Skip to content
2000
image of Role of Antioxidants in Diseases and its Impact on Mitochondria with A Focus on Diabetes: An Overview

Abstract

Introduction

This review focuses on the various natural and synthetic antioxidants which affect cellular signalling and mitochondrial dynamics for managing diabetes and its complications including other variety of diseases or traumas.

Methods

Information in the current review was gathered from electronic scientific resources like google scholar, science direct, springer link and the PubMed website using the Boolean Method and a variety of keywords.

Results

The results of the present study revealed that a number of 110 antioxidants have been identified to improve mitochondrial health, offering potential treatments for diabetes and a spectrum of other diseases. Naturally occurring antioxidants such as polyphenols and flavonoids present in fruits and plants, have demonstrated the ability to attenuate oxidative stress and enhance mitochondrial performance thereby helps in the management of diabetes and various other health complications. From among the polyphenol’s resveratrol, mitoQ, quercetin and curcumin has been discussed in the review.

Discussion

The analysis indicates a strong correlation between antioxidant activity and mitochondrial function, underscoring their role in disease prevention and therapy. These antioxidants not only reduce oxidative damage but also regulate signalling pathways involved in inflammation and energy metabolism. Their dual action makes them promising agents in managing diabetes and potentially other chronic diseases.

Conclusion

The conclusion offers a concise yet comprehensive overview for researchers and industries in highlighting the therapeutic promise of antioxidant interventions in addressing diverse health conditions through enhanced mitochondrial function.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775370658250713030329
2025-07-23
2025-09-05
Loading full text...

Full text loading...

References

  1. Aloke C. Egwu C.O. Aja P.M. Current advances in the management of diabetes mellitus. Biomedicines 2022 10 10 2436 10.3390/biomedicines10102436 36289697
    [Google Scholar]
  2. Tie F. Wang J. Liang Y. Proanthocyanidins ameliorated deficits of lipid metabolism in type 2 diabetes mellitus via inhibiting adipogenesis and improving mitochondrial function. Int. J. Mol. Sci. 2020 21 6 2029 10.3390/ijms21062029 32188147
    [Google Scholar]
  3. Khan M.A.B. Hashim M.J. King J.K. Govender R.D. Mustafa H. Al Kaabi J. Epidemiology of type 2 diabetes - Global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 2019 10 1 107 111 10.2991/jegh.k.191028.001 32175717
    [Google Scholar]
  4. IDF diabetes atlas 2025 Available from:https://diabetesatlas.org/
  5. Mazidi M. Kengne A.P. Katsiki N. Mikhailidis D.P. Banach M. Lipid accumulation product and triglycerides/glucose index are useful predictors of insulin resistance. J. Diabetes Complications 2018 32 3 266 270 10.1016/j.jdiacomp.2017.10.007 29395839
    [Google Scholar]
  6. Kelley D.E. He J. Menshikova E.V. Ritov V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002 51 10 2944 2950 10.2337/diabetes.51.10.2944 12351431
    [Google Scholar]
  7. Forman H.J. Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021 20 9 689 709 10.1038/s41573‑021‑00233‑1 34194012
    [Google Scholar]
  8. Badawi A. Klip A. Haddad P. Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention. Diabetes Metab. Syndr. Obes. 2010 3 173 186 10.2147/DMSO.S9089 21437087
    [Google Scholar]
  9. Darenskaya M.A. Kolesnikova L.I. Kolesnikov S.I. Oxidative stress: Pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull. Exp. Biol. Med. 2021 171 2 179 189 10.1007/s10517‑021‑05191‑7 34173093
    [Google Scholar]
  10. Luc K. Schramm-Luc A. Guzik T.J. Mikolajczyk T.P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019 70 6 809 824 10.26402/jpp.2019.6.01 32084643
    [Google Scholar]
  11. Sasso F.C. Salvatore T. Tranchino G. Cochlear dysfunction in type 2 diabetes: A complication independent of neuropathy and acute hyperglycemia. Metabolism 1999 48 11 1346 1350 10.1016/S0026‑0495(99)90141‑5 10582539
    [Google Scholar]
  12. Yousef H. Khandoker A.H. Feng S.F. Helf C. Jelinek H.F. Inflammation, oxidative stress and mitochondrial dysfunction in the progression of type II diabetes mellitus with coexisting hypertension. Front. Endocrinol. 2023 14 1173402 10.3389/fendo.2023.1173402 37383391
    [Google Scholar]
  13. Sasso F.C. Simeon V. Galiero R. The number of risk factors not at target is associated with cardiovascular risk in a type 2 diabetic population with albuminuria in primary cardiovascular prevention. Post-hoc analysis of the NID-2 trial. Cardiovasc. Diabetol. 2022 21 1 235 10.1186/s12933‑022‑01674‑7 36344978
