Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Uncontrolled blood sugar levels bring on an eye condition known as diabetic retinopathy. If untreated, the damage to the blood vessels in the retina can result in blindness. Early symptoms include impaired vision, difficulties distinguishing colours, and dark patches of vision. Since ancient times, people all around the world have utilized herbs to manage diabetes and the various additional problems it might cause. Numerous herbs, including Salvia, Ginseng, Gingko, and Scrophularia ningpoensis, have unique qualities that make them capable of lowering the various pathological incidences of hyperglycemia-related retinal disease. Biomolecules, known as carotenoids, such as lutein, beta carotene, and zeaxanthin, have a significant anti-oxidant capability that aids in visual recovery. In addition to acting as a natural and safe treatment for diabetic retinopathy, herbal remedies in the form of herbs, concentrated extracts, and isolated phytoactives can also operate as a viable alternative to prevent the destruction brought on by laser-based photocoagulation and vitrectomy. The goal of the current study is to analyze the natural herb-based alternatives for diabetic retinopathy that are now available.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855281540240327081846
2024-04-03
2025-10-03
Loading full text...

Full text loading...

References

  1. NentwichM.M. UlbigM.W. Diabetic retinopathy - ocular complications of diabetes mellitus.World J. Diabetes20156348949910.4239/wjd.v6.i3.489 25897358
    [Google Scholar]
  2. StefánssonE. BekT. PortaM. LarsenN. KristinssonJ.K. AgardhE. Screening and prevention of diabetic blindness.Acta Ophthalmol. Scand.200078437438510.1034/j.1600‑0420.2000.078004374.x 10990036
    [Google Scholar]
  3. LeeR. WongT.Y. SabanayagamC. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss.Eye Vis. (Lond.)2015211710.1186/s40662‑015‑0026‑2 26605370
    [Google Scholar]
  4. KambojA. LauseM. KumarP. Ophthalmic manifestations of endocrine disorders—endocrinology and the eye.Transl. Pediatr.20176428629910.21037/tp.2017.09.13 29184810
    [Google Scholar]
  5. CohenS.R. GardnerT.W. Diabetic retinopathy and diabetic macular edema.Dev. Ophthalmol.20165513714610.1159/000438970 26501152
    [Google Scholar]
  6. TanA.C.S. TanG.S. DennistonA.K. An overview of the clinical applications of optical coherence tomography angiography.Eye (Lond.)201832226228610.1038/eye.2017.181 28885606
    [Google Scholar]
  7. BhoiwalaD.L. DunaiefJ.L. Retinal abnormalities in β-thalassemia major.Surv. Ophthalmol.2016611335010.1016/j.survophthal.2015.08.005 26325202
    [Google Scholar]
  8. BuscemiS. CorleoD. Di PaceF. PetroniM.L. SatrianoA. MarchesiniG. The effect of lutein on eye and extra-eye health.Nutrients2018189132110.3390/nu10091321
    [Google Scholar]
  9. JiaY.P. SunL. YuH.S. The pharmacological effects of Lutein and Zeaxanthin on visual disorders and cognition diseases.Molecules201722461010.3390/molecules22040610 28425969
    [Google Scholar]
  10. BehlT. KaurI. Herbal plants: A boon in the treatment of diabetic retinopathy.Pharmacologia20156111010.5567/pharmacologia.2015.1.10
    [Google Scholar]
  11. FathalipourM. FathalipourH. SafaO. Nowrouzi-SohrabiP. MirkhaniH. HassanipourS. The therapeutic role of carotenoids in diabetic retinopathy: A systematic review.Diabetes Metab. Syndr. Obes.2020132347235810.2147/DMSO.S255783 32753919
