Skip to content
2000
image of Formulation Development of Low Soluble Drugs: Integrating Solubility, Dissolution, and PK-PD Stand Points through AI-Driven Strategies

Abstract

A key challenge during drug development is getting the low-solubility molecules from the drug discovery phase to the formulation phase. The low bioavailability of a drug is typically correlated with its low solubility, which may negatively impact the drug’s effectiveness and its ability to act. Traditionally, the problem of low solubility was resolved by employing empirical trial-and-error methodologies to ascertain the best available technologies for achieving the drug's desired bioavailability. However, these traditional methods are time-consuming and require the use of more resources, posing a challenge to developmental timelines and budgets. With the progress of artificial intelligence (AI) and machine learning (ML), it is possible to accurately predict the appropriate drug-excipient mixtures and solubility enhancement technologies for drug development. This review aims to present intelligent modeling that supports knowledge generation, problem solving, and decision making. It highlights various AI-based strategies applied across the drug development pipeline - from solubility prediction and selection of excipient(s) to formulation optimization, solid dispersion evaluation, and real-time monitoring of drug release. Furthermore, it examines the role of AI in modeling pharmacokinetic (PK) and pharmacodynamic (PD) behaviors, thereby enabling more accurate predictions of outcomes. By leveraging intelligent algorithms, pharmaceutical scientists can accelerate development timelines, enhance decision-making, and improve the efficiency of formulation design. The pharmaceutical industry has tremendous opportunities to improve patient care and drug development processes through ongoing AI research and applications.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775393525250728070925
2025-09-03
2025-10-19
Loading full text...

Full text loading...

References

  1. Zhang Y. Zhi Z. Jiang T. Zhang J. Wang Z. Wang S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release 2010 145 3 257 263 10.1016/j.jconrel.2010.04.029 20450945
    [Google Scholar]
  2. Ahuja N. Katare O.P. Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm 2007 65 1 26 38 10.1016/j.ejpb.2006.07.007 16962750
    [Google Scholar]
  3. Vasconcelos T. Sarmento B. Costa P. ChemInform abstract: Solid dispersions as strategy to improve oral bioavailability of poor water‐soluble drugs. ChemInform 2008 39 25 chin.200825272 10.1002/chin.200825272
    [Google Scholar]
  4. Gaikwad S.S. Mhalaskar R.S. Mahale Y.D. Jain N.P. Review on: Solubility enhancement of poorly water soluble drug. Indo American J Pharma Res 2014 4 11 5530 5541
    [Google Scholar]
  5. Mahapatra A.K. Murthy P.N. Rani E.R. Pallavi Soujanya S. Patra R.K. An updated review on technical advances to enhance dissolution rate of hydrophobic drugs. In: International Research. J Pharm 2012 1 7
    [Google Scholar]
  6. Mishra D.V. Artificial intelligence: The beginning of a new era in pharmacy profession. Asian J Pharm 2018 12 02
    [Google Scholar]
  7. A guide to AI in the pharmaceutical industry. Available from:https://stefanini.com/en/ 2020
  8. Sharma R. AI in pharma: A new perspective. Available from:https://www.expresspharma.in/managementpharma/ai-in-pharma-a-new-perspective 2018
  9. Duch W. Swaminathan K. Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des 2007 13 14 1497 1508 10.2174/138161207780765954 17504169
    [Google Scholar]
  10. Mahapatra A.K. Sameeraja N.H. Murthy P.N. Drug approval process – in United States of America, European Union and India: A review. Appl Clin Res Clin Trials Regul Aff 2014 1 1 13 22 10.2174/2213476X01666140123234357