    [Google Scholar]
  14. Ernster L. Schatz G. Mitochondria: A historical review. J. Cell Biol. 1981 91 3 227s 255s 10.1083/jcb.91.3.227s 7033239
    [Google Scholar]
  15. Giacco F. Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010 107 9 1058 1070 10.1161/CIRCRESAHA.110.223545 21030723
    [Google Scholar]
  16. Torres M. Mitogen-activated protein kinase pathways in redox signaling. Front. Biosci. 2003 8 4 999 10.2741/999 12456373
    [Google Scholar]
  17. Lanner J.T. Katz A. Tavi P. The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle. Diabetes 2006 55 7 2077 2083 10.2337/db05‑1613 16804078
    [Google Scholar]
  18. Cruz C.M. Rinna A. Forman H.J. Ventura A.L.M. Persechini P.M. Ojcius D.M. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem. 2007 282 5 2871 2879 10.1074/jbc.M608083200 17132626
    [Google Scholar]
  19. Heller A. Brockhoff G. Goepferich A. Targeting drugs to mitochondria. Eur. J. Pharm. Biopharm. 2012 82 1 1 18 10.1016/j.ejpb.2012.05.014 22687572
    [Google Scholar]
  20. Karunanidhi P. Verma N. Kumar D.N. Agrawal A.K. Singh S. Triphenylphosphonium functionalized Ficus religiosa L. extract loaded nanoparticles improve the mitochondrial function in oxidative stress induced diabetes. AAPS PharmSciTech 2021 22 5 158 10.1208/s12249‑021‑02016‑8 34009603
    [Google Scholar]
  21. Xu Y. Nie L. Yin Y.G. Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol. Appl. Pharmacol. 2012 259 3 395 401 10.1016/j.taap.2011.09.028 22015446
    [Google Scholar]
  22. Rashedinia M. Khoshnoud M.J. Fahlyan B. Hashemi S.S. Alimohammadi M. Sabahi Z. Syringic acid: A potential natural compound for the management of renal oxidative stress and mitochondrial biogenesis in diabetic rats. Curr. Drug Discov. Technol. 2021 18 3 405 413 10.2174/1570163817666200211101228 32072913
    [Google Scholar]
  23. Maechler P. Mitochondrial function and insulin secretion. Mol. Cell. Endocrinol. 2013 379 1-2 12 18 10.1016/j.mce.2013.06.019 23792187
    [Google Scholar]
  24. Wollheim CB Maechler P β-cell mitochondria and insulin secretion: Messenger role of nucleotides and metabolites. Diabetes 2002 51 Suppl. 1 S37 S42 10.2337/diabetes.51.2007.S37 11815456
    [Google Scholar]
  25. Gibellini L. Bianchini E. De Biasi S. Nasi M. Cossarizza A. Pinti M. Natural compounds modulating mitochondrial functions. Evid. Based Complement. Alternat. Med. 2015 2015 1 13 10.1155/2015/527209 26167193
    [Google Scholar]
  26. Mootha V.K. Lindgren C.M. Eriksson K.F. PGC-1-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003 34 3 267 273 10.1038/ng1180 12808457
    [Google Scholar]
  27. Patti M.E. Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr. Rev. 2010 31 3 364 395 10.1210/er.2009‑0027 20156986
    [Google Scholar]
  28. Morino K. Petersen K.F. Shulman G.I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 2006 55 Suppl. 2 S9 S15 10.2337/db06‑S002 17130651
    [Google Scholar]
  29. Liang P. Hughes V. Fukagawa N.K. Increased prevalence of mitochondrial DNA deletions in skeletal muscle of older individuals with impaired glucose tolerance: Possible marker of glycemic stress. Diabetes 1997 46 5 920 924 10.2337/diab.46.5.920 9133566
    [Google Scholar]
  30. Samocha-Bonet D. Debs S. Greenfield J.R. Prevention and treatment of type 2 diabetes: A pathophysiological-based approach. Trends Endocrinol. Metab. 2018 29 6 370 379 10.1016/j.tem.2018.03.014 29665986
    [Google Scholar]
  31. Zorzano A. Liesa M. Palacín M. Mitochondrial dynamics as a bridge between mitochondrial dysfunction and insulin resistance. Arch. Physiol. Biochem. 2009 115 1 1 12 10.1080/13813450802676335 19267277
    [Google Scholar]
  32. Diaz-Morales N. Rovira-Llopis S. Bañuls C. Are mitochondrial fusion and fission impaired in leukocytes of type 2 diabetic patients? Antioxid. Redox Signal. 2016 25 2 108 115 10.1089/ars.2016.6707 27043041
    [Google Scholar]
  33. Paltauf-Doburzynska J. Malli R. Graier W.F. Hyperglycemic conditions affect shape and Ca2+ homeostasis of mitochondria in endothelial cells. J. Cardiovasc. Pharmacol. 2004 44 4 423 436 10.1097/01.fjc.0000139449.64337.1b 15454850
    [Google Scholar]
  34. Yu T. Sheu S.S. Robotham J.L. Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc. Res. 2008 79 2 341 351 10.1093/cvr/cvn104 18440987
    [Google Scholar]
  35. Vanhorebeek I. De Vos R. Mesotten D. Wouters P.J. De Wolf-Peeters C. Van den Berghe G. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 2005 365 9453 53 59 10.1016/S0140‑6736(04)17665‑4 15639679
    [Google Scholar]
  36. Choo H.J. Kim J.H. Kwon O.B. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 2006 49 4 784 791 10.1007/s00125‑006‑0170‑2 16501941
    [Google Scholar]
