Scholar]
  50. LiberaleL. MinistriniS. CarboneF. CamiciG.G. MontecuccoF. Cytokines as therapeutic targets for cardio- and cerebrovascular diseases.Basic Res. Cardiol.202111612310.1007/s00395‑021‑00863‑x 33770265
    [Google Scholar]
  51. Meisinger Christa Inflammation biomarkers in acute ischemic stroke according to different etiologies.Euro J. Neurol.2024311e1600610.1111/ene.16006
    [Google Scholar]
  52. YaD. XiangW. JiangY. Leptin combined with withaferin A boost posthemorrhagic neurogenesis via activation of STAT3/SOCS3 pathway.Exp. Neurol.202437711480910.1016/j.expneurol.2024.114809 38714285
    [Google Scholar]
  53. FernandesC. Forny-GermanoL. AndradeM.M. Leptin receptor reactivation restores brain function in early-life Lepr -deficient mice.Brain20242024awae12710.1093/brain/awae127 38650574
    [Google Scholar]
  54. ZhangJ. YanG. LiaoJ. Leptin attenuates cerebral ischemia/reperfusion injury partially by CGRP expression.Eur. J. Pharmacol.20116711-3616910.1016/j.ejphar.2011.09.170 21968137
    [Google Scholar]
  55. ZhangJ.Y.Jr SiY.L. LiaoJ. Leptin administration alleviates ischemic brain injury in mice by reducing oxidative stress and subsequent neuronal apoptosis.J. Trauma201272498299110.1097/TA.0b013e3182405459 22491615
    [Google Scholar]
  56. MusovicS. ShresthaM.M. KomaiA.M. OlofssonC.S. Resistin is co-secreted with adiponectin in white mouse adipocytes.Biochem. Biophys. Res. Commun.202153470771310.1016/j.bbrc.2020.11.013 33261886
    [Google Scholar]
  57. MoniuszkoA. PancewiczS. CzuprynaP. ssICAM-1, IL-21 and IL-23 in patients with tick borne encephalitis and neuroborreliosis.Cytokine201260246847210.1016/j.cyto.2012.05.007 22705151
    [Google Scholar]
  58. BehrouzifarS. VakiliA. BaratiM. The effects of mouse recombinant resistin on mRNA expression of proinflammatory and anti-inflammatory cytokines and heat shock protein-70 in experimental stroke model.J. Stroke Cerebrovasc. Dis.201827113272327910.1016/j.jstrokecerebrovasdis.2018.07.030 30120034
    [Google Scholar]
  59. LeeK.O. LeeK.Y. LeeC.Y. High serum levels of resistin is associated with acute cerebral infarction.Neurologist2022272414510.1097/NRL.0000000000000362 34842580
    [Google Scholar]
  60. Guerra-EspinosaC. Jiménez-FernándezM. Sánchez-MadridF. SerradorJ.M. ICAMs in immunity, intercellular adhesion and communication.Cells202413433910.3390/cells13040339 38391953
    [Google Scholar]
  61. BitschA. KleneW. MurtadaL. PrangeH. RieckmannP. A longitudinal prospective study of soluble adhesion molecules in acute stroke.Stroke199829102129213510.1161/01.STR.29.10.2129 9756594
    [Google Scholar]
  62. Enlimomab Acute Stroke Trial InvestigatorsUse of anti-ICAM-1 therapy in ischemic stroke.Neurology20015781428143410.1212/WNL.57.8.1428 11673584
    [Google Scholar]
  63. Zu Sai Clinical effect of Salvianolic Acids for Injection in treatment of acute cerebral ischemic stroke and effect on levels of serum intercellular adhesion molecule-1 and tumor necrosis factor-α.202316911696
    [Google Scholar]
  64. SienelR.I. MamrakU. BillerJ. Inhaled nitric oxide suppresses neuroinflammation in experimental ischemic stroke.J. Neuroinflammation202320130110.1186/s12974‑023‑02988‑3 38102677
    [Google Scholar]
  65. ElkindM.S.V. VeltkampR. MontanerJ. Natalizumab in acute ischemic stroke (ACTION II).Neurology2020958e1091e110410.1212/WNL.0000000000010038 32591475
    [Google Scholar]