    [Google Scholar]
  11. Krishnaveni Ch. Artificial intelligence in pharma industry-a review. Inter J Inno Pharma Sci Res 2020 7 10
    [Google Scholar]
  12. Sethuraman N. Artificial intelligence: A new paradigm for pharmaceutical applications in formulations development. Indian J Pharma Edu Res 2020 54 4 843 846 10.5530/ijper.54.4.176
    [Google Scholar]
  13. Bannigan P. Aldeghi M. Bao Z. Häse F. Aspuru-Guzik A. Allen C. Machine learning directed drug formulation development. Adv Drug Deliv Rev 2021 175 113806 10.1016/j.addr.2021.05.016 34019959
    [Google Scholar]
  14. Prusty A. Panda S.K. The revolutionary role of artificial intelligence (AI) in pharmaceutical sciences. Indian J Pharma Edu Res 2024 58 3s s768 s776 10.5530/ijper.58.3s.78
    [Google Scholar]
  15. Liu J. Liu H. Zhang Q. Wang Y. Pan Y. YZS-model: A deep learning approach for solubility prediction using graph convolutional networks and transformers. Available from:https://arxiv.org/abs/2406.19136 2024
  16. Patel S. Kalasariya A. Desai J. Patel M. Patel A. Shah U. Machine learning-based prediction of drug solubility in lipidic environments: The sol_me tool for optimizing lipid-based formulations with a preliminary apalutamide case study. AAPS Pharm Sci Tech 2025 26 2 50 10.1208/s12249‑025‑03051‑5 39900704
    [Google Scholar]
  17. Dawoud M.H.S. Mannaa I.S. Abdel-Daim A. Sweed N.M. Integrating artificial intelligence with quality by design in the formulation of lecithin/chitosan nanoparticles of a poorly water-soluble drug. AAPS PharmSciTech 2023 24 6 169 10.1208/s12249‑023‑02609‑5 37552427
    [Google Scholar]
  18. Revolutionizing drug development: AI-driven solutions for poor solubility and bioavailability. Available from:https://www.patheon.com/us/en/insights-resources/blog/ai-driven-drug-development-for-poor-soubility-and-bioavailability.html 2023
  19. Kyhoiesh H.A.K. Hweidi W.A. Najm M.H. Dawood I.I. Elnaggar A.Y. El Azab I.H. Mahmoud M.H.H. A machine learning-assisted design for adjusting the solubility of ibuprofen-related binary compounds: A data driven approach. New J Chem 2025 49 6421 10.1039/D5NJ00114E
    [Google Scholar]
  20. Ali K.A. Mohin S. Mondal P. Influence of artificial intelligence in modern pharmaceutical formulation and drug development. Futur J Pharm Sci 2024 10 53 10.1186/s43094‑024‑00625‑1
    [Google Scholar]
  21. Vora L.K. Gholap A.D. Jetha K. Thakur R.R.S. Solanki H.K. Chavda V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023 15 7 1916 6 10.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  22. Mukhamediev R.I. Popova Y. Kuchin Y. Zaitseva E. Review of artificial intelligence and machine learning technologies: Classification, restrictions, opportunities and challenges. Mathematics 2022 10 15 2552 10.3390/math10152552
    [Google Scholar]
  23. Boobier S. Osbourn A. Mitchell J.B.O. Can human experts predict solubility better than computers? J Cheminform 2017 9 1 63 10.1186/s13321‑017‑0250‑y 29238891
    [Google Scholar]
  24. Hewitt M. Cronin M.T.D. Enoch S.J. Madden J.C. Roberts D.W. Dearden J.C. In silico prediction of aqueous solubility: The solubility challenge. J Chem Inf Model 2009 49 11 2572 2587 10.1021/ci900286s 19877720
    [Google Scholar]
  25. Klamt A. Eckert F. Hornig M. Beck M.E. Bürger T. Prediction of aqueous solubility of drugs and pesticides with COSMO‐RS. J Comput Chem 2002 23 2 275 281 10.1002/jcc.1168 11924739
    [Google Scholar]
  26. Hornig M. Klamt A. COSMOfrag: A novel tool for high-throughput ADME property prediction and similarity screening based on quantum chemistry. J Chem Inf Model 2005 45 5 1169 1177 10.1021/ci0501948 16180894