  37. Monaco C.M.F. Hughes M.C. Ramos S.V. Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia 2018 61 6 1411 1423 10.1007/s00125‑018‑4602‑6 29666899
    [Google Scholar]
  38. Fosslien E. Mitochondrial medicine - Molecular pathology of defective oxidative phosphorylation. Ann. Clin. Lab. Sci. 2001 31 1 25 67 [PMID: 11314862
    [Google Scholar]
  39. Ferreira R. Guerra G. Padrão A.I. Lipidomic characterization of streptozotocin-induced heart mitochondrial dysfunction. Mitochondrion 2013 13 6 762 771 10.1016/j.mito.2013.05.001 23665486
    [Google Scholar]
  40. Jenkins A.J. Carroll L.M. Huang M.L.H. Mitochondrial DNA copy number in adults with and without Type 1 diabetes. Diabetes Res. Clin. Pract. 2023 203 110877 10.1016/j.diabres.2023.110877 37579994
    [Google Scholar]
  41. Canet F. Díaz-Pozo P. Luna-Marco C. Mitochondrial redox impairment and enhanced autophagy in peripheral blood mononuclear cells from type 1 diabetic patients. Redox Biol. 2022 58 102551 10.1016/j.redox.2022.102551 36455476
    [Google Scholar]
  42. Chen J. Chernatynskaya A.V. Li J.W. T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci. Rep. 2017 7 1 10835 10.1038/s41598‑017‑11056‑9 28883439
    [Google Scholar]
  43. Rosca M.G. Mustata T.G. Kinter M.T. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am. J. Physiol. Renal Physiol. 2005 289 2 F420 F430 10.1152/ajprenal.00415.2004 15814529
    [Google Scholar]
  44. Raza H. Prabu S.K. John A. Avadhani N.G. Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2011 12 5 3133 3147 10.3390/ijms12053133 21686174
    [Google Scholar]
  45. Bugger H. Chen D. Riehle C. Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes 2009 58 9 1986 1997 10.2337/db09‑0259 19542201
    [Google Scholar]
  46. Makino A. Scott B.T. Dillmann W.H. Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia 2010 53 8 1783 1794 10.1007/s00125‑010‑1770‑4 20461356
    [Google Scholar]
  47. Vazquez E.J. Berthiaume J.M. Kamath V. Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart. Cardiovasc. Res. 2015 107 4 453 465 10.1093/cvr/cvv183 26101264
    [Google Scholar]
  48. Tocchetti C.G. Stanley B.A. Sivakumaran V. Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes. Clin. Sci. (Lond.) 2015 129 7 561 574 10.1042/CS20150204 26186741
    [Google Scholar]
  49. Zhong Q. Kowluru R.A. Diabetic retinopathy and damage to mitochondrial structure and transport machinery. Invest. Ophthalmol. Vis. Sci. 2011 52 12 8739 8746 10.1167/iovs.11‑8045 22003103
    [Google Scholar]
  50. Tewari S. Santos J.M. Kowluru R.A. Damaged mitochondrial DNA replication system and the development of diabetic retinopathy. Antioxid. Redox Signal. 2012 17 3 492 504 10.1089/ars.2011.4333 22229649
    [Google Scholar]
  51. Pham T. Loiselle D. Power A. Hickey A.J.R. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am. J. Physiol. Cell Physiol. 2014 307 6 C499 C507 10.1152/ajpcell.00006.2014 24920675
    [Google Scholar]
  52. Chen J. Stimpson S.E. Fernandez-Bueno G.A. Mathews C.E. Mitochondrial reactive oxygen species and type 1 diabetes. Antioxid. Redox Signal. 2018 29 14 1361 1372 10.1089/ars.2017.7346 29295631
    [Google Scholar]
  53. Karakelides H. Asmann Y.W. Bigelow M.L. Effect of insulin deprivation on muscle mitochondrial ATP production and gene transcript levels in type 1 diabetic subjects. Diabetes 2007 56 11 2683 2689 10.2337/db07‑0378 17660267
    [Google Scholar]
  54. Baseler W.A. Dabkowski E.R. Jagannathan R. Reversal of mitochondrial proteomic loss in Type 1 diabetic heart with overexpression of phospholipid hydroperoxide glutathione peroxidase. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013 304 7 R553 R565 10.1152/ajpregu.00249.2012 23408027
    [Google Scholar]
  55. Guo Y. Yu W. Sun D. A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: Role of AMPK-regulated autophagy. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 2 319 331 10.1016/j.bbadis.2014.05.017 24874076
    [Google Scholar]
  56. Vadvalkar S.S. Matsuzaki S. Eyster C.A. Decreased mitochondrial pyruvate transport activity in the diabetic heart: Role of mitochondrial pyruvate carrier 2 (MPC2) acetylation. J. Biol. Chem. 2017 292 11 4423 4433 10.1074/jbc.M116.753509 28154187
    [Google Scholar]
  57. Blake R. Trounce I.A. Mitochondrial dysfunction and complications associated with diabetes. Biochim. Biophys. Acta, Gen. Subj. 2014 1840 4 1404 1412 10.1016/j.bbagen.2013.11.007 24246956
    [Google Scholar]
  58. Poljsak B. Šuput D. Milisav I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 2013 2013 1 11 10.1155/2013/956792 23738047
    [Google Scholar]
  59. Nita M. Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev. 2016 2016 1 3164734 10.1155/2016/3164734 26881021
    [Google Scholar]
  60. Ames B.N. Shigenaga M.K. Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993 90 17 7915 7922 10.1073/pnas.90.17.7915 8367443
