Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Magnetic nanoparticles (MNPs) are one of the classes of nanoparticles that produce magnetic properties by manipulation using a magnetic field. These MNPs are currently used in the theranostics disease modification of surface properties of MNPs, achieved by surface engineering, which provides different applications, such as enhancing thermal and optical properties, biocompatibility, conductivity and also mechanical and chemical properties. Advancement in the technology leads to the development of MNPs. For this instance, surface coating is used at molecular and cellular levels. The uses of coating material are based on organic and inorganic molecules, including polymer, liposomes, micelles, metal oxide, gold-NPs, . Using different coatings exhibits multifunction properties, and this helps reduce toxicity, helps in biomedical applications, maintains stability, restricts surface fouling, . This review provides an in-depth knowledge of surface-engineered magnetic nanoparticles (MNPs) according to recent developments.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855284579240307063006
2024-03-19
2025-10-03
Loading full text...

Full text loading...

References

  1. JeevanandamJ. BarhoumA. ChanY.S. DufresneA. DanquahM.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations.Beilstein J. Nanotechnol.201891050107410.3762/bjnano.9.98 29719757
    [Google Scholar]
  2. WhitesidesG.M. Nanoscience, nanotechnology, and chemistry.Small20051217217910.1002/smll.200400130 17193427
    [Google Scholar]
  3. BanghamA.D. StandishM.M. WatkinsJ.C. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol.1965131238IN2710.1016/S0022‑2836(65)80093‑6 5859039
    [Google Scholar]
  4. LyshevskiS.E. Dekker encyclopedia of nanoscience and nanotechnology.3rd edUSCRC Press201410.1081/E‑ENN3
    [Google Scholar]
  5. ReddyL.H. AriasJ.L. NicolasJ. CouvreurP. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications.Chem. Rev.2012112115818587810.1021/cr300068p 23043508
    [Google Scholar]
  6. UlbrichK. HoláK. ŠubrV. BakandritsosA. TučekJ. ZbořilR. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies.Chem. Rev.201611695338543110.1021/acs.chemrev.5b00589 27109701
    [Google Scholar]
  7. LaurentS. ElstL.V. MullerR.N. Superparamagnetic iron oxide nanoparticles for MRI. MerbachA. HelmL. TothE. The chemistry of contrast agents in medical magnetic resonance imaging.New YorkJohn Wiley & Sons Ltd201342744710.1002/9781118503652.ch10
    [Google Scholar]
  8. LaurentS. ForgeD. PortM. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications.Chem. Rev.200810862064211010.1021/cr068445e 18543879
    [Google Scholar]
  9. ShokrollahiH. Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids.Mater. Sci. Eng. C20133352476248710.1016/j.msec.2013.03.028 23623058
    [Google Scholar]
  10. AliA. ZafarH. ZiaM. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.Nanotechnol. Sci. Appl.20169496710.2147/NSA.S99986 27578966
    [Google Scholar]
  11. CorotC. RobertP. IdéeJ. PortM. Recent advances in iron oxide nanocrystal technology for medical imaging.Adv. Drug Deliv. Rev.200658141471150410.1016/j.addr.2006.09.013 17116343
    [Google Scholar]
  12. ChoulyC. PouliquenD. LucetI. JeuneJ.J. JalletP. Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution.J. Microencapsul.199613324525510.3109/02652049609026013 8860681
    [Google Scholar]
  13. GrefR. LückM. QuellecP. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption.Colloids Surf. B Biointerfaces2000183-430131310.1016/S0927‑7765(99)00156‑3 10915952
    [Google Scholar]
  14. MoghimiS.M. HunterA.C. MurrayJ.C. Long-circulating and target-specific nanoparticles: theory to practice.Pharmacol. Rev.2001532283318 11356986
    [Google Scholar]
  15. FrenkelJ. DoefmanJ. Spontaneous and induced magnetisation in ferromagnetic bodies.Nature1930126317327427510.1038/126274a0
    [Google Scholar]
  16. KittelC. Theory of the structure of ferromagnetic domains in films and small particles.Phys. Rev.19467011-1296597110.1103/PhysRev.70.965
    [Google Scholar]
  17. MørupS. HansenM.F. FrandsenC. Comprehensive Nanoscience and Technology.Amsterdam, The NetherlandsElsevier201143749110.1016/B978‑0‑12‑374396‑1.00036‑2
    [Google Scholar]
  18. BarbaraB. Louis Néel: His multifaceted seminal work in magnetism.Ann. Geophys.1949599136
    [Google Scholar]
  19. YanesR. FesenkoC.O. KachkachiH. GaraninD.A. EvansR. ChantrellR.W. Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy.Phys. Rev. B Condens. Matter Mater. Phys.200776606441610.1103/PhysRevB.76.064416
    [Google Scholar]