    [Google Scholar]
  12. JohraF.T. BepariA.K. BristyA.T. RezaH.M. A mechanistic review of β-Carotene, Lutein, and Zeaxanthin in eye health and disease.Antioxidants2020911104610.3390/antiox9111046 33114699
    [Google Scholar]
  13. MurilloA. HuS. FernandezM. Zeaxanthin: Metabolism, Properties, and antioxidant protection of eyes, heart, liver, and skin.Antioxidants20198939010.3390/antiox8090390 31514298
    [Google Scholar]
  14. GritzD.C. SrinivasanM. SmithS.D. The antioxidants in prevention of cataracts study: Effects of antioxidant supplements on cataract progression in South India.Br. J. Ophthalmol.200690784785110.1136/bjo.2005.088104 16556618
    [Google Scholar]
  15. MrowickaM. MrowickiJ. KucharskaE. MajsterekI. Lutein and Zeaxanthin and their roles in age-related macular degeneration-neurodegenerative disease.Nutrients202214482710.3390/nu14040827 35215476
    [Google Scholar]
  16. BraakhuisA.J. DonaldsonC.I. LimJ.C. DonaldsonP.J. Nutritional strategies to prevent lens cataract: Current status and future strategies.Nutrients2019115118610.3390/nu11051186 31137834
    [Google Scholar]
  17. KhooH. NgH. YapW.S. GohH. YimH. Nutrients for prevention of macular degeneration and eye-related diseases.Antioxidants2019848510.3390/antiox8040085 30986936
    [Google Scholar]
  18. NashineS. KanodiaR. NesburnA.B. SomanG. KuppermannB.D. KenneyM.C. Nutraceutical effects of Emblica officinalis in age-related macular degeneration.Aging (Albany NY)20191141177118810.18632/aging.101820 30792375
    [Google Scholar]
  19. KulczyńskiB. Kobus-CisowskaJ. KmiecikD. Gramza-MichałowskaA. GolczakD. KorczakJ. Antiradical capacity and polyphenol composition of asparagus spears varieties cultivated under different sunlight conditions.Acta Sci. Pol. Technol. Aliment.201615326727910.17306/J.AFS.2016.3.26 28071026
    [Google Scholar]
  20. ImeldaE. IdroesR. KhairanK. Natural antioxidant activities of plants in preventing Cataractogenesis.Antioxidants2022117128510.3390/antiox11071285 35883773
    [Google Scholar]
  21. BatliwalaS. XavierC. LiuY. WuH. PangI.H. Involvement of Nrf2 in ocular diseases.Oxid. Med. Cell. Longev.2017201711810.1155/2017/1703810 28473877
    [Google Scholar]
  22. GulM. Functional and nutraceutical significance of Amla Phyllanthus emblica L.Antioxidants202211581610.3390/antiox11050816 35624683
    [Google Scholar]
  23. PriaF.F. IslamM.S. Phyllanthus emblica Linn. (Amla)—A natural gift to humans: An overview.J Dis Med Plants2019519
    [Google Scholar]
  24. ChambialS. DwivediS. ShuklaK.K. JohnP.J. SharmaP. Vitamin C in disease prevention and cure: An overview.Indian J. Clin. Biochem.201328431432810.1007/s12291‑013‑0375‑3 24426232
    [Google Scholar]
  25. PaduchR. WoźniakA. NiedzielaP. RejdakR. Assessment of eyebright (euphrasia officinalis L.) extract activity in relation to human corneal cells using in vitro tests.Balkan Med. J.2014331293610.5152/balkanmedj.2014.8377 25207164
    [Google Scholar]
  26. LiuY. HwangE. NgoH. Protective effects of Euphrasia officinalis extract against ultraviolet B-induced photoaging in normal human dermal fibroblasts.Int. J. Mol. Sci.20181911332710.3390/ijms19113327 30366440
    [Google Scholar]
  27. AL-IshaqRK AbotalebM KubatkaP KajoK BüsselbergD. Flavonoids and their anti-diabetic effects: Cellular Mechanisms and effects to improve blood sugar levels.Biomolecules20199943010.3390/biom9090430 31480505