    [Google Scholar]
  61. Dong K. Ni H. Wu M. Tang Z. Halim M. Shi D. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes. Biochem. Biophys. Res. Commun. 2016 476 4 204 211 10.1016/j.bbrc.2016.05.087 27207834
    [Google Scholar]
  62. Victor V.M. Rocha M. Herance R. Hernandez-Mijares A. Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr. Pharm. Des. 2011 17 36 3947 3958 10.2174/138161211798764915 22188447
    [Google Scholar]
  63. Lamb R.E. Goldstein B.J. Modulating an oxidative-inflammatory cascade: Potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int. J. Clin. Pract. 2008 62 7 1087 1095 10.1111/j.1742‑1241.2008.01789.x 18489578
    [Google Scholar]
  64. Zhou M. Konigsberg W.H. Hao C. Pan Y. Sun J. Wang X. Bioactivity and mechanisms of flavonoids in decreasing insulin resistance. J. Enzyme Inhib. Med. Chem. 2023 38 1 2199168 10.1080/14756366.2023.2199168 37036026
    [Google Scholar]
  65. Goldstein B.J. Mahadev K. Wu X. Redox Paradox. Diabetes 2005 54 2 311 321 10.2337/diabetes.54.2.311 15677487
    [Google Scholar]
  66. McClung J.P. Roneker C.A. Mu W. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc. Natl. Acad. Sci. USA 2004 101 24 8852 8857 10.1073/pnas.0308096101 15184668
    [Google Scholar]
  67. Schulz T.J. Zarse K. Voigt A. Urban N. Birringer M. Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 2007 6 4 280 293 10.1016/j.cmet.2007.08.011 17908557
    [Google Scholar]
  68. Fukagawa N.K. Li M. Liang P. Russell J.C. Sobel B.E. Absher P.M. Aging and high concentrations of glucose potentiate injury to mitochondrial DNA. Free Radic. Biol. Med. 1999 27 11-12 1437 1443 10.1016/S0891‑5849(99)00189‑6 10641738
    [Google Scholar]
  69. Mootha V.K. Handschin C. Arlow D. Erralpha and Gabpa/b specify PGC-1-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl. Acad. Sci. USA 2004 101 17 6570 6575 10.1073/pnas.0401401101 15100410
    [Google Scholar]
  70. Chung S.S.M. Ho E.C.M. Lam K.S.L. Chung S.K. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol. 2003 14 8 Suppl. 3 S233 S236 10.1097/01.ASN.0000077408.15865.06 12874437
    [Google Scholar]
  71. Lee A.W. Chung S.S.M. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 1999 13 1 23 30 10.1096/fasebj.13.1.23 9872926
    [Google Scholar]
  72. Kador P.F. Kinoshita J.H. Role of aldose reductase in the development of diabetes-associated complications. Am. J. Med. 1985 79 5 8 12 10.1016/0002‑9343(85)90504‑2 3934965
    [Google Scholar]
  73. Yabe-Nishimura C. Aldose reductase in glucose toxicity: A potential target for the prevention of diabetic complications. Pharmacol. Rev. 1998 50 1 21 33 10.1016/S0031‑6997(24)01347‑4 9549756
    [Google Scholar]
  74. González R.G. Barnett P. Aguayo J. Cheng H.M. Chylack L.T. Direct measurement of polyol pathway activity in the ocular lens. Diabetes 1984 33 2 196 199 10.2337/diab.33.2.196 6692996
    [Google Scholar]
  75. Fantus I.G. The pathogenesis of the chronic complications of diabetes mellitus. Endocrinol Rounds 2002 2 1 8
    [Google Scholar]
  76. Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int. 2000 58 S3 S12 10.1046/j.1523‑1755.2000.07702.x 10997684
    [Google Scholar]
  77. Yan L.J. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J. Diabetes Res. 2014 2014 1 11 10.1155/2014/137919 25019091
    [Google Scholar]
  78. Williamson J.R. Chang K. Frangos M. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 1993 42 6 801 813 10.2337/diab.42.6.801 8495803
    [Google Scholar]
  79. Treberg J.R. Quinlan C.L. Brand M.D. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J. Biol. Chem. 2011 286 31 27103 27110 10.1074/jbc.M111.252502 21659507
    [Google Scholar]
  80. Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009 417 1 1 13 10.1042/BJ20081386 19061483
    [Google Scholar]
  81. Cooper J.M. Mann V.M. Krige D. Schapira A.H.V. Human mitochondrial complex I dysfunction. Biochim. Biophys. Acta Bioenerg. 1992 1101 2 198 203 10.1016/0005‑2728(92)90224‑P 1633185
    [Google Scholar]
  82. Hirst J. King M.S. Pryde K.R. The production of reactive oxygen species by complex I. Biochem. Soc. Trans. 2008 36 5 976 980 10.1042/BST0360976 18793173
    [Google Scholar]
  83. Turrens J.F. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 1997 17 1 3 8 10.1023/A:1027374931887 9171915
    [Google Scholar]
  84. Turrens J.F. Alexandre A. Lehninger A.L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 1985 237 2 408 414 10.1016/0003‑9861(85)90293‑0 2983613
    [Google Scholar]
  85. Laustsen C. Nielsen P.M. Nørlinger T.S. Antioxidant treatment attenuates lactate production in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 2017 312 1 F192 F199 10.1152/ajprenal.00148.2016 28069660
    [Google Scholar]