    [Google Scholar]
  27. Silva F. Veiga F. Rodrigues S.P.J. Cardoso C. Paiva-Santos A.C. COSMO models for the pharmaceutical development of parenteral drug formulations. Europ J Pharma Biopharm 2023 187 156 165 10.1016/j.ejpb.2023.04.019
    [Google Scholar]
  28. Klimenko K. Kuz’min V. Ognichenko L. Gorb L. Shukla M. Vinas N. Perkins E. Polishchuk P. Artemenko A. Leszczynski J. Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility. J Comput Chem 2016 37 22 2045 2051 10.1002/jcc.24424 27338156
    [Google Scholar]
  29. Cheng T. Li Q. Wang Y. Bryant S.H. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. J Chem Inf Model 2011 51 2 229 236 10.1021/ci100364a 21214224
    [Google Scholar]
  30. DeBoyace K. Wildfong P.L.D. The application of modeling and prediction to the formation and stability of amorphous solid dispersions. J Pharm Sci 2018 107 1 57 74 10.1016/j.xphs.2017.03.029 28389266
    [Google Scholar]
  31. Dong J. Gao H. Ouyang D. Pharm S.D. PharmSD: A novel AI-based computational platform for solid dispersion formulation design. Int J Pharm 2021 604 120705 10.1016/j.ijpharm.2021.120705 33991595
    [Google Scholar]
  32. Lu T. Wu T. Zhong H. Li X. Zhang Y. Yue H. Dai Y. Li H. Ouyang D. Computer-driven formulation development of Ginsenoside Rh2 ternary solid dispersion. Drug Deliv Transl Res 2025 15 2 700 716 10.1007/s13346‑024‑01628‑4 38914874
    [Google Scholar]
  33. Greenhalgh D.J. Williams A.C. Timmins P. York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 1999 88 11 1182 1190 10.1021/js9900856 10564068
    [Google Scholar]
  34. Han R. Xiong H. Ye Z. Yang Y. Huang T. Jing Q. Lu J. Pan H. Ren F. Ouyang D. Predicting physical stability of solid dispersions by machine learning techniques. J Control Release 2019 311-312 16 25 10.1016/j.jconrel.2019.08.030 31465824
    [Google Scholar]
  35. Wang W. Ye Z. Gao H. Ouyang D. Computational pharmaceutics - A new paradigm of drug delivery. J Control Release 2021 338 119 136 10.1016/j.jconrel.2021.08.030 34418520
    [Google Scholar]
  36. Bao Z. Bufton J. Hickman R.J. Aspuru-Guzik A. Bannigan P. Allen C. Revolutionizing drug formulation development: The increasing impact of machine learning. Adv Drug Deliv Rev 2023 202 115108 10.1016/j.addr.2023.115108 37774977
    [Google Scholar]
  37. Dai X. Chen L. Liao Y. Sheng M. Qu Q. Shi Y. Shi X. Formulation design and mechanism study of hydrogel based on computational pharmaceutics theories. J Mol Graph Model 2022 110 108051 1 10.1016/j.jmgm.2021.108051 34715467
    [Google Scholar]
  38. Dong J. Wu Z. Xu H. Ouyang D. FormulationAI: A novel web-based platform for drug formulation design driven by artificial intelligence. Brief Bioinform 2023 25 1 bbad419 10.1093/bib/bbad419 37991246
    [Google Scholar]
  39. Gao H. Jia H. Dong J. Yang X. Li H. Ouyang D. Integrated in silico formulation design of self-emulsifying drug delivery systems. Acta Pharm Sin B 2021 11 11 3585 3594 10.1016/j.apsb.2021.04.017 34900538
    [Google Scholar]
  40. Takayama K. Fujikawa M. Obata Y. Morishita M. Neural network based optimization of drug formulations. Adv Drug Deliv Rev 2003 55 9 1217 1231 10.1016/S0169‑409X(03)00120‑0 12954200
    [Google Scholar]
  41. Khatri P. Shah M.K. Vora N. Formulation strategies for solid oral dosage form using 3D printing technology: A mini-review. J Drug Deliv Sci Technol 2018 46 148 155 10.1016/j.jddst.2018.05.009
    [Google Scholar]
  42. Vaz V.M. Kumar L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech 2021 22 1 49 10.1208/s12249‑020‑01905‑8 33458797
    [Google Scholar]