    [Google Scholar]
  28. Salazar-GarcíaM. CoronaJ.C. The use of natural compounds as a strategy to counteract oxidative stress in animal models of diabetes mellitus.Int. J. Mol. Sci.20212213700910.3390/ijms22137009 34209800
    [Google Scholar]
  29. MasudaT. ShimazawaM. HaraH. Retinal Diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone).Oxid. Med. Cell. Longev.2017201711410.1155/2017/9208489 28194256
    [Google Scholar]
  30. Garcia-MedinaJ.J. Rubio-VelazquezE. Foulquie-MorenoE. Update on the effects of antioxidants on diabetic retinopathy: In vitro experiments, animal studies and clinical trials.Antioxidants20209656110.3390/antiox9060561 32604941
    [Google Scholar]
  31. TomidaI. PertweeR.G. Azuara-BlancoA. Cannabinoids and glaucoma.Br. J. Ophthalmol.200488570871310.1136/bjo.2003.032250 15090428
    [Google Scholar]
  32. PassaniA. PosarelliC. SframeliA.T. Cannabinoids in glaucoma patients: The never-ending story.J. Clin. Med.2020912397810.3390/jcm9123978 33302608
    [Google Scholar]
  33. LiouG.I. AuchampachJ.A. HillardC.J. Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor.Invest. Ophthalmol. Vis. Sci.200849125526553110.1167/iovs.08‑2196 18641283
    [Google Scholar]
  34. AtalayS. Jarocka-KarpowiczI. SkrzydlewskaE. Antioxidative and anti-inflammatory properties of Cannabidiol.Antioxidants2019912110.3390/antiox9010021 31881765
    [Google Scholar]
  35. Garcia-MedinaJ.J. Rubio-VelazquezE. Foulquie-MorenoE. Update on the Effects of antioxidants on diabetic retinopathy: In vitro experiments, animal studies and clinical trials.Antioxidants20209656110.3390/antiox9060561 32604941
    [Google Scholar]
  36. LaiA.K.W. LoA.C.Y. Animal models of diabetic retinopathy: Summary and comparison.J. Diabetes Res.2013201312910.1155/2013/106594 24286086
    [Google Scholar]
  37. Ferreira-SantosP. ZanusoE. GenishevaZ. RochaC.M.R. TeixeiraJ.A. Green and sustainable valorization of bioactive phenolic compounds from Pinus by-products.Molecules20202512293110.3390/molecules25122931 32630539
    [Google Scholar]
  38. TanaseC. CoșarcăS. MunteanD.L. A Critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity.Molecules2019246118210.3390/molecules24061182 30917556
    [Google Scholar]
  39. RibeiroM.L. SeresA.I. CarneiroA.M. Effect of calcium dobesilate on progression of early diabetic retinopathy: A randomised double-blind study.Graefes Arch. Clin. Exp. Ophthalmol.2006244121591160010.1007/s00417‑006‑0318‑2 16763797
    [Google Scholar]
  40. SchönlauF. RohdewaldP. Pycnogenol for diabetic retinopathy. A review.Int. Ophthalmol.200124316117110.1023/A:1021160924583 12498513
    [Google Scholar]
  41. Ferreira-SantosP. GenishevaZ. BotelhoC. Unravelling the biological potential of Pinus pinaster bark extracts.Antioxidants20209433410.3390/antiox9040334 32325962
    [Google Scholar]
  42. Shu-LunZ. LaxD. YingL. StejskalE. LucasR.V.Jr EinzigS. Anisodamine increases blood flow to the retina-choroid and protects retinal and pancreatic cells against lipid peroxidation.J. Ethnopharmacol.199030212113410.1016/0378‑8741(90)90001‑A 2123954
    [Google Scholar]
  43. ShuX. HuY. HuangC. WeiN. Nimbolide ameliorates the streptozotocin-induced diabetic retinopathy in rats through the inhibition of TLR4/NF-κB signaling pathway.Saudi J. Biol. Sci.20212884255426210.1016/j.sjbs.2021.06.039 34354407