  86. Yan L.J. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2014 2 165 169 10.1016/j.redox.2014.01.002 25460727
    [Google Scholar]
  87. Mathebula S.D. Polyol pathway: A possible mechanism of diabetes complications in the eye. Afr. Vision Eye Health 2015 74 1 5 10.4102/aveh.v74i1.13
    [Google Scholar]
  88. Nedić O Rattan SIS Grune T Trougakos IP Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology Free Radical Research 2013 47 sup1 28 38 10.3109/10715762.2013.806798 23692178
    [Google Scholar]
  89. Ahmed N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 2005 67 1 3 21 10.1016/j.diabres.2004.09.004 15620429
    [Google Scholar]
  90. Goldin A. Beckman J.A. Schmidt A.M. Creager M.A. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation 2006 114 6 597 605 10.1161/CIRCULATIONAHA.106.621854 16894049
    [Google Scholar]
  91. Ola M.S. Nawaz M.I. Siddiquei M.M. Al-Amro S. Abu El-Asrar A.M. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J. Diabetes Complications 2012 26 1 56 64 10.1016/j.jdiacomp.2011.11.004 22226482
    [Google Scholar]
  92. Naudi A. Jove M. Ayala V. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp. Diabetes Res. 2012 2012 1 14 10.1155/2012/696215 22253615
    [Google Scholar]
  93. Geraldes P. Hiraoka-Yamamoto J. Matsumoto M. Activation of PKC- and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat. Med. 2009 15 11 1298 1306 10.1038/nm.2052 19881493
    [Google Scholar]
  94. Inoguchi T. Battan R. Handler E. Sportsman J.R. Heath W. King G.L. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc. Natl. Acad. Sci. USA 1992 89 22 11059 11063 10.1073/pnas.89.22.11059 1438315
    [Google Scholar]
  95. Craven P.A. Davidson C.M. DeRubertis F.R. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 1990 39 6 667 674 10.2337/diab.39.6.667 2347431
    [Google Scholar]
  96. Sayeski P.P. Kudlow J.E. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor- gene transcription. J. Biol. Chem. 1996 271 25 15237 15243 10.1074/jbc.271.25.15237 8663078
    [Google Scholar]
  97. Kolm-Litty V. Sauer U. Nerlich A. Lehmann R. Schleicher E.D. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest. 1998 101 1 160 169 10.1172/JCI119875 9421478
    [Google Scholar]
  98. Chen Y.Q. Su M. Walia R.R. Hao Q. Covington J.W. Vaughan D.E. Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J. Biol. Chem. 1998 273 14 8225 8231 10.1074/jbc.273.14.8225 9525928
    [Google Scholar]
  99. Du X.L. Edelstein D. Rossetti L. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA 2000 97 22 12222 12226 10.1073/pnas.97.22.12222 11050244
    [Google Scholar]
  100. Yamagishi S. Edelstein D. Du X. Brownlee M. Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction. Diabetes 2001 50 6 1491 1494 10.2337/diabetes.50.6.1491 11375352
    [Google Scholar]
  101. Hart G.W. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu. Rev. Biochem. 1997 66 1 315 335 10.1146/annurev.biochem.66.1.315 9242909
    [Google Scholar]
  102. Musicki B. Kramer M.F. Becker R.E. Burnett A.L. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O -GlcNAc in diabetes-associated erectile dysfunction. Proc. Natl. Acad. Sci. USA 2005 102 33 11870 11875 10.1073/pnas.0502488102 16085713
    [Google Scholar]
  103. Akimoto Y. Kreppel L.K. Hirano H. Hart G.W. Hyperglycemia and the O-GlcNAc transferase in rat aortic smooth muscle cells: Elevated expression and altered patterns of O-GlcNAcylation. Arch. Biochem. Biophys. 2001 389 2 166 175 10.1006/abbi.2001.2331 11339805
    [Google Scholar]
  104. Schieber M. Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014 24 10 R453 R462 10.1016/j.cub.2014.03.034 24845678
    [Google Scholar]
  105. Perseghin G. Scifo P. De Cobelli F. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999 48 8 1600 1606 10.2337/diabetes.48.8.1600 10426379
    [Google Scholar]
  106. Summers S. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res. 2006 45 1 42 72 10.1016/j.plipres.2005.11.002 16445986
    [Google Scholar]
  107. Samuel V.T. Liu Z.X. Wang A. Inhibition of protein kinase C prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 2007 117 3 739 745 10.1172/JCI30400 17318260
    [Google Scholar]
  108. Jornayvaz F.R. Birkenfeld A.L. Jurczak M.J. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proc. Natl. Acad. Sci. USA 2011 108 14 5748 5752 10.1073/pnas.1103451108 21436037
    [Google Scholar]
  109. Sokolowska E. Blachnio-Zabielska A. The role of ceramides in insulin resistance. Front. Endocrinol. 2019 10 577 10.3389/fendo.2019.00577 31496996
    [Google Scholar]
  110. Tóbon-Velasco J. Cuevas E. Torres-Ramos M. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol. Disord. Drug Targets 2014 13 9 1615 1626 10.2174/1871527313666140806144831 25106630
    [Google Scholar]