  20. KudrJ. HaddadY. RichteraL. Magnetic nanoparticles: from design and synthesis to real world applications.Nanomaterials20177924310.3390/nano7090243 28850089
    [Google Scholar]
  21. WangB. ZhangL. BaeS.C. GranickS. Nanoparticle-induced surface reconstruction of phospholipid membranes.Proc. Natl. Acad. Sci.200810547181711817510.1073/pnas.0807296105 19011086
    [Google Scholar]
  22. KobayashiK. WeiJ. IidaR. IjiroK. NiikuraK. Surface engineering of nanoparticles for therapeutic applications.Polym. J.201446846046810.1038/pj.2014.40
    [Google Scholar]
  23. SherbinyE.I.M. AbbasY. Janus Nano-and microparticles as smart drug delivery systems.Curr. Pharm. Biotechnol.201617867368210.2174/1389201017666160401145438 27033508
    [Google Scholar]
  24. ShawA. HoffeckerI.T. SmyrlakiI. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies.Nat. Nanotechnol.201914218419010.1038/s41565‑018‑0336‑3 30643273
    [Google Scholar]
  25. KwonP.S. RenS. KwonS.J. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition.Nat. Chem.2020121263510.1038/s41557‑019‑0369‑8 31767992
    [Google Scholar]
  26. OkunoM. MezgerM. StangenbergR. Interaction of a patterned amphiphilic polyphenylene dendrimer with a lipid monolayer: Electrostatic interactions dominate.Langmuir20153161980198710.1021/la504252s 25602738
    [Google Scholar]
  27. PogodinS. SlaterN.K.H. BaulinV.A. Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer.ACS Nano2011521141114610.1021/nn102763b 21207970
    [Google Scholar]
  28. PersonickM.L. MirkinC.A. Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles.J. Am. Chem. Soc.201313549182381824710.1021/ja408645b 24283259
    [Google Scholar]
  29. SauT.K. MurphyC.J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution.J. Am. Chem. Soc.2004126288648864910.1021/ja047846d 15250706
    [Google Scholar]
  30. de DiosA.S. GarcíaD.M.E. Multifunctional nanoparticles: Analytical prospects.Anal. Chim. Acta20106661-212210.1016/j.aca.2010.03.038 20433959
    [Google Scholar]
  31. PankhurstQ.A. ThanhN.T.K. JonesS.K. DobsonJ. Progress in applications of magnetic nanoparticles in biomedicine.J. Phys. D Appl. Phys.2009422222400110.1088/0022‑3727/42/22/224001
    [Google Scholar]
  32. KooO.M. RubinsteinI. OnyukselH. Role of nanotechnology in targeted drug delivery and imaging: A concise review.Nanomedicine20051319321210.1016/j.nano.2005.06.004 17292079
    [Google Scholar]
  33. VeisehO. SunC. GunnJ. Optical and MRI multifunctional nanoprobe for targeting gliomas.Nano Lett.2005561003100810.1021/nl0502569 15943433
    [Google Scholar]
  34. HuangJ. ZhongX. WangL. YangL. MaoH. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles.Theranostics2012218610210.7150/thno.4006 22272222
    [Google Scholar]
  35. SongH.T. ChoiJ. HuhY.M. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling.J. Am. Chem. Soc.2005127289992999310.1021/ja051833y 16011350
    [Google Scholar]
  36. GhoshR. PradhanL. DeviY.P. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia.J. Mater. Chem.20112135133881339810.1039/c1jm10092k
    [Google Scholar]
  37. GuptaA.K. GuptaM. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials200526183995402110.1016/j.biomaterials.2004.10.012 15626447
    [Google Scholar]
  38. BroverG.I. ShcherbakovaE.E. Aspects of structure formation in surface layers of steel after laser alloying from various coatings.Metallurgist2022665-667268010.1007/s11015‑022‑01375‑2
    [Google Scholar]
  39. CompariniA. Del PaceI. GiurlaniW. Electroplating on Al6082 aluminium: A new green and sustainable approach.Coatings20221311310.3390/coatings13010013
    [Google Scholar]
  40. TianM. JianZ. HaiR. ChangF. Non-isothermal crystallization kinetics of amorphous electroless nickel-phosphorus alloy plating.J. Therm. Anal. Calorim.202314851959197010.1007/s10973‑022‑11828‑0
    [Google Scholar]
  41. PratimaB.M. SubrahmanyamA. Protective coatings on copper using as-deposited sol-gel TiO2 - SiO2 films.Mater. Today Proc.2023801061106510.1016/j.matpr.2022.11.463
    [Google Scholar]
  42. LidskyD. CainJ.M. Hutchins-DelgadoT. LuT.M. Inverse metal-assisted chemical etching of germanium with gold and hydrogen peroxide.Nanotechnology202334606530210.1088/1361‑6528/ac810c 35835063
    [Google Scholar]
  43. BeigiM.H. SafaieN. EsfahaniN.M.H. KianiA. 3D titania nanofiber-like webs induced by plasma ionization: A new direction for bioreactivity and osteoinductivity enhancement of biomaterials.Sci. Rep.2019911799910.1038/s41598‑019‑54533‑z 31784696
    [Google Scholar]
  44. JonesA. MistryK. KaoM. ShahinA. YavuzM. MusselmanK.P. In-situ spatial and temporal electrical characterization of ZnO thin films deposited by atmospheric pressure chemical vapour deposition on flexible polymer substrates.Sci. Rep.20201011994710.1038/s41598‑020‑76993‑4 33203953