  43. Mora-Castaño G. Domínguez-Robles J. Himawan A. Millán-Jiménez M. Caraballo I. Current trends in 3D printed gastroretentive floating drug delivery systems: A comprehensive review. Int J Pharm 2024 663 124543 10.1016/j.ijpharm.2024.124543 39094921
    [Google Scholar]
  44. Beck R.C.R. Chaves P.S. Goyanes A. Vukosavljevic B. Buanz A. Windbergs M. Basit A.W. Gaisford S. 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. Int J Pharm 2017 528 1-2 268 279 10.1016/j.ijpharm.2017.05.074 28583328
    [Google Scholar]
  45. Roche A. Sanchez-Ballester N.M. Bataille B. Delannoy V. Soulairol I. Fused deposition modelling 3d printing and solubility improvement of bcs II and IV active ingredients – a narrative review. J Control Release 2024 365 507 520 10.1016/j.jconrel.2023.11.041 38036003
    [Google Scholar]
  46. Fonner D.E. Buck J.R. Banker G.S. Mathematical optimization techniques in drug product design and process analysis. J Pharm Sci 1970 59 11 1587 1596 10.1002/jps.2600591110 5495484
    [Google Scholar]
  47. Kumar M.A. Murthy P.N. Sameeraja N.H. Narayan P.N. Dissolution rate enhancement of entacapone and formulation of its oro- dispersible tablets: Applying statistical design. Indian J Pharma Edu Res 2016 50 4 549 562 10.5530/ijper.50.4.7
    [Google Scholar]
  48. Colbourn E. Lindberg N.O. Use of artificial neural networks and genetic algorithms - experiences from a tablet formulation. Available from:https://www.pharmtech.com/view/use-artificial-neural-networks-and-genetic-algorithms-experiences-tablet-formulation 2004
  49. Schwartz J.B. Flamholz J.R. Press R.H. Computer optimization of pharmaceutical formulations. I. General procedure. J Pharm Sci 1973 62 7 1165 1170 10.1002/jps.2600620722 4714125
    [Google Scholar]
  50. Takahara J. Takayama K. Nagai T. Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations. J Control Release 1997 49 1 11 20 10.1016/S0168‑3659(97)00030‑8
    [Google Scholar]
  51. Taher M Relevance of AI in microbased drug delivery system. In: A Handbook of Artificial Intelligence in Drug Delivery Amsterdam, Netherlands 2023 123 143 978-0-323-89925-3
    [Google Scholar]
  52. Fanda A.K. Jadhav A. Naruka P.S. Rana D. Apremilast amorphous solid dispersions: Formulation optimization using qbd and comprehensive in vitro-in silico assessment. Drug Delivery Lett 2024 14 2 5815 10.2174/0122103031309026240905115815
    [Google Scholar]
  53. Huanbutta Kampanart Burapapadh Kanokporn Kraisit Pakorn Sriamornsak Pornsak Ganokratanaa Thittaporn Suwanpitak Kittipat Sangnim Tanikan Artificial intelligence-driven pharmaceutical industry: A paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. European J Pharma Sci 2024 203 106938 10.1016/j.ejps.2024.106938
    [Google Scholar]
  54. Barmpalexis P. Kanaze F.I. Kachrimanis K. Georgarakis E. Artificial neural networks in the optimization of a nimodipine controlled release tablet formulation. Eur J Pharm Biopharm 2010 74 2 316 323 10.1016/j.ejpb.2009.09.011 19815063
    [Google Scholar]
  55. Barmpalexis Panagiotis Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming. Eur J Pharm Biopharm 2011 77 1 122 131 10.1016/j.ejpb.2010.09.017
    [Google Scholar]
  56. Leonardi D Salomon CJ Development of novel formulations for Chagas’ disease: Optimization of benznidazole chitosan microparticles based on artificial neural networks. Int J Pharm 2009 367 1–2 140 147 10.1016/j.ijpharm.2008.09.036
    [Google Scholar]
  57. Papadimitriou S.A. Barmpalexis P. Karavas E. Bikiaris D.N. Optimizing the ability of PVP/PEG mixtures to be used as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique using artificial neural networks: I. Eur J Pharm Biopharm 2012 82 1 175 186 10.1016/j.ejpb.2012.06.003 22732266
    [Google Scholar]