  111. El-Mesallamy H.O. Hamdy N.M. Ezzat O.A. Reda A.M. Levels of soluble advanced glycation end product-receptors and other soluble serum markers as indicators of diabetic neuropathy in the foot. J. Investig. Med. 2011 59 8 1233 1238 10.2310/JIM.0b013e318231db64 21941211
    [Google Scholar]
  112. Gao X. Zhang H. Schmidt A.M. Zhang C. AGE/RAGE produces endothelial dysfunction in coronary arterioles in Type 2 diabetic mice. Am. J. Physiol. Heart Circ. Physiol. 2008 295 2 H491 H498 10.1152/ajpheart.00464.2008 18539754
    [Google Scholar]
  113. Oguntibeju O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019 11 3 45 63 [PMID: 31333808
    [Google Scholar]
  114. Inagaki Y. Yamagishi S. Okamoto T. Takeuchi M. Amano S. Pigment epithelium-derived factor prevents advanced glycation end products-induced monocyte chemoattractant protein-1 production in microvascular endothelial cells by suppressing intracellular reactive oxygen species generation. Diabetologia 2003 46 2 284 287 10.1007/s00125‑002‑1013‑4 12627328
    [Google Scholar]
  115. Yamagishi S. Matsui T. Nakamura K. Olmesartan blocks inflammatory reactions in endothelial cells evoked by advanced glycation end products by suppressing generation of reactive oxygen species. Ophthalmic Res. 2008 40 1 10 15 10.1159/000111152 18025836
    [Google Scholar]
  116. Maynard S. Schurman S.H. Harboe C. de Souza-Pinto N.C. Bohr V.A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2008 30 1 2 10 10.1093/carcin/bgn250 18978338
    [Google Scholar]
  117. Tavares A.M. Silva J.H. Bensusan C.O. Altered superoxide dismutase-1 activity and intercellular adhesion molecule 1 (ICAM-1) levels in patients with type 2 diabetes mellitus. PLoS One 2019 14 5 e0216256 10.1371/journal.pone.0216256 31042755
    [Google Scholar]
  118. Fujita H. Sakamoto T. Komatsu K. Reduction of circulating superoxide dismutase activity in type 2 diabetic patients with microalbuminuria and its modulation by telmisartan therapy. Hypertens. Res. 2011 34 12 1302 1308 10.1038/hr.2011.127 21814206
    [Google Scholar]
  119. Gawlik K. Naskalski J.W. Fedak D. Markers of antioxidant defense in patients with type 2 diabetes. Oxid. Med. Cell. Longev. 2016 2016 1 2352361 10.1155/2016/2352361 26640613
    [Google Scholar]
  120. Takemoto K. Tanaka M. Iwata H. Low catalase activity in blood is associated with the diabetes caused by alloxan. Clin. Chim. Acta 2009 407 1-2 43 46 10.1016/j.cca.2009.06.028 19563792
    [Google Scholar]
  121. Seifu D. Assefa F. Abay S.M. 2012 Medicinal plants as antioxidant agents: Understanding their mechanism of action and therapeutic efficacy Medicinal Plants as Antioxidant Agents: Understanding Their Mechanism of Action and Therapeutic Trams World Research Network 97 145
    [Google Scholar]
  122. Singh R. Mohapatra L. Tripathi A.S. Targeting mitochondrial biogenesis: a potential approach for preventing and controlling diabetes. Future J Pharm Sci 2021 7 1 212 10.1186/s43094‑021‑00360‑x
    [Google Scholar]
  123. Chodari L. Aytemir M.D.A. Vahedi P. Targeting mitochondrial biogenesis with polyphenol compounds. Oxid. Med. Cell. Longev. 2021 2021 1 4946711 10.1155/2021/4946711 34336094
    [Google Scholar]
  124. Salehi B. Martorell M. Arbiser J. Antioxidants: Positive or negative actors? Biomolecules 2018 8 4 124 10.3390/biom8040124 30366441
    [Google Scholar]
  125. Jiang Q. Yin J. Chen J. Mitochondria-targeted antioxidants: A step towards disease treatment. Oxid. Med. Cell. Longev. 2020 2020 1 18 10.1155/2020/8837893 33354280
    [Google Scholar]
  126. Zinovkin R.A. Zamyatnin A.A. Mitochondria-targeted drugs. Curr. Mol. Pharmacol. 2019 12 3 202 214 10.2174/1874467212666181127151059 30479224
    [Google Scholar]
  127. Yamamoto H. Morino K. Mengistu L. Amla enhances mitochondrial spare respiratory capacity by increasing mitochondrial biogenesis and antioxidant systems in a murine skeletal muscle cell line. Oxid. Med. Cell. Longev. 2016 2016 1 1735841 10.1155/2016/1735841 27340504
    [Google Scholar]
  128. Manna P. Sinha M. Sil P.C. Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways. Toxicology 2009 257 1-2 53 63 10.1016/j.tox.2008.12.008 19133311
    [Google Scholar]
  129. Penislusshiyan S. Chitra L. Ancy I. Kumaradhas P. Palvannan T. Novel antioxidant astaxanthin-s-allyl cysteine biconjugate diminished oxidative stress and mitochondrial dysfunction to triumph diabetes in rat model. Life Sci. 2020 245 117367 10.1016/j.lfs.2020.117367 32001265
    [Google Scholar]
  130. Hu K. Zhu S. Wu F. Aureusidin ameliorates 6-OHDA-induced neurotoxicity via activating Nrf2/HO-1 signaling pathway and preventing mitochondria-dependent apoptosis pathway in SH-SY5Y cells and Caenorhabditis elegans. Chem. Biol. Interact. 2024 387 110824 10.1016/j.cbi.2023.110824 38056806
    [Google Scholar]