    [Google Scholar]
  44. RobinsonR. BarathiV.A. ChaurasiaS.S. WongT.Y. KernT.S. Update on animal models of diabetic retinopathy: From molecular approaches to mice and higher mammals.Dis. Model. Mech.20125444445610.1242/dmm.009597 22730475
    [Google Scholar]
  45. YarmohammadiF. MehriS. NajafiN. SalarA.S. HosseinzadehH. The protective effect of Azadirachta indica (neem) against metabolic syndrome: A review.Iran. J. Basic Med. Sci.2021243280292 33995939
    [Google Scholar]
  46. AlzohairyM.A. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment.Evid. Based Complement. Alternat. Med.2016201611110.1155/2016/7382506 27034694
    [Google Scholar]
  47. Kohnen-JohannsenK. KayserO. Tropane alkaloids: Chemistry, pharmacology, biosynthesis and production.Molecules201924479610.3390/molecules24040796 30813289
    [Google Scholar]
  48. LiuN. ChenC. WangB. Effects of different planting densities and harvesting periods on the growth and major alkaloids of Anisodus tanguticus (Maxim.) Pascher on the Qinghai–Tibetan Plateau.Agriculture20221211188110.3390/agriculture12111881
    [Google Scholar]
  49. KimD. MinJ. JangM. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells.Biomolecules201991169610.3390/biom9110696 31690059
    [Google Scholar]
  50. SunY.F. WinkM. Tetrandrine and fangchinoline, bisbenzylisoquinoline alkaloids from Stephania tetrandra can reverse multidrug resistance by inhibiting P-glycoprotein activity in multidrug resistant human cancer cells.Phytomedicine2014218-91110111910.1016/j.phymed.2014.04.029 24856768
    [Google Scholar]
  51. ChoiH.J. JangH.J. ChungT.W. Catalpol suppresses advanced glycation end-products-induced inflammatory responses through inhibition of reactive oxygen species in human monocytic THP-1 cells.Fitoterapia201386192810.1016/j.fitote.2013.01.014 23376161
    [Google Scholar]
  52. ZhuH. WangY. LiuZ. Antidiabetic and antioxidant effects of catalpol extracted from Rehmannia glutinosa (Di Huang) on rat diabetes induced by streptozotocin and high-fat, high-sugar feed.Chin. Med.20161112510.1186/s13020‑016‑0096‑7 27175212
    [Google Scholar]
  53. ZaabaN.E. Al-SalamS. BeegamS. ElzakiO. YasinJ. NemmarA. Catalpol attenuates oxidative stress and inflammation via mechanisms involving sirtuin-1 activation and NF-κB inhibition in experimentally-induced chronic kidney disease.Nutrients202315123710.3390/nu15010237 36615896
    [Google Scholar]
  54. MechchateH. Es-SafiI. AmaghnoujeA. Antioxidant, anti-inflammatory and antidiabetic proprieties of LC-MS/MS identified polyphenols from coriander seeds.Molecules202126248710.3390/molecules26020487 33477662
    [Google Scholar]
  55. LuoY. ZhangS. WangJ. ZhaoH. Effects of three flavonoids from an ancient traditional Chinese medicine Radix puerariae on geriatric diseases.Brain Circ.20184417418410.4103/bc.bc_13_18 30693344
    [Google Scholar]
  56. ReppertA. YousefG.G. RogersR.B. LilaM.A. Isolation of radiolabeled isoflavones from kudzu (Pueraria lobata) root cultures.J. Agric. Food Chem.200856177860786510.1021/jf801413z 18690681
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855281540240327081846
Loading

  • Article Type:
    Review Article
Keyword(s): blindness; Diabetes; herbal remedies; impaired vision; retinopathy; vitrectomy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test