    [Google Scholar]
  45. SanchezC. ArribartH. GuilleG.M.M. Biomimetism and bioinspiration as tools for the design of innovative materials and systems.Nat. Mater.20054427728810.1038/nmat1339 15875305
    [Google Scholar]
  46. ChourashiyaM. Synthesis of nano-materials for variety of applications using solution combustion synthesis (SCS).In: Conference on Renewable Energy Technology and Hospital Waste Management 2009 (CRET-09).D.Y. Patil University, Kolhapur, India.20092009152161
    [Google Scholar]
  47. WilhelmC. CebersA. BacriJ.C. GazeauF. Deformation of intracellular endosomes under a magnetic field.Eur. Biophys. J.200332765566010.1007/s00249‑003‑0312‑0 12811432
    [Google Scholar]
  48. PierratS. ZinsI. BreivogelA. SönnichsenC. Self-assembly of small gold colloids with functionalized gold nanorods.Nano Lett.20077225926310.1021/nl062131p 17297987
    [Google Scholar]
  49. MikhaylovaM. KimD.K. BobryshevaN. Superparamagnetism of magnetite nanoparticles: Dependence on surface modification.Langmuir20042062472247710.1021/la035648e 15835712
    [Google Scholar]
  50. JosephsonL. TungC.H. MooreA. WeisslederR. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates.Bioconjug. Chem.199910218619110.1021/bc980125h 10077466
    [Google Scholar]
  51. XuC. NievesM.D. AnkrumJ.A. Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly(lactide-co-glycolide) microparticles.Nano Lett.20121284131413910.1021/nl301658q 22769232
    [Google Scholar]
  52. TangJ.L. SchoenwaldK. PotterD. WhiteD. SulchekT. Bifunctional Janus microparticles with spatially segregated proteins.Langmuir20122826100331003910.1021/la3010079 22624704
    [Google Scholar]
  53. TomaliaD.A. BakerH. DewaldJ. A new class of polymers: Starburst-Dendritic macromolecules.Polym. J.198517111713210.1295/polymj.17.117
    [Google Scholar]
  54. TomaliaD.A. Starburstr̀ dendrimers — Nanoscopic supermolecules according to dendritic rules and principles.Macromol. Symp.1996101124325510.1002/masy.19961010128
    [Google Scholar]
  55. HawkerC.J. FrechetJ.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules.J. Am. Chem. Soc.1990112217638764710.1021/ja00177a027
    [Google Scholar]
  56. EsfandR. TomaliaD.A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications.Drug Discov. Today20016842743610.1016/S1359‑6446(01)01757‑3 11301287
    [Google Scholar]
  57. FengX. LiangY. ZhiL. Synthesis of microporous carbon nanofibers and nanotubes from conjugated polymer network and evaluation in electrochemical capacitor.Adv. Funct. Mater.200919132125212910.1002/adfm.200900264
    [Google Scholar]
  58. StangenbergR. WuY. HedrichJ. A polyphenylene dendrimer drug transporter with precisely positioned amphiphilic surface patches.Adv. Healthc. Mater.20154337738410.1002/adhm.201400291 25182694
    [Google Scholar]
  59. LuA.H. SalabasE.L. SchüthF. Magnetic nanoparticles: Synthesis, protection, functionalization, and application.Angew. Chem. Int. Ed.20074681222124410.1002/anie.200602866 17278160
    [Google Scholar]
  60. PortetD. DenizotB. RumpE. LejeuneJ.J. JalletP. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents.J. Colloid Interface Sci.20012381374210.1006/jcis.2001.7500 11350133
    [Google Scholar]
  61. YeeC. KatabyG. UlmanA. Self-assembled monolayers of alkanesulfonic and phosphonic acids on amorphous iron oxide nanoparticles.Langmuir199915217111711510.1021/la990663y
    [Google Scholar]
  62. FahyE. CotterD. SudM. SubramaniamS. Lipid classification, structures and tools.Biochim. Biophys. Acta Mol. Cell Biol. Lipids201118111163764710.1016/j.bbalip.2011.06.009
    [Google Scholar]
  63. FloresJ. WhiteB.M. BreaR.J. BaskinJ.M. DevarajN.K. Lipids: chemical tools for their synthesis, modification, and analysis.Chem. Soc. Rev.202049144602461410.1039/D0CS00154F 32691785
    [Google Scholar]
  64. MarshD. Handbook of Lipid Bilayers.Boca Raton, FL, USACRC Press201310.1201/b11712
    [Google Scholar]
  65. CapriottiG. VaraniM. LauriC. FranchiG. PizzichiniP. SignoreA. Copper-64 labeled nanoparticles for positron emission tomography imaging: A review of the recent literature.Q. J. Nucl. Med. Mol. Imaging202064434635510.23736/S1824‑4785.20.03315‑4 33073558
    [Google Scholar]
  66. LeeJ.H. ShinY. LeeW. General and programmable synthesis of hybrid liposome/metal nanoparticles.Sci. Adv.2016212e160183810.1126/sciadv.1601838 28028544
    [Google Scholar]
  67. AlwattarJ.K. MneimnehA.T. AblaK.K. MehannaM.M. AllamA.N. Smart stimuli-responsive liposomal nanohybrid systems: A critical review of theranosticbehavior in cancer.Pharmaceutics202113335510.3390/pharmaceutics13030355 33800292
    [Google Scholar]