  131. Park J. Seo E. Jun H.S. Bavachin alleviates diabetic nephropathy in db/db mice by inhibition of oxidative stress and improvement of mitochondria function. Biomed. Pharmacother. 2023 161 114479 10.1016/j.biopha.2023.114479 36921531
    [Google Scholar]
  132. Yeon M.H. Seo E. Lee J.H. Jun H.S. Bavachin and corylifol a improve muscle atrophy by enhancing mitochondria quality control in type 2 diabetic mice. Antioxidants 2023 12 1 137 10.3390/antiox12010137 36671000
    [Google Scholar]
  133. Soto-Urquieta M.G. López-Briones S. Pérez-Vázquez V. Saavedra-Molina A. González-Hernández G.A. Ramírez-Emiliano J. Curcumin restores mitochondrial functions and decreases lipid peroxidation in liver and kidneys of diabetic db/db mice. Biol. Res. 2014 47 1 74 10.1186/0717‑6287‑47‑74 25723052
    [Google Scholar]
  134. Rashid K. Chowdhury S. Ghosh S. Sil P.C. Curcumin attenuates oxidative stress induced NFB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochem. Pharmacol. 2017 143 140 155 10.1016/j.bcp.2017.07.009 28711624
    [Google Scholar]
  135. ALTamimi JZ AlFaris NA, AL-Farga AM, Alshammari GM, BinMowyna MN, Yahya MA. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKC/p66Shc axis and activation of FOXO-3a. J. Nutr. Biochem. 2021 87 108515 10.1016/j.jnutbio.2020.108515 33017608
    [Google Scholar]
  136. Wei Z. pinfang K, jing Z, zhuoya Y, Shaohuan Q, Chao S. Curcumin improves diabetic cardiomyopathy by inhibiting pyroptosis through AKT/Nrf2/ARE pathway. Mediators Inflamm. 2023 2023 1 20 10.1155/2023/3906043 37101595
    [Google Scholar]
  137. Jin Z. Chang B. Wei Y. Curcumin exerts chondroprotective effects against osteoarthritis by promoting AMPK/PINK1/Parkin-mediated mitophagy. Biomed. Pharmacother. 2022 151 113092 10.1016/j.biopha.2022.113092 35550528
    [Google Scholar]
  138. Gao C. Wang Y. Sun J. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater. 2020 108 285 299 10.1016/j.actbio.2020.03.029 32251785
    [Google Scholar]
  139. Chen B. Li H. Ou G. Ren L. Yang X. Zeng M. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IB and blocking mitochondrial damage. Arthritis Res. Ther. 2019 21 1 193 10.1186/s13075‑019‑1974‑z
    [Google Scholar]
  140. Li L. Liu S. Zhou Y. Indispensable role of mitochondria in maintaining the therapeutic potential of curcumin in acute kidney injury. J. Cell. Mol. Med. 2021 25 20 9863 9877 10.1111/jcmm.16934 34532973
    [Google Scholar]
  141. Correa F. Buelna-Chontal M. Hernández-Reséndiz S. Curcumin maintains cardiac and mitochondrial function in chronic kidney disease. Free Radic. Biol. Med. 2013 61 119 129 10.1016/j.freeradbiomed.2013.03.017 23548636
    [Google Scholar]
  142. Lu M. Li H. Liu W. Zhang X. Li L. Zhou H. Curcumin attenuates renal interstitial fibrosis by regulating autophagy and retaining mitochondrial function in unilateral ureteral obstruction rats. Basic Clin. Pharmacol. Toxicol. 2021 128 4 594 604 10.1111/bcpt.13550 33354908
    [Google Scholar]
  143. Pan J. Li H. Ma J.F. Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction. Transl. Neurodegener. 2012 1 1 16 10.1186/2047‑9158‑1‑16 23210631
    [Google Scholar]
  144. Hagl S. Heinrich M. Kocher A. Schiborr C. Frank J. Eckert G.P. Curcumin micelles improve mitochondrial function in a mouse model of Alzheimer’s disease. J. Prev. Alzheimers Dis. 2014 1 2 1 4 10.14283/jpad.2014.2 29255835
    [Google Scholar]
  145. Chen J. Jiang W. Zhu F. Wang Q. Yang H. Wu J. Curcumin improves pulmonary hypertension rats by regulating mitochondrial function. BioMed Res. Int. 2021 2021 1078019 10.1155/2021/1078019 34497845
    [Google Scholar]
  146. Wang W. Xu J. Curcumin attenuates cerebral ischemia-reperfusion injury through regulating mitophagy and preserving mitochondrial function. Curr. Neurovasc. Res. 2020 17 2 113 122 10.2174/1567202617666200225122620 32096742
    [Google Scholar]
  147. Kang L. Xiang Q. Zhan S. Restoration of autophagic flux rescues oxidative damage and mitochondrial dysfunction to protect against intervertebral disc degeneration. Oxid. Med. Cell. Longev. 2019 2019 1 27 10.1155/2019/7810320 31976028
    [Google Scholar]
  148. Wang D. Yang Y. Zou X. Zheng Z. Zhang J. Curcumin ameliorates CKD-induced mitochondrial dysfunction and oxidative stress through inhibiting GSK-3 activity. J. Nutr. Biochem. 2020 83 108404 10.1016/j.jnutbio.2020.108404 32531667
    [Google Scholar]
  149. Kuo J.J. Chang H.H. Tsai T.H. Lee T.Y. Hsu J.C. Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int. J. Mol. Med. 2012 30 3 673 679 10.3892/ijmm.2012.1049 22751848
    [Google Scholar]
  150. Eckert G.P. Schiborr C. Hagl S. Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Neurochem. Int. 2013 62 5 595 602 10.1016/j.neuint.2013.02.014 23422877
    [Google Scholar]