  66. ElkinsJ. VeltkampR. MontanerJ. Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, double-blind phase 2 trial.Lancet Neurol.201716321722610.1016/S1474‑4422(16)30357‑X 28229893
    [Google Scholar]
  67. JusticiaC. MartínA. RojasS. Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice.J. Cereb. Blood Flow Metab.200626342143210.1038/sj.jcbfm.9600198 16079786
    [Google Scholar]
  68. KramsM. LeesK.R. HackeW. GrieveA.P. OrgogozoJ.M. FordG.A. Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): An adaptive dose-response study of UK-279,276 in acute ischemic stroke.Stroke200334112543254810.1161/01.STR.0000092527.33910.89 14563972
    [Google Scholar]
  69. Giri Shweta SubhashMolecular pathway of pancreatic cancer‐associated neuropathic pain.J. Biochem. Mole Toxicol.2024381e2363810.1002/jbt.23638
    [Google Scholar]
  70. MaJ. MaY. ShuaibA. WinshipI.R. Impaired collateral flow in pial arterioles of aged rats during ischemic stroke.Transl. Stroke Res.202011224325310.1007/s12975‑019‑00710‑1 31203565
    [Google Scholar]
  71. BabenkoV.A. FedulovaK.S. SilachevD.N. The role of matrix metalloproteinases in hemorrhagic transformation in the treatment of stroke with tissue plasminogen activator.J. Pers. Med.2023137117510.3390/jpm13071175 37511788
    [Google Scholar]
  72. YangY. RosenbergG.A. Matrix metalloproteinases as therapeutic targets for stroke.Brain Res.20151623303810.1016/j.brainres.2015.04.024 25916577
    [Google Scholar]
  73. Pijet Barbara Matrix metalloproteinase-9 contributes to epilepsy development after ischemic stroke in mice.Int. J. Mole Sci.202425289610.3390/ijms25020896
    [Google Scholar]
  74. VeeravalliK.K. Implications of MMP-12 in the pathophysiology of ischaemic stroke.Stroke Vasc. Neurol.2024929710710.1136/svn‑2023‑002363 37336584
    [Google Scholar]
  75. MooreK.L. EatonS.F. LyonsD.E. LichensteinH.S. CummingsR.D. McEverR.P. The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine.J. Biol. Chem.199426937233182332710.1016/S0021‑9258(17)31656‑3 7521878
    [Google Scholar]
  76. MaY. YangX. ChatterjeeV. MeeganJ.E. BeardR.S.Jr YuanS.Y. Role of neutrophil extracellular traps and vesicles in regulating vascular endothelial permeability.Front. Immunol.201910103710.3389/fimmu.2019.01037 31143182
    [Google Scholar]
  77. IvanovI.I. AptaB.H.R. BonnaA.M. HarperM.T. Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes.Sci. Rep.2019911339710.1038/s41598‑019‑49635‑7 31527604
    [Google Scholar]
  78. Weisenburger-LileD. DongY. YgerM. Harmful neutrophil subsets in patients with ischemic stroke.Neurol. Neuroimmunol. Neuroinflamm.201964e57110.1212/NXI.0000000000000571 31355307
    [Google Scholar]
  79. ChavakisT. Leucocyte recruitment in inflammation and novel endogenous negative regulators thereof.Eur. J. Clin. Invest.201242668669110.1111/j.1365‑2362.2012.02677.x 22577952
    [Google Scholar]
  80. EdwardsD.N. BixG.J. Roles of blood-brain barrier integrins and extracellular matrix in stroke.Am. J. Physiol. Cell Physiol.20193162C252C26310.1152/ajpcell.00151.2018 30462535
    [Google Scholar]
  81. ArumugamT.V. SalterJ.W. ChidlowJ.H. BallantyneC.M. KevilC.G. GrangerD.N. Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion.Am. J. Physiol. Heart Circ. Physiol.20042876H2555H256010.1152/ajpheart.00588.2004 15308480
    [Google Scholar]
  82. ZhuYuanbo The LPS-inactivating enzyme acyloxyacyl hydrolase protects the brain from experimental stroke.Transl. Res.2024270425110.1016/j.trsl.2024.03.007
