Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

The human microbiome, comprising a complex community of microorganisms, has emerged as a crucial factor in maintaining health and influencing disease states. Recently, there has been growing interest in harnessing the potential of microbiome-based nanomaterials for enhanced pulmonary drug delivery. This abstract presents an overview of recent advancements and prospects in this field. Microbiome-based nanomaterials offer a targeted and personalized approach to pulmonary delivery, leveraging an understanding of the lung microbiome. These nanomaterials can be engineered to encapsulate drugs or therapeutic agents, modulate the lung microbiome, act as diagnostic tools, regulate immune responses, and facilitate vaccine delivery. While significant progress has been made, challenges, such as formulation stability, safety, efficacy, and regulatory considerations, need to be addressed for successful translation into clinical practice. With continued research and technological advancements, microbiome-based nanomaterials hold great promise in revolutionizing pulmonary healthcare, providing novel strategies for the treatment and prevention of respiratory diseases.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855284955240304053519
2024-03-11
2025-10-03
Loading full text...

Full text loading...

References

  1. TurnbaughP.J. LeyR.E. HamadyM. Fraser-LiggettC.M. KnightR. GordonJ.I. The human microbiome project.Nature2007449716480481010.1038/nature06244 17943116
    [Google Scholar]
  2. ParanjpeM. Müller-GoymannC. Nanoparticle-mediated pulmonary drug delivery: A review.Int. J. Mol. Sci.20141545852587310.3390/ijms15045852 24717409
    [Google Scholar]
  3. HuhA.J. KwonY.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.J. Control. Release2011156212814510.1016/j.jconrel.2011.07.002 21763369
    [Google Scholar]
  4. BelkaidY. HandT.W. Role of the microbiota in immunity and inflammation.Cell2014157112114110.1016/j.cell.2014.03.011 24679531
    [Google Scholar]
  5. PatzeltA. LademannJ. Drug delivery to hair follicles.Expert Opin. Drug Deliv.201310678779710.1517/17425247.2013.776038 23530745
    [Google Scholar]
  6. SungJ.C. PulliamB.L. EdwardsD.A. Nanoparticles for drug delivery to the lungs.Trends Biotechnol.2007251256357010.1016/j.tibtech.2007.09.005 17997181
    [Google Scholar]
  7. GilbertJ.A. BlaserM.J. CaporasoJ.G. JanssonJ.K. LynchS.V. KnightR. Current understanding of the human microbiome.Nat. Med.201824439240010.1038/nm.4517 29634682
    [Google Scholar]
  8. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.387 18654426
    [Google Scholar]
  9. McLeanJ.S. LombardoM.J. BadgerJ.H. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum.Proc. Natl. Acad. Sci. USA201311026E2390E239910.1073/pnas.1219809110 23754396
    [Google Scholar]
  10. Al-JamalW.T. KostarelosK. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine.Acc. Chem. Res.201144101094110410.1021/ar200105p 21812415
    [Google Scholar]
  11. ChoI. BlaserM.J. The human microbiome: At the interface of health and disease.Nat. Rev. Genet.201213426027010.1038/nrg3182 22411464
    [Google Scholar]
  12. MansourH. Haemosu, Wu X. Nanomedicine in pulmonary delivery.Int. J. Nanomedicine2009429931910.2147/IJN.S4937 20054434
    [Google Scholar]
  13. HassanpourS. BaradaranB. HejaziM. HasanzadehM. The role of different NDDS (nanodrug delivery systems) in improvement of antifungal, antiviral and antiprotozoal activity.Biomed. Pharmacother.2018105555564
    [Google Scholar]