  68. ZhuD. WangZ. ZongS. Investigating the intracellular behaviors of liposomal nanohybrids via SERS: Insights into the influence of metal nanoparticles.Theranostics20188494195410.7150/thno.21173 29463992
    [Google Scholar]
  69. JahangirianH. KalantariK. IzadiyanZ. MoghaddamR.R. ShameliK. WebsterT.J. A review of small molecules and drug delivery applications using gold and iron nanoparticles.Int. J. Nanomedicine2019141633165710.2147/IJN.S184723 30880970
    [Google Scholar]
  70. KarakotiA.S. ShuklaR. ShankerR. SinghS. Surface functionalization of quantum dots for biological applications.Adv. Colloid Interface Sci.2015215284510.1016/j.cis.2014.11.004 25467038
    [Google Scholar]
  71. EllahA.N.H. AbouelmagdS.A. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges.Expert Opin. Drug Deliv.201714220121410.1080/17425247.2016.1213238 27426638
    [Google Scholar]
  72. CaragheorgheopolA. ChechikV. Mechanistic aspects of ligand exchange in Au nanoparticles.Phys. Chem. Chem. Phys.200810335029504110.1039/b805551c 18701949
    [Google Scholar]
  73. PaenkaewS. MekkapatS. BunthipC. Design of polyester structure in amphiphilic copolymer coated on magnetite nanoparticle: Effect on loading and sustaining release of indomethacin.Surf. Interfaces20202010052310.1016/j.surfin.2020.100523
    [Google Scholar]
  74. NasongklaN. BeyE. RenJ. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems.Nano Lett.20066112427243010.1021/nl061412u 17090068
    [Google Scholar]
  75. LecommandouxS. SandreO. ChécotF. PerzynskiR. Smart hybrid magnetic self-assembled micelles and hollow capsules.Prog. Solid State Chem.2006342-417117910.1016/j.progsolidstchem.2005.11.050
    [Google Scholar]
  76. TorchilinV.P. Recent advances with liposomes as pharmaceutical carriers.Nat. Rev. Drug Discov.20054214516010.1038/nrd1632 15688077
    [Google Scholar]
  77. KimM.J. JangD.H. LeeY.I. JungH.S. LeeH.J. ChoaY.H. Preparation, characterization, cytotoxicity and drug release behavior of liposome-enveloped paclitaxel/Fe3O4 nanoparticles.J. Nanosci. Nanotechnol.201111188989310.1166/jnn.2011.3267 21446568
    [Google Scholar]
  78. MulderW.J.M. StrijkersG.J. van TilborgG.A.F. GriffioenA.W. NicolayK. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging.NMR Biomed.200619114216410.1002/nbm.1011 16450332
    [Google Scholar]
  79. KimD.H. VitolE.A. LiuJ. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles.Langmuir201329247425743210.1021/la3044158 23351096
    [Google Scholar]
  80. SuttonD. NasongklaN. BlancoE. GaoJ. Functionalized micellar systems for cancer targeted drug delivery.Pharm. Res.20072461029104610.1007/s11095‑006‑9223‑y 17385025
    [Google Scholar]
  81. AkbarzadehA. SadabadyR.R. DavaranS. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  82. NakhaeiP. MargianaR. BokovD.O. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol.Front. Bioeng. Biotechnol.2021970588610.3389/fbioe.2021.705886 34568298
    [Google Scholar]
  83. PavelićŽ. Škalko-BasnetN. JalšenjakI. Characterisation and in vitro evaluation of bioadhesive liposome gels for local therapy of vaginitis.Int. J. Pharm.20053011-214014810.1016/j.ijpharm.2005.05.022 16024188
    [Google Scholar]
  84. ErathodiyilN. YingJ.Y. Functionalization of inorganic nanoparticles for bioimaging applications.Acc. Chem. Res.2011441092593510.1021/ar2000327 21648430
    [Google Scholar]
  85. ChenY. YinQ. JiX. Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells.Biomaterials201233297126713710.1016/j.biomaterials.2012.06.059 22789722
    [Google Scholar]
  86. Liz-MarzánL.M. GiersigM. MulvaneyP. Synthesis of nanosized gold-silica core-shell particles.Langmuir199612184329433510.1021/la9601871
    [Google Scholar]
  87. GrafC. VossenD.L.J. ImhofA. van BlaaderenA. General method to coat colloidal particles with silica.Langmuir200319176693670010.1021/la0347859
    [Google Scholar]
  88. LuZ. DaiJ. SongX. WangG. YangW. Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles.Colloids Surf. A Physicochem. Eng. Asp.20083171-345045610.1016/j.colsurfa.2007.11.020
    [Google Scholar]
  89. MaceiraS.V. DuarteC.M.A. FarleM. QuintelaL.A. SieradzkiK. DiazR. Bifunctional gold-coated magnetic silica spheres.Chem. Mater.200618112701270610.1021/cm0603001
    [Google Scholar]
  90. ZhouZ.H. XueJ.M. WangJ. ChanH.S.O. YuT. ShenZ.X. NiFe 2 O 4 nanoparticles formed in situ in silica matrix by mechanical activation.J. Appl. Phys.20029196015602010.1063/1.1462853
    [Google Scholar]
  91. TieS.L. LeeH.C. BaeY.S. KimM.B. LeeK. LeeC.H. MonodisperseFe3O4/Fe@SiO2core/shell nanoparticles with enhanced magnetic property. Colloid Surf. A-Physicochem.Eng Asp200729327828510.1016/j.colsurfa.2006.07.044
    [Google Scholar]