    [Google Scholar]
  83. YuanW. FengY. YangT. MahemutiK. YaoE. Serum galectin-3 as a potential predictive biomarker Is associated with post-stroke depression.Neurol. Asia202328354155110.54029/2023szm
    [Google Scholar]
  84. ZhuB.L. HuA.Y. HuangG.Q. Association between obesity and post-stroke anxiety in patients with acute ischemic stroke.Front. Nutr.2021874995810.3389/fnut.2021.749958 34901108
    [Google Scholar]
  85. ZhongC. LuZ. CheB. Choline pathway nutrients and metabolites and cognitive impairment after acute ischemic stroke.Stroke202152388789510.1161/STROKEAHA.120.031903 33467878
    [Google Scholar]
  86. BozikiM. PolyzosS.A. DeretziG. A potential impact of Helicobacter pylori -related galectin-3 in neurodegeneration.Neurochem. Int.201811313715110.1016/j.neuint.2017.12.003 29246761
    [Google Scholar]
  87. DenormeF. PortierI. RustadJ.L. Neutrophil extracellular traps regulate ischemic stroke brain injury.J. Clin. Invest.202213210e15422510.1172/JCI154225 35358095
    [Google Scholar]
  88. MelinE.O. DerekeJ. HillmanM. Galectin-3, metalloproteinase-2 and cardiovascular disease were independently associated with metalloproteinase-14 in patients with type 1 diabetes: A cross sectional study.Diabetol. Metab. Syndr.202113111810.1186/s13098‑021‑00727‑3 34702365
    [Google Scholar]
  89. MandelP. MetaisP. Nuclear acids in human blood plasma.C. R. Seances Soc. Biol. Fil.19481423-4241243 18875018
    [Google Scholar]
  90. Lehmann-WermanR. NeimanD. ZemmourH. Identification of tissue-specific cell death using methylation patterns of circulating DNA.Proc. Natl. Acad. Sci. USA201611313E1826E183410.1073/pnas.1519286113 26976580
    [Google Scholar]
  91. MossJ. MagenheimJ. NeimanD. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease.Nat. Commun.201891506810.1038/s41467‑018‑07466‑6 30498206
    [Google Scholar]
  92. AnratherJ. IadecolaC. Inflammation and stroke: An overview.Neurotherapeutics201613466167010.1007/s13311‑016‑0483‑x 27730544
    [Google Scholar]
  93. StanzioneR. ForteM. CotugnoM. BianchiF. MarchittiS. RubattuS. Role of DAMPs and of leukocytes infiltration in ischemic stroke: Insights from animal models and translation to the human disease.Cell. Mol. Neurobiol.202242354555610.1007/s10571‑020‑00966‑4 32996044
    [Google Scholar]
  94. IadecolaC. BuckwalterM.S. AnratherJ. Immune responses to stroke: mechanisms, modulation, and therapeutic potential.J. Clin. Invest.202013062777278810.1172/JCI135530 32391806
    [Google Scholar]
  95. KananenL. HurmeM. BürkleA. Circulating cell-free DNA in health and disease — the relationship to health behaviours, ageing phenotypes and metabolomics.Geroscience20234518510310.1007/s11357‑022‑00590‑8 35864375
    [Google Scholar]
  96. O’ConnellG.C. PetroneA.B. TennantC.S. Circulating extracellular DNA levels are acutely elevated in ischaemic stroke and associated with innate immune system activation.Brain Inj.201731101369137510.1080/02699052.2017.1312018 28585898
    [Google Scholar]
  97. RainerT.H. WongL.K.S. LamW. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke.Clin. Chem.200349456256910.1373/49.4.562 12651807
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855313800240627051827
Loading
/content/journals/cdth/10.2174/0115748855313800240627051827
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test