  58. Medarević D.P. Kleinebudde P. Djuriš J. Djurić Z. Ibrić S. Combined application of mixture experimental design and artificial neural networks in the solid dispersion development. Drug Dev Ind Pharm 2016 42 3 389 402 10.3109/03639045.2015.1054831 26065534
    [Google Scholar]
  59. Damiati S.A. Martini L.G. Smith N.W. Lawrence M.J. Barlow D.J. Application of machine learning in prediction of hydrotrope-enhanced solubilisation of indomethacin. Int J Pharm 2017 530 1-2 99 106 10.1016/j.ijpharm.2017.07.048 28733243
    [Google Scholar]
  60. Barmpalexis P. Koutsidis I. Karavas E. Louka D. Papadimitriou S.A. Bikiaris D.N. Development of PVP/PEG mixtures as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique and optimization of dissolution using artificial neural networks. Eur J Pharm Biopharm 2013 85 3 1219 1231 10.1016/j.ejpb.2013.03.013 23541514
    [Google Scholar]
  61. Pawar P. Wang Y. Keyvan G. Callegari G. Cuitino A. Muzzio F. Enabling real time release testing by NIR prediction of dissolution of tablets made by continuous direct compression (CDC). Int J Pharm 2016 512 1 96 107 10.1016/j.ijpharm.2016.08.033 27543350
    [Google Scholar]
  62. Galata D.L. Farkas A. Könyves Z. Mészáros L.A. Szabó E. Csontos I. Pálos A. Marosi G. Nagy Z.K. Nagy B. Fast, spectroscopy-based prediction of in vitro dissolution profile of extended release tablets using artificial neural networks. Pharmaceutics 2019 11 8 400 10.3390/pharmaceutics11080400 31405029
    [Google Scholar]
  63. Galata D.L. Könyves Z. Nagy B. Novák M. Mészáros L.A. Szabó E. Farkas A. Marosi G. Nagy Z.K. Real-time release testing of dissolution based on surrogate models developed by machine learning algorithms using NIR spectra, compression force and particle size distribution as input data. Int J Pharm 2021 597 120338 10.1016/j.ijpharm.2021.120338 33545285
    [Google Scholar]
  64. Mészáros L.A. Gyürkés M. Varga E. Tacsi K. Honti B. Borbás E. Farkas A. Nagy Z.K. Nagy B. Real-time release testing of in vitro dissolution and blend uniformity in a continuous powder blending process by NIR spectroscopy and machine vision. Eur J Pharm Biopharm 2024 201 114368 10.1016/j.ejpb.2024.114368 38880401
    [Google Scholar]
  65. Sultan T. Rozin E.H. Paul S. Tseng Y.C. Dave V.S. Cetinkaya C. Machine learning modeling for ultrasonic quality attribute assessment of pharmaceutical tablets for continuous manufacturing and real-time release testing. Int J Pharm 2024 655 124049 10.1016/j.ijpharm.2024.124049 38537921
    [Google Scholar]
  66. Vidhya K.S. Sultana A. M N.K. Rangareddy H. Artificial Intelligence’s Impact on Drug Discovery and Development From Bench to Bedside. Cureus 2023 15 10 47486 10.7759/cureus.47486 37881323
    [Google Scholar]
  67. Adir O. Poley M. Chen G. Froim S. Krinsky N. Shklover J. Shainsky-Roitman J. Lammers T. Schroeder A. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv Mater 2020 32 13 1901989 10.1002/adma.201901989 31286573
    [Google Scholar]
  68. Shamay Y. Shah J. Işık M. Mizrachi A. Leibold J. Tschaharganeh D.F. Roxbury D. Budhathoki-Uprety J. Nawaly K. Sugarman J.L. Baut E. Neiman M.R. Dacek M. Ganesh K.S. Johnson D.C. Sridharan R. Chu E.L. Rajasekhar V.K. Lowe S.W. Chodera J.D. Heller D.A. Quantitative self-assembly prediction yields targeted nanomedicines. Nat Mater 2018 17 4 361 368 10.1038/s41563‑017‑0007‑z 29403054
    [Google Scholar]
  69. Das K.P. J C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Front Med Technol 2023 4 1067144 10.3389/fmedt.2022.1067144 36688144
    [Google Scholar]
  70. Alshahrani S.M. Alotaibi H.F. Alqarni M. Modeling and validation of drug release kinetics using hybrid method for prediction of drug efficiency and novel formulations. Front Chem 2024 12 1395359 10.3389/fchem.2024.1395359 38974990
    [Google Scholar]