  92. ChangQ. ZhuL. YuC. TangH. Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles.J. Lumin.2008128121890189510.1016/j.jlumin.2008.05.014
    [Google Scholar]
  93. LiG. ShenB. HeN. MaC. ElingaramiS. LiZ. Synthesis and characterization of Fe3O4@SiO2 core-shell magnetic microspheres for extraction of genomic DNA from human whole blood.J. Nanosci. Nanotechnol.20111112102951030110.1166/jnn.2011.5200 22408901
    [Google Scholar]
  94. SelvanS.T. TanT.T.Y. YiD.K. JanaN.R. Functional and multifunctional nanoparticles for bioimaging and biosensing.Langmuir20102614116311164110.1021/la903512m 19961213
    [Google Scholar]
  95. GuJ. ZhangW. YangX. Preparation of a superparamagnetic MRI contrast agent with a tumor targeting function.Mater. Lett.20139481010.1016/j.matlet.2012.12.030
    [Google Scholar]
  96. HuangW. YangX. ZhaoS. Fast and selective recognizes polysaccharide by surface molecularly imprinted film coated onto aldehyde-modified magnetic nanoparticles.Analyst2013138216653666110.1039/c3an01149f 24045334
    [Google Scholar]
  97. MahdaviM. AhmadM.B. HaronM.J. GharayebiY. ShameliK. NadiB. Fabrication and ccharacterization of SiO2/(3-Aminopropyl) triethoxysilane-coated magnetite nanoparticles for Lead (II) removal from aqueous solution.J. Inorg. Organomet. Polym. Mater.201323359960710.1007/s10904‑013‑9820‑2
    [Google Scholar]
  98. PanM. SunY. ZhengJ. YangW. Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein.ACS Appl. Mater. Interfaces20135178351835810.1021/am401285x 23924282
    [Google Scholar]
  99. AshtariK. KhajehK. FasihiJ. AshtariP. RamazaniA. ValiH. Silica-encapsulated magnetic nanoparticles: Enzyme immobilization and cytotoxic study.Int. J. Biol. Macromol.20125041063106910.1016/j.ijbiomac.2011.12.025 22269345
    [Google Scholar]
  100. LuY. YinY. MayersB.T. XiaY. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach.Nano Lett.20022318318610.1021/nl015681q
    [Google Scholar]
  101. StöberW. FinkA. BohnE. Controlled growth of monodisperse silica spheres in the micron size range.J. Colloid Interface Sci.1968261626910.1016/0021‑9797(68)90272‑5
    [Google Scholar]
  102. MaD GuanJ Franςois Normandin Multifunctional nano-architecture for biomedical applications.Chem. Mater.20061871920192710.1021/cm052067x
    [Google Scholar]
  103. SounderyaN. ZhangY. Use of core/shell structured nanoparticles for biomedical applications.Recent Pat. Biomed. Eng.200811344210.2174/1874764710801010034
    [Google Scholar]
  104. DengY.H. WangC.C. HuJ.H. YangW.L. FuS.K. Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach.Colloids Surf. A Physicochem. Eng. Asp.20052621-3879310.1016/j.colsurfa.2005.04.009
    [Google Scholar]
  105. ColomboM. Carregal-RomeroS. CasulaM.F. Biological applications of magnetic nanoparticles.Chem. Soc. Rev.201241114306433410.1039/c2cs15337h 22481569
    [Google Scholar]
  106. FogliaS. LeddaM. FiorettiD. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application.Sci. Rep.2017714651310.1038/srep46513 28422155
    [Google Scholar]
  107. PhukanG. ShinT.H. ShimJ.S. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro.Sci. Rep.2016612909510.1038/srep29095 27378605
    [Google Scholar]
  108. SunC. LeeJ.S.H. ZhangM. Magnetic nanoparticles in MR imaging and drug delivery.Adv. Drug Deliv. Rev.200860111252126510.1016/j.addr.2008.03.018 18558452
    [Google Scholar]
  109. WangL. LuoJ. FanQ. Monodispersed core-shell Fe3O4@Au nanoparticles.J. Phys. Chem. B200510946215932160110.1021/jp0543429 16853803
    [Google Scholar]
  110. CuiY.R. HongC. ZhouY.L. LiY. GaoX.M. ZhangX.X. Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation.Talanta20118531246125210.1016/j.talanta.2011.05.010 21807178
    [Google Scholar]
  111. ParkH.Y. SchadtM.J. WangL. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation.Langmuir200723179050905610.1021/la701305f 17629315
    [Google Scholar]
  112. KoenigS.H. KellarK.E. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles.Magn. Reson. Med.199534222723310.1002/mrm.1910340214 7476082
    [Google Scholar]
  113. LaurentS. ForgeD. PortM. Control of the surface plasmon resonance of two configurations of nanoparticles: Simple gold nanorod and gold/silica core/shell.Chem. Rev.20081082064211010.1021/cr068445e 18543879
    [Google Scholar]
  114. SchladtT.D. SchneiderK. SchildH. TremelW. Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment.Dalton Trans.201140246315634310.1039/c0dt00689k 21359397
    [Google Scholar]
  115. TurcheniukK. TarasevychA.V. KukharV.P. BoukherroubR. SzuneritsS. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles.Nanoscale2013522107291075210.1039/c3nr04131j 24091568
    [Google Scholar]