  14. RoundJ.L. MazmanianS.K. The gut microbiota shapes intestinal immune responses during health and disease.Nat. Rev. Immunol.20099531332310.1038/nri2515 19343057
    [Google Scholar]
  15. ChoiH.S. AshitateY. LeeJ.H. Rapid translocation of nanoparticles from the lung airspaces to the body.Nat. Biotechnol.201028121300130310.1038/nbt.1696 21057497
    [Google Scholar]
  16. KnightR. CallewaertC. MarotzC. The microbiome and human biology.Annu. Rev. Genomics Hum. Genet.2017181658610.1146/annurev‑genom‑083115‑022438 28375652
    [Google Scholar]
  17. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S596 18686775
    [Google Scholar]
  18. ArrietaM.C. StiemsmaL.T. DimitriuP.A. Early infancy microbial and metabolic alterations affect risk of childhood asthma.Sci. Transl. Med.20157307307ra15210.1126/scitranslmed.aab2271 26424567
    [Google Scholar]
  19. DhandR. SohalH.S. Pulmonary drug delivery system: Newer patents.Recent Pat. Drug Deliv. Formul.2011512632
    [Google Scholar]
  20. MurphyT.F. BrauerA.L. SchiffmacherA.T. SethiS. Persistent colonization by Haemophilus influenzae in chronic obstructive pulmonary disease.Am. J. Respir. Crit. Care Med.2004170326627210.1164/rccm.200403‑354OC 15117742
    [Google Scholar]
  21. UrsellL.K. MetcalfJ.L. ParfreyL.W. KnightR. Defining the human microbiome.Nutr. Rev.201270Suppl. 1S38S4410.1111/j.1753‑4887.2012.00493.x 22861806
    [Google Scholar]
  22. Worth LongestP. HindleM. Efficient delivery of nanoparticles for respiratory diseases using acoustically-assisted aerosol devices.Drug Deliv. Transl. Res.20188514781496
    [Google Scholar]
  23. WhitesidesG.M. Nanotechnology: Art of the possible.J. Nanopart. Res.200685717718
    [Google Scholar]
  24. SommerF. BäckhedF. The gut microbiota — masters of host development and physiology.Nat. Rev. Microbiol.201311422723810.1038/nrmicro2974 23435359
    [Google Scholar]
  25. Beck-BroichsitterM. RyttingE. LebhardtT. WangX. KisselT. Preparation of nanoparticles by solvent displacement for drug delivery: A shift in the “ouzo region” upon drug loading.Eur. J. Pharm. Sci.201041224425310.1016/j.ejps.2010.06.007 20600881
    [Google Scholar]
  26. DuncanR. GasparR. Nanomedicine(s) under the Microscope.Mol. Pharm.2011862101214110.1021/mp200394t 21974749
    [Google Scholar]
  27. QinL. LiW. GaoY. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy.Small20191511e1805446
    [Google Scholar]
  28. SenderR. FuchsS. MiloR. Revised estimates for the number of human and bacteria cells in the body.PLoS Biol.2016148e100253310.1371/journal.pbio.1002533 27541692
    [Google Scholar]
  29. MainelisG. SeshadriS. GarbuzenkoO.B. HanT. WangZ. MinkoT. Pulmonary delivery of siRNA via dry powder formulation.Nanomedicine2011715364
    [Google Scholar]
  30. ZhangL. ChanJ.M. GuF.X. Self-assembled lipid--polymer hybrid nanoparticles: A robust drug delivery platform.ACS Nano2008281696170210.1021/nn800275r 19206374
    [Google Scholar]
  31. ZhangK. DupontA. TorowN. Age-dependent enterocyte invasion and microcolony formation by Salmonella.PLoS Pathog.2014109e100438510.1371/journal.ppat.1004385 25210785
    [Google Scholar]
  32. DawidczykC.M. KimC. ParkJ.H. State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines.J. Control. Release201418713314410.1016/j.jconrel.2014.05.036 24874289
    [Google Scholar]
  33. LynchS.V. PedersenO. The human intestinal microbiome in health and disease.N. Engl. J. Med.2016375242369237910.1056/NEJMra1600266 27974040
    [Google Scholar]
  34. FattalE. BochotA. State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers.Int. J. Pharm.2008364223724810.1016/j.ijpharm.2008.06.011 18619528
    [Google Scholar]