  71. Ganju E. Gupta B.K. Artificial intelligence and machine learning applied interpretation and analysis of optimization study and in-vitro release of formulated curcumin loaded nanoparticles. J Coast Life Med 2023 11 660 674
    [Google Scholar]
  72. D’Arcy D.M. Persoons T. Mechanistic modelling and mechanistic monitoring: Simulation and shadowgraph imaging of particulate dissolution in the flow-through apparatus. J Pharm Sci 2011 100 3 1102 1115 10.1002/jps.22337 20848646
    [Google Scholar]
  73. Taseva A.R. Persoons T. D’Arcy D.M. Application of an AI image analysis and classification approach to characterise dissolution and precipitation events in the flow through apparatus. Eur J Pharm Biopharm 2023 189 36 47 10.1016/j.ejpb.2023.04.020 37120067
    [Google Scholar]
  74. Roggo Y. Jelsch M. Heger P. Ensslin S. Krumme M. Deep learning for continuous manufacturing of pharmaceutical solid dosage form. Eur J Pharm Biopharm 2020 153 95 105 10.1016/j.ejpb.2020.06.002 32535045
    [Google Scholar]
  75. Ganesh S. Su Q. Vo L.B.D. Pepka N. Rentz B. Vann L. Yazdanpanah N. O’Connor T. Nagy Z.K. Reklaitis G.V. Design of condition-based maintenance framework for process operations management in pharmaceutical continuous manufacturing. Int J Pharm 2020 587 119621 10.1016/j.ijpharm.2020.119621 32663581
    [Google Scholar]
  76. Huang Z. Denti P. Mistry H. Kloprogge F. Machine learning and artificial intelligence in PK‐PD modeling: Fad, friend, or foe? Clin Pharmacol Ther 2024 115 4 652 654 10.1002/cpt.3165 38179832
    [Google Scholar]
  77. Gao H. Wang W. Dong J. Ye Z. Ouyang D. An integrated computational methodology with data-driven machine learning, molecular modeling and PBPK modeling to accelerate solid dispersion formulation design. Eur J Pharm Biopharm 2021 158 336 346 10.1016/j.ejpb.2020.12.001 33301864
    [Google Scholar]
  78. Sager J.E. Yu J. Ragueneau-Majlessi I. Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: A systematic review of published models, applications, and model verification. Drug Metab Dispos 2015 43 11 1823 1837 10.1124/dmd.115.065920 26296709
    [Google Scholar]
  79. Poulin P. Jones R.D.O. Jones H.M. Gibson C.R. Rowland M. Chien J.Y. Ring B.J. Adkison K.K. Ku M.S. He H. Vuppugalla R. Marathe P. Fischer V. Dutta S. Sinha V.K. Björnsson T. Lavé T. Yates J.W.T. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: Prediction of plasma concentration–time profiles in human by using the physiologically‐based pharmacokinetic modeling approach. J Pharm Sci 2011 100 10 4127 4157 10.1002/jps.22550 21541937
    [Google Scholar]
  80. Jamei M. Marciniak S. Feng K. Barnett A. Tucker G. Rostami-Hodjegan A. The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol 2009 5 2 211 223 10.1517/17425250802691074 19199378
    [Google Scholar]
  81. Vijayan R.S.K. Kihlberg J. Cross J.B. Poongavanam V. Enhancing preclinical drug discovery with artificial intelligence. Drug Discov Today 2022 27 4 967 984 10.1016/j.drudis.2021.11.023 34838731
    [Google Scholar]
  82. Kosugi Y. Hosea N. Prediction of oral pharmacokinetics using a combination of in silico descriptors and in vitro adme properties. Mol Pharm 2021 18 3 1071 1079 10.1021/acs.molpharmaceut.0c01009 33512165
    [Google Scholar]
  83. Formulation P. Harnessing AI to speed up drug formulation. Available from:https://www.merckgroup.com/en/research/science-space/envisioning-tomorrow/precision-medicine/harnessing-ai-to-speed-up-drug-formulation.html 2018
  84. Luo L. Thakral N.K. Schwabe R. Li L. Chen S. Using tiny-TIM dissolution and in silico simulation to accelerate oral product development of a BCS class II compound. AAPS PharmSciTech 2022 23 6 185 10.1208/s12249‑022‑02343‑4 35778639