  116. AhmadT. BaeH. RheeI. ChangY. JinS.U. HongS. Gold-coated iron oxide nanoparticles as a T2 contrast agent in magnetic resonance imaging.J. Nanosci. Nanotechnol.20121275132513710.1166/jnn.2012.6368 22966533
    [Google Scholar]
  117. ChenH. QiF. ZhouH. Fe3O4@Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection.Sens. Actuators B Chem.201521250551110.1016/j.snb.2015.02.062
    [Google Scholar]
  118. GhorbaniM. HamishehkarH. ArsalaniN. EntezamiA.A. A novel dual-responsive core-crosslinked magnetic-gold nanogel for triggered drug release.Mater. Sci. Eng. C20166843644410.1016/j.msec.2016.06.007 27524039
    [Google Scholar]
  119. LoC.K. XiaoD. ChoiM.M.F. Homocysteine-protected gold-coated magnetic nanoparticles: Synthesis and characterisation.J. Mater. Chem.200717232418242710.1039/b617500g
    [Google Scholar]
  120. GoodingJ.J. CiampiS. The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies.Chem. Soc. Rev.20114052704271810.1039/c0cs00139b 21290036
    [Google Scholar]
  121. GoodingJ.J. DarwishN. The rise of self‐assembled monolayers for fabricating electrochemical biosensors—an interfacial perspective.Chem. Rec.20121219210510.1002/tcr.201100013 22131219
    [Google Scholar]
  122. GoodingJ.J. MearnsF. YangW. LiuJ. Self-assembled monolayers into the 21st century: Recent advances and applications.Electroanalysis2003152819610.1002/elan.200390017
    [Google Scholar]
  123. LuA.H. ZhangX.Q. SunQ. Precise synthesis of discrete and dispersible carbon-protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy.Nano Res.2016951460146910.1007/s12274‑016‑1042‑9
    [Google Scholar]
  124. LuA.H. HaoG.P. SunQ. ZhangX.Q. LiW.C. Chemical synthesis of carbon materials with intriguing nanostructure and morphology.Macromol. Chem. Phys.201221310-111107113110.1002/macp.201100606
    [Google Scholar]
  125. FangY. GuD. ZouY. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size.Angew. Chem. Int. Ed.201049437987799110.1002/anie.201002849 20839199
    [Google Scholar]
  126. KumarV. ToffoliG. RizzolioF. Fluorescent carbon nanoparticles in medicine for cancer therapy.ACS Med. Chem. Lett.20134111012101310.1021/ml400394a 24936239
    [Google Scholar]
  127. SunS.N. WeiC. ZhuZ.Z. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications.Chin. Phys. B201423303750310.1088/1674‑1056/23/3/037503
    [Google Scholar]
  128. MendesR.G. KochB. BachmatiukA. Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions.Biochim. Biophys. Acta, Gen. Subj.20141840116016910.1016/j.bbagen.2013.08.025 24007898
    [Google Scholar]
  129. LeeJ.S. SongY.J. HsuH.S. LinC.R. HuangJ.Y. ChenJ. Magnetic enhancement of carbon-encapsulated magnetite nanoparticles.J. Alloys Compd.201979071672210.1016/j.jallcom.2019.03.191
    [Google Scholar]
  130. ZhengM. LuJ. ZhaoD. Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish.Sci. Total Environ.2018622-62393094110.1016/j.scitotenv.2017.12.018 29227944
    [Google Scholar]
  131. ZhuX. TianS. CaiZ. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages.PLoS One201279e4628610.1371/journal.pone.0046286 23029464
    [Google Scholar]
  132. ZhangY. KohlerN. ZhangM. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.Biomaterials20022371553156110.1016/S0142‑9612(01)00267‑8 11922461
    [Google Scholar]
  133. XueB. SunY. Protein adsorption equilibria and kinetics to a poly(vinyl alcohol)-based magnetic affinity support.J. Chromatogr. A2001921210911910.1016/S0021‑9673(01)00860‑3 11471795
    [Google Scholar]
  134. LeeD.W. FatimaH. KimK.S. Preparation of silica coated magnetic nanoparticles for bioseparation.J. Nanosci. Nanotechnol.20181821414141810.1166/jnn.2018.14888 29448602
    [Google Scholar]
  135. WangF. GuoC. YangL. LiuC.Z. Magnetic mesoporous silica nanoparticles: Fabrication and their laccase immobilization performance.Bioresour. Technol.2010101238931893510.1016/j.biortech.2010.06.115 20655206
    [Google Scholar]
  136. YiD.K. SelvanS.T. LeeS.S. PapaefthymiouG.C. KundaliyaD. YingJ.Y. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots.J. Am. Chem. Soc.2005127144990499110.1021/ja0428863 15810812
    [Google Scholar]
  137. PrimeK.L. WhitesidesG.M. Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces.Science199125250091164116710.1126/science.252.5009.1164 2031186
    [Google Scholar]
  138. BainC.D. TroughtonE.B. TaoY.T. EvallJ. WhitesidesG.M. NuzzoR.G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold.J. Am. Chem. Soc.1989111132133510.1021/ja00183a049
    [Google Scholar]
  139. ZlateskiV. FuhrerR. KoehlerF.M. Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets.Bioconjug. Chem.201425467768410.1021/bc400476y 24673490
    [Google Scholar]