  35. MitragotriS. BurkeP.A. LangerR. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies.Nat. Rev. Drug Discov.201413965567210.1038/nrd4363 25103255
    [Google Scholar]
  36. RamakrishnaS. Kwaku DadA.B. BeloorJ. GopalappaR. LeeS.K. KimH. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA.Genome Res.20142461020102710.1101/gr.171264.113 24696462
    [Google Scholar]
  37. LiS.D. HuangL. Pharmacokinetics and biodistribution of nanoparticles.Mol. Pharm.20085449650410.1021/mp800049w 18611037
    [Google Scholar]
  38. AmerongenG.P.N. DraijerR. VermeerM.A. van HinsberghV.W.M. Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: Role of protein kinases, calcium, and RhoA.Circ. Res.199883111115112310.1161/01.RES.83.11.1115 9831706
    [Google Scholar]
  39. GellerD.E. Aerosol antibiotics in cystic fibrosis.Respir. Care200954565867010.4187/aarc0537 19393109
    [Google Scholar]
  40. SmithD.J. GaffneyE.A. BlakeJ.R. Modelling mucociliary clearance.Respir. Physiol. Neurobiol.20081631-317818810.1016/j.resp.2008.03.006 18439882
    [Google Scholar]
  41. LynchS.V. BousheyH.A. The microbiome and development of allergic disease.Curr. Opin. Allergy Clin. Immunol.201616216517110.1097/ACI.0000000000000255 26885707
    [Google Scholar]
  42. LabirisN.R. DolovichM.B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications.Br. J. Clin. Pharmacol.200356658859910.1046/j.1365‑2125.2003.01892.x 14616418
    [Google Scholar]
  43. FerrariM. Cancer nanotechnology: Opportunities and challenges.Nat. Rev. Cancer20055316117110.1038/nrc1566 15738981
    [Google Scholar]
  44. GaoY. WuY. Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications.Int. J. Biol. Macromol.202220337938810.1016/j.ijbiomac.2022.01.162 35104473
    [Google Scholar]
  45. GrumezescuA. ChifiriucC. Prevention of microbial biofilms - The contribution of micro and nanostructured materials.Curr. Med. Chem.20142129331110.2174/0929867321666140304101314 24606506
    [Google Scholar]
  46. RudramurthyG.R. SwamyM.K. Potential applications of engineered nanoparticles in medicine and biology: An update.J. Biol. Inorg. Chem.20182381185120410.1007/s00775‑018‑1600‑6 30097748
    [Google Scholar]
  47. GoldbergM. LangerR. JiaX. Nanostructured materials for applications in drug delivery and tissue engineering.J. Biomater. Sci. Polym. Ed.200718324126810.1163/156856207779996931 17471764
    [Google Scholar]
  48. HajialiH. OuyangL. Llopis-HernandezV. DobreO. RoseF.R.A.J. Review of emerging nanotechnology in bone regeneration: progress, challenges, and perspectives.Nanoscale20211323102661028010.1039/D1NR01371H 34085085
    [Google Scholar]
  49. ChenG. LiY. LiuS. JunaidM. WangJ. Effects of micro(nano)plastics on higher plants and the rhizosphere environment.Sci. Total Environ.2022807Pt 115084110.1016/j.scitotenv.2021.150841 34627902
    [Google Scholar]
  50. XieS. ZhouA. WeiT. Nanoplastics induce more serious microbiota dysbiosis and inflammation in the gut of adult zebrafish than microplastics.Bull. Environ. Contam. Toxicol.2021107464065010.1007/s00128‑021‑03348‑8 34379141
    [Google Scholar]
  51. ChenX. XuL. ChenQ. SuS. ZhuangJ. QiaoD. Polystyrene micro- and nanoparticles exposure induced anxiety-like behaviors, gut microbiota dysbiosis and metabolism disorder in adult mice.Ecotoxicol. Environ. Saf.202325911500010.1016/j.ecoenv.2023.115000 37210994
    [Google Scholar]
  52. KhanO.F. ZaiaE.W. JhunjhunwalaS. Dendrimer-inspired nanomaterials for the in vivo delivery of siRNA to lung vasculature.Nano Lett.20151553008301610.1021/nl5048972 25789998
    [Google Scholar]