    [Google Scholar]
  85. Konagurthu S. AI-driven drug development for poor solubility and bioavailability. Available from:https://www.patheon.com/us/en/insights-resources/blog/ai-driven-drug-development-for-poor-soubility-and-bioavailability.html 2024
  86. Staff M. Moderna and openai collaborate to advance mRNA medicine. Available from:https://investors.modernatx.com/news/news-details/2024/Moderna-and-OpenAI-Collaborate-To-Advance-mRNA-Medicine/default.aspx 2024
  87. Staff R. Sanofi partners with openai, formation bio on AI-driven drug development. Available from:https://www.reuters.com/business/healthcare-pharmaceuticals/sanofi-partners-with-openai-formation-bio-ai-driven-drug-development-2024-05-21/ 2024
  88. Sanofi partners with OpenAI. Available from:https://investors.exscientia.ai/press-releases/press-release-details/2024/Exscientia-Launches-AWS-AI-powered-Platform-to-Advance-Drug-Discovery/default.aspx 2024
  89. Evans M. CSL taps AI to power drug development. Available from:https://www.proactiveinvestors.com.au/companies/news/1055325/csl-taps-ai-to-power-drug-development-1055325.html 2024
  90. Data science & artificial intelligence: Unlocking new science insights. Available from:https://www.astrazeneca.com/r-d/data-science-and-ai.html 2024
  91. Coulter M. Nvidia-backed AI firm Iambic unveils drug discovery “breakthrough”. Available from:https://www.reuters.com/technology/artificial-intelligence/nvidia-backed-ai-firm-iambic-unveils-drug-discovery-breakthrough-2024-10-29/ 2024
  92. Murgia M. Morris S. AI-developed drug will be in trials by year-end, says Google’s Hassabis. Available from:https://www.ft.com/content/41b51d07-0754-4ffd-a8f9-737e1b1f0c2e 2025
  93. Palmer D.S. Mitchell J.B.O. Is experimental data quality the limiting factor in predicting the aqueous solubility of druglike molecules? Mol Pharm 2014 11 8 2962 2972 10.1021/mp500103r 24919008
    [Google Scholar]
  94. Sorkun M.C. Koelman J.M.V.A. Er S. Pushing the limits of solubility prediction via quality-oriented data selection. iScience 2021 24 1 101961 10.1016/j.isci.2020.101961 33437941
    [Google Scholar]
  95. Meng J. Chen P. Wahib M. Yang M. Zheng L. Wei Y. Feng S. Liu W. Boosting the predictive performance with aqueous solubility dataset curation. Sci Data 2022 9 1 71 10.1038/s41597‑022‑01154‑3 35241693
    [Google Scholar]
  96. Alizadehsani Roohallah Oyelere Solomon Sunday Hussain Sadiq Jagatheesaperumal Senthil Kumar Calixto Rene Ripardo Rahouti Mohamed Roshanzamir Mohamad de Albuquerque Victor Hugo C. Explainable artificial intelligence for drug discovery and development: A comprehensive survey. IEEE Access 2024 12 35796 35812 10.1109/ACCESS.2024.3373195
    [Google Scholar]
  97. Klamt A. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J Phys Chem 1995 99 7 2224 2235 10.1021/j100007a062
    [Google Scholar]
  98. Baş D. Boyacı İ.H. Modeling and optimization I: Usability of response surface methodology. J Food Eng 2007 78 3 836 845 10.1016/j.jfoodeng.2005.11.024
    [Google Scholar]
  99. Cherkasov A. Muratov E.N. Fourches D. Varnek A. Baskin I.I. Cronin M. Dearden J. Gramatica P. Martin Y.C. Todeschini R. Consonni V. Kuz’min V.E. Cramer R. Benigni R. Yang C. Rathman J. Terfloth L. Gasteiger J. Richard A. Tropsha A. QSAR modeling: Where have you been? Where are you going to? J Med Chem 2014 57 12 4977 5010 10.1021/jm4004285 24351051
    [Google Scholar]
  100. LeCun Y. Bengio Y. Hinton G. Deep learning. Nature 2015 521 7553 436 444 10.1038/nature14539 26017442
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775393525250728070925
Loading
/content/journals/cdrr/10.2174/0125899775393525250728070925
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test