  140. TranN. WebsterT.J. Magnetic nanoparticles: Biomedical applications and challenges.J. Mater. Chem.201020408760876710.1039/c0jm00994f
    [Google Scholar]
  141. BerryC.C. CurtisA.S.G. Functionalisation of magnetic nanoparticles for applications in biomedicine.J. Phys. D Appl. Phys.20033613R198R20610.1088/0022‑3727/36/13/203
    [Google Scholar]
  142. GuptaA.K. NaregalkarR.R. VaidyaV.D. GuptaM. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications.Nanomedicine200721233910.2217/17435889.2.1.23 17716188
    [Google Scholar]
  143. FrimpongR.A. HiltJ.Z. Magnetic nanoparticles in biomedicine: Synthesis, functionalization and applications.Nanomedicine2010591401141410.2217/nnm.10.114 21128722
    [Google Scholar]
  144. van LooG. SaelensX. van GurpM. MacFarlaneM. MartinS.J. VandenabeeleP. The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet.Cell Death Differ.20029101031104210.1038/sj.cdd.4401088 12232790
    [Google Scholar]
  145. GoldsteinL.S. DewhirstM.W. RepacholiM. KheifetsL. Summary, conclusions and recommendations: Adverse temperature levels in the human body.Int. J. Hyperthermia200319337338410.1080/0265673031000090701 12745976
    [Google Scholar]
  146. JohannsenM. GneveckowU. EckeltL. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique.Int. J. Hyperthermia200521763764710.1080/02656730500158360 16304715
    [Google Scholar]
  147. ChristophiC. WinkworthA. MuralihdaranV. EvansP. The treatment of malignancy by hyperthermia.Surg. Oncol.199871-2839010.1016/S0960‑7404(99)00007‑9 10421511
    [Google Scholar]
  148. GuardiaP. Di CoratoR. LartigueL. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment.ACS Nano2012643080309110.1021/nn2048137 22494015
    [Google Scholar]
  149. AnikM.I. HossainM.K. HossainI. MahfuzA.M.U.B. RahmanM.T. AhmedI. Recent progress of magnetic nanoparticles in biomedical applications: A review.Nano Select2021261146118610.1002/nano.202000162
    [Google Scholar]
  150. ZuoX. DingH. ZhangJ. FangT. ZhangD. Carbothermal treated iron oxide nanoparticles with improving magnetic heating efficiency for hyperthermia.Results Phys.20223210509510.1016/j.rinp.2021.105095
    [Google Scholar]
  151. GuptaR. SharmaD. Manganese-doped magnetic nanoclusters for hyperthermia and photothermal glioblastoma therapy.ACS Appl. Nano Mater.2020322026203710.1021/acsanm.0c00121
    [Google Scholar]
  152. CurcioA. SilvaA.K.A. CabanaS. Iron oxide nanoflowers @ CuShybrids for cancer tri-therapy: Interplay of photothermal therapy, magnetic hyperthermia and photodynamic therapy.Theranostics2019951288130210.7150/thno.30238 30867831
    [Google Scholar]
  153. LiuZ. FanA.C. RakhraK. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy.Angew. Chem. Int. Ed.200948417668767210.1002/anie.200902612 19760685
    [Google Scholar]
  154. McBainS.C. YiuH.H. DobsonJ. Magnetic nanoparticles for gene and drug delivery.Int. J. Nanomedicine200832169180 18686777
    [Google Scholar]
  155. AlomariM. AlmohazeyD. AlmoftyS. Magnetic-responsive polysaccharide-inorganic composite materials for cancer therapeutics.Polysaccharide Carriers for Drug Delivery.Elsevier201917921610.1016/B978‑0‑08‑102553‑6.00008‑8
    [Google Scholar]
  156. AkbarzadehA. MikaeiliH. ZarghamiN. MohammadR. BarkhordariA. DavaranS. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers.Int. J. Nanomedicine20127511526 22334781
    [Google Scholar]
  157. AsadiN AnnabiN MostafaviE RETRACTED ARTICLE: Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL–PEG–PCL for controlled delivery of 5FU.Artif Cells Nanomed Biotechnol201846sup19384510.1080/21691401.2018.1439839 29468888
    [Google Scholar]
  158. KonerackáM. KopčanskýP. TimkoM. RamchandC.N. de SequeiraA. TrevanM. Direct binding procedure of proteins and enzymes to fine magnetic particles.J. Mol. Catal., B Enzym.2002181-3131810.1016/S1381‑1177(02)00016‑4
    [Google Scholar]
  159. LübbeA.S. AlexiouC. BergemannC. Clinical applications of magnetic drug targeting.J. Surg. Res.200195220020610.1006/jsre.2000.6030 11162046
    [Google Scholar]
  160. SinghT.V. ShagolsemL.S. Biopolymer based nano-structured materials and their applications. SwainB.P. Nanostructured Materials and their Applications.SingaporeSpringer202110.1007/978‑981‑15‑8307‑0_17
    [Google Scholar]
  161. KohI. JosephsonL. Magnetic nanoparticle sensors.Sensors20099108130814510.3390/s91008130 22408498
    [Google Scholar]
  162. MaL. WangC. ZhangM. Detecting protein adsorption and binding using magnetic nanoparticle probes.Sens. Actuators B Chem.2011160165065510.1016/j.snb.2011.08.043
    [Google Scholar]
  163. SantosR.T.A.P. Sensors and biosensors based on magnetic nanoparticles.Trends Analyt. Chem.201462283610.1016/j.trac.2014.06.016