  53. SeshadriD.R. RamamurthiA. Nanotherapeutics to modulate the compromised micro-environment for lung cancers and chronic obstructive pulmonary disease.Front. Pharmacol.2018975910.3389/fphar.2018.00759 30061830
    [Google Scholar]
  54. YangW. PetersJ.I. WilliamsR.O.III Inhaled nanoparticles—A current review.Int. J. Pharm.20083561-223924710.1016/j.ijpharm.2008.02.011 18358652
    [Google Scholar]
  55. MarulandaK. MercelA. GillisD.C. Intravenous delivery of lung‐targeted nanofibers for pulmonary hypertension in mice.Adv. Healthc. Mater.20211013210030210.1002/adhm.202100302 34061473
    [Google Scholar]
  56. PraphawatvetT. PetersJ.I. WilliamsR.O.III Inhaled nanoparticles–An updated review.Int. J. Pharm.202058711967110.1016/j.ijpharm.2020.119671
    [Google Scholar]
  57. ZhaoR. GaoS. HeH. ZhangJ. ZhangG. WenX. Targeting pulmonary artery infusion of nuclear-targeted plasmid-based short hairpin RNA (ShRNA) to hypoxia inducible factor-1 α 3 (pshHIF-1 α 3) nano-microspheres for treatment of implanted lung cancer in rats.J. Biomed. Nanotechnol.202218374074610.1166/jbn.2022.3277 35715926
    [Google Scholar]
  58. YuH. WangB. ZhouS. Polyvinylpyrrolidone functionalization induces deformable structure of graphene oxide nanosheets for lung-targeting delivery.Nano Today20213810115110.1016/j.nantod.2021.101151
    [Google Scholar]
  59. MehtaP.P. GhoshalD. PawarA.P. KadamS.S. Dhapte-PawarV.S. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance.J. Drug Deliv. Sci. Technol.20205610150910.1016/j.jddst.2020.101509
    [Google Scholar]
  60. ZernB.J. ChackoA.M. LiuJ. Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET detection of pulmonary inflammation.ACS Nano2013732461246910.1021/nn305773f 23383962
    [Google Scholar]
  61. WangS.M. HeX. LiN. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting.Int. J. Nanomedicine20151028572869 25926731
    [Google Scholar]
  62. StaquiciniD.I. BarbuE.M. ZemansR.L. Targeted phage display-based pulmonary vaccination in mice and non-human primates.Med202123321342.e810.1016/j.medj.2020.10.005 33870243
    [Google Scholar]
  63. AlhajjN. CheeC.F. WongT.W. RahmanN.A. Abu KasimN.H. ColomboP. Lung cancer: Active therapeutic targeting and inhalational nanoproduct design.Expert Opin. Drug Deliv.201815121223124710.1080/17425247.2018.1547280 30422017
    [Google Scholar]
  64. GeigerJ. AnejaM.K. HasenpuschG. Targeting of the prostacyclin specific IP1 receptor in lungs with molecular conjugates comprising prostaglandin I2 analogues.Biomaterials201031102903291110.1016/j.biomaterials.2009.12.035 20045181
    [Google Scholar]
  65. KhoshnejadM. ShuvaevV.V. PulsipherK.W. Vascular accessibility of endothelial targeted ferritin nanoparticles.Bioconjug. Chem.201627362863710.1021/acs.bioconjchem.5b00641 26718023
    [Google Scholar]
  66. LongL. OrmistonM.L. YangX. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension.Nat. Med.201521777778510.1038/nm.3877 26076038
    [Google Scholar]
  67. ShenJ.K. CoteG.M. ChoyE. HornicekF.J. DuanZ. Targeting programmed cell death ligand 1 in osteosarcoma: an auto-commentary on therapeutic potential.OncoImmunology201438e95446710.4161/21624011.2014.954467 25610746
    [Google Scholar]
  68. SaundersL.R. BankovichA.J. AndersonW.C. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo.Sci. Transl. Med.20157302302ra13610.1126/scitranslmed.aac9459 26311731
    [Google Scholar]
  69. WuX. BosI.S.T. ConlonT.M. A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration.Sci. Adv.2022812eabj994910.1126/sciadv.abj9949 35319981
    [Google Scholar]
  70. ToomeK. WillmoreA.M.A. PaisteP. Ratiometric in vivo auditioning of targeted silver nanoparticles.Nanoscale2017928100941010010.1039/C7NR04056C 28695222
    [Google Scholar]
  71. TonnisW.F. KerstenG.F. FrijlinkH.W. HinrichsW.L.J. de BoerA.H. AmorijJ.P. Pulmonary vaccine delivery: a realistic approach?J. Aerosol Med. Pulm. Drug Deliv.201225524926010.1089/jamp.2011.0931 22856876
    [Google Scholar]
  72. LuD. HickeyA.J. Pulmonary vaccine delivery.Expert Rev. Vaccines20076221322610.1586/14760584.6.2.213 17408371
    [Google Scholar]
  73. KundaN.K. SomavarapuS. GordonS.B. HutcheonG.A. SaleemI.Y. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery.Pharm. Res.201330232534110.1007/s11095‑012‑0891‑5 23054093
    [Google Scholar]
  74. VujanicA. WeeJ.L.K. SnibsonK.J. Combined mucosal and systemic immunity following pulmonary delivery of ISCOMATRIX™ adjuvanted recombinant antigens.Vaccine201028142593259710.1016/j.vaccine.2010.01.018 20096391
    [Google Scholar]
  75. BorchardG. Bivas-BenitaM. JungingerH.E. Developing and testing of drug carrier systems for pulmonary drug delivery.2004 International Conference on MEMS, NANO and Smart Systems (ICMENS' 04),.Banff, AB, Canada, 25-27 August2004188192
    [Google Scholar]
  76. TonnisW.F. LexmondA.J. FrijlinkH.W. de BoerA.H. HinrichsW.L.J. Devices and formulations for pulmonary vaccination.Expert Opin. Drug Deliv.201310101383139710.1517/17425247.2013.810622 23786408
    [Google Scholar]
  77. WeeJ.L.K. ScheerlinckJ-P.Y. SnibsonK.J. Pulmonary delivery of ISCOMATRIX influenza vaccine induces both systemic and mucosal immunity with antigen dose sparing.Mucosal Immunol.20081648949610.1038/mi.2008.59 19079216
    [Google Scholar]
  78. HokeyD.A. MisraA. Aerosol vaccines for tuberculosis: A fine line between protection and pathology.Tuberculosis2011911828510.1016/j.tube.2010.09.007 21067975
    [Google Scholar]
  79. SaleemI.Y. PetkarK.C. SomavarapuS. Rationale for pulmonary vaccine delivery: Formulation and device considerations.Micro Nano Technol2017357371
    [Google Scholar]
  80. Bivas-BenitaM. van MeijgaardenK.E. FrankenK.L.M.C. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis.Vaccine20042213-141609161510.1016/j.vaccine.2003.09.044 15068842
    [Google Scholar]
  81. HorcajadaP. ChalatiT. SerreC. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging.Nat. Mater.20109217217810.1038/nmat2608 20010827
    [Google Scholar]
  82. KirtaneA.R. VermaM. KarandikarP. FurinJ. LangerR. TraversoG. Nanotechnology approaches for global infectious diseases.Nat. Nanotechnol.202116436938410.1038/s41565‑021‑00866‑8 33753915
    [Google Scholar]
  83. TianH. ChenJ. ChenX. Nanoparticles for gene delivery.Small20139122034204410.1002/smll.201202485 23630123
    [Google Scholar]
  84. KanamalaM. WilsonW.R. YangM. PalmerB.D. WuZ. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review.Biomaterials20168515216710.1016/j.biomaterials.2016.01.061 26871891
    [Google Scholar]
  85. DuttaB. BarickK.C. HassanP.A. Recent advances in active targeting of nanomaterials for anticancer drug delivery.Adv. Colloid Interface Sci.202129610250910.1016/j.cis.2021.102509 34455211
    [Google Scholar]
  86. Jabr-MilaneL.S. van VlerkenL.E. YadavS. AmijiM.M. Multi-functional nanocarriers to overcome tumor drug resistance.Cancer Treat. Rev.200834759260210.1016/j.ctrv.2008.04.003 18538481
    [Google Scholar]
  87. Santos-MagalhãesN.S. MosqueiraV.C.F. Nanotechnology applied to the treatment of malaria.Adv. Drug Deliv. Rev.2010624-556057510.1016/j.addr.2009.11.024 19914313
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855284955240304053519
Loading
/content/journals/cdth/10.2174/0115748855284955240304053519
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test