    [Google Scholar]
  164. GermanS.V. NavolokinN.A. KuznetsovaN.R. Liposomes loaded with hydrophilic magnetite nanoparticles: Preparation and application as contrast agents for magnetic resonance imaging.Colloids Surf. B Biointerfaces201513510911510.1016/j.colsurfb.2015.07.042 26241922
    [Google Scholar]
  165. HuF. ZhaoY.S. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes.Nanoscale20124206235624310.1039/c2nr31865b 22971876
    [Google Scholar]
  166. VarallyayP. NesbitG. MuldoonL.L. Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors.AJNR Am. J. Neuroradiol.2002234510519 11950637
    [Google Scholar]
  167. SosnovikD.E. NahrendorfM. WeisslederR. Molecular magnetic resonance imaging in cardiovascular medicine.Circulation2007115152076208610.1161/CIRCULATIONAHA.106.658930 17438163
    [Google Scholar]
  168. Dulińska-LitewkaJ. ŁazarczykA. HałubiecP. SzafrańskiO. KarnasK. KarewiczA. Superparamagneticiron oxide Nanoparticles-current and prospective medical applications.Materials201912461710.3390/ma12040617 30791358
    [Google Scholar]
  169. DoughtyA. HooverA. LaytonE. MurrayC. HowardE. ChenW. Nanomaterial applications in photothermal therapy for cancer.Materials201912577910.3390/ma12050779 30866416
    [Google Scholar]
  170. ReviaR.A. ZhangM. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances.Mater. Today201619315716810.1016/j.mattod.2015.08.022 27524934
    [Google Scholar]
  171. EstelrichJ. BusquetsM. Iron oxide nanoparticles in photothermal therapy.Molecules2018237156710.3390/molecules23071567 29958427
    [Google Scholar]
  172. GhanmiA. AbbasI.A. An analytical study on the fractional transient heating within the skin tissue during the thermal therapy.J. Therm. Biol.20198222923310.1016/j.jtherbio.2019.04.003 31128652
    [Google Scholar]
  173. AlzahraniF.S. AbbasI.A. Analytical estimations of temperature in a living tissue generated by laser irradiation using experimental data.J. Therm. Biol.20198510242110.1016/j.jtherbio.2019.102421 31657762
    [Google Scholar]
  174. HobinyA. AbbasI. Analytical solutions of fractional bioheat model in a spherical tissue.Mech. Based Des. Struct. Mach.202149343043910.1080/15397734.2019.1702055
    [Google Scholar]
  175. MarinM. HobinyA. AbbasI. Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources.Mathematics2021913145910.3390/math9131459
    [Google Scholar]
  176. LuoS. ZhangE. SuY. ChengT. ShiC. A review of NIR dyes in cancer targeting and imaging.Biomaterials201132297127713810.1016/j.biomaterials.2011.06.024 21724249
    [Google Scholar]
  177. ZhangF. LuG. WenX. Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy.J. Control. Release202032613113910.1016/j.jconrel.2020.06.015 32580043
    [Google Scholar]
  178. WuW. JiangC.Z. RoyV.A.L. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications.Nanoscale2016847194211947410.1039/C6NR07542H 27812592
    [Google Scholar]
  179. CulverK. CornettaK. MorganR. Lymphocytes as cellular vehicles for gene therapy in mouse and man.Proc. Natl. Acad. Sci.19918883155315910.1073/pnas.88.8.3155 2014235
    [Google Scholar]
  180. Hacein-Bey-AbinaS. Le DeistF. CarlierF. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy.N. Engl. J. Med.2002346161185119310.1056/NEJMoa012616 11961146
    [Google Scholar]
  181. MohammedL. GomaaH.G. RagabD. ZhuJ. Magnetic nanoparticles for environmental and biomedical applications: A review.Particuology20173011410.1016/j.partic.2016.06.001
    [Google Scholar]
  182. BriggerI. DubernetC. CouvreurP. Nanoparticles in cancer therapy and diagnosis.Adv. Drug Deliv. Rev.200254563165110.1016/S0169‑409X(02)00044‑3 12204596
    [Google Scholar]
  183. KrötzF. WitC. SohnH.Y. Magnetofection—A highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo.Mol. Ther.20037570071010.1016/S1525‑0016(03)00065‑0 12718913
    [Google Scholar]
  184. DobsonJ. Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery.Gene Ther.200613428328710.1038/sj.gt.3302720 16462855
    [Google Scholar]
  185. SchillingerU. BrillT. RudolphC. Advances in magnetofection—Magnetically guided nucleic acid delivery.J. Magn. Magn. Mater.2005293150150810.1016/j.jmmm.2005.01.032
    [Google Scholar]
  186. ZhaoX. CuiH. ChenW. Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system.PLoS One201496e9891910.1371/journal.pone.0098919 24911360
    [Google Scholar]
  187. HadianamreiR. ZhaoX. Current state of the art in peptide-based gene delivery.J. Control. Release202234360061910.1016/j.jconrel.2022.02.010 35157938
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855284579240307063006
Loading
/content/journals/cdth/10.2174/0115748855284579240307063006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test