  151. Pham T. Nguyen T. Yun H. Echinochrome A prevents diabetic nephropathy by inhibiting the PKC-Iota pathway and enhancing renal mitochondrial function in db/db mice. Mar. Drugs 2023 21 4 222 10.3390/md21040222 37103361
    [Google Scholar]
  152. Lee M.S. Shin Y. Jung S. Kim Y. Effects of epigallocatechin-3-gallate on thermogenesis and mitochondrial biogenesis in brown adipose tissues of diet-induced obese mice. Food Nutr. Res. 2017 61 1 1325307 10.1080/16546628.2017.1325307 28659734
    [Google Scholar]
  153. Meng Q. Qi X. Fu Y. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes. J. Ethnopharmacol. 2020 248 112326 10.1016/j.jep.2019.112326 31639486
    [Google Scholar]
  154. Chen Y. Yang H. Wang D. Gastrodin alleviates mitochondrial dysfunction by regulating SIRT3-mediated TFAM acetylation in vascular dementia. Phytomedicine 2024 128 155369 10.1016/j.phymed.2024.155369 38547618
    [Google Scholar]
  155. Tang Z. Peng Y. Jiang Y. Gastrodin ameliorates synaptic impairment, mitochondrial dysfunction and oxidative stress in N2a/APP cells. Biochem. Biophys. Res. Commun. 2024 719 150127 10.1016/j.bbrc.2024.150127 38761634
    [Google Scholar]
  156. Rehman H. Krishnasamy Y. Haque K. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats. PLoS One 2013 8 6 e65029 10.1371/journal.pone.0065029 23755172
    [Google Scholar]
  157. Rashedinia M. Saberzadeh J. Khosravi Bakhtiari T. Hozhabri S. Arabsolghar R. Glycyrrhizic acid ameliorates mitochondrial function and biogenesis against aluminum toxicity in PC12 cells. Neurotox. Res. 2019 35 3 584 593 10.1007/s12640‑018‑9967‑2 30317430
    [Google Scholar]
  158. Tang Q. Cao Y. Xiong W. Glycyrrhizic acid exerts protective effects against hypoxia/reoxygenation induced human coronary artery endothelial cell damage by regulating mitochondria. Exp. Ther. Med. 2020 20 1 335 342 10.3892/etm.2020.8668 32509013
    [Google Scholar]
  159. Calabriso N. Gnoni A. Stanca E. Hydroxytyrosol ameliorates endothelial function under inflammatory conditions by preventing mitochondrial dysfunction. Oxid. Med. Cell. Longev. 2018 2018 1 9086947 10.1155/2018/9086947 29849923
    [Google Scholar]
  160. Liu Z. Sun L. Zhu L. Hydroxytyrosol protects retinal pigment epithelial cells from acroleininduced oxidative stress and mitochondrial dysfunction. J. Neurochem. 2007 103 6 2690 2700 10.1111/j.1471‑4159.2007.04954.x 20938484
    [Google Scholar]
  161. Chen Y. Li S. Yin M. Isorhapontigenin attenuates cardiac microvascular injury in diabetes via inhibition of mitochondria-associated ferroptosis through PRDX2-MFN2-ACSL4 pathways. Diabetes 2023 72 3 389 404 10.2337/db22‑0553 36367849
    [Google Scholar]
  162. Xiao L. Xu X. Zhang F. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 2017 11 297 311 10.1016/j.redox.2016.12.022 28033563
    [Google Scholar]
  163. Escribano-Lopez I. Bañuls C. Diaz-Morales N. The mitochondria-targeted antioxidant MitoQ modulates mitochondrial function and endoplasmic reticulum stress in pancreatic cells exposed to hyperglycaemia. Cell. Physiol. Biochem. 2019 52 2 186 197 10.33594/000000013 30816667
    [Google Scholar]
  164. Ji Y. Leng Y. Lei S. The mitochondria-targeted antioxidant MitoQ ameliorates myocardial ischemia–reperfusion injury by enhancing PINK1/Parkin-mediated mitophagy in type 2 diabetic rats. Cell Stress Chaperones 2022 27 4 353 367 10.1007/s12192‑022‑01273‑1 35426609
    [Google Scholar]
  165. Chacko B.K. Reily C. Srivastava A. Prevention of diabetic nephropathy in Ins2+/AkitaJ mice by the mitochondria-targeted therapy MitoQ. Biochem. J. 2010 432 1 9 19 10.1042/BJ20100308 20825366
    [Google Scholar]
  166. Yang M. Fan Z. Zhang Z. Fan J. MitoQ protects against high glucose-induced brain microvascular endothelial cells injury via the Nrf2/HO-1 pathway. J. Pharmacol. Sci. 2021 145 1 105 114 10.1016/j.jphs.2020.10.007 33357768
    [Google Scholar]
  167. Adlam V.J. Harrison J.C. Porteous C.M. Targeting an antioxidant to mitochondria decreases cardiac ischemiareperfusion injury. FASEB J. 2005 19 9 1088 1095 10.1096/fj.05‑3718com 15985532
    [Google Scholar]
  168. Lowes D.A. Thottakam B.M.V. Webster N.R. Murphy M.P. Galley H.F. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide–peptidoglycan model of sepsis. Free Radic. Biol. Med. 2008 45 11 1559 1565 10.1016/j.freeradbiomed.2008.09.003 18845241
    [Google Scholar]
  169. McManus M.J. Murphy M.P. Franklin J.L. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci. 2011 31 44 15703 15715 10.1523/JNEUROSCI.0552‑11.2011 22049413
    [Google Scholar]
  170. Mao P. Manczak M. Shirendeb U.P. Reddy P.H. Mito Q. MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Biochim. Biophys. Acta Mol. Basis Dis. 2013 1832 12 2322 2331 10.1016/j.bbadis.2013.09.005 24055980
    [Google Scholar]
  171. Miquel E. Cassina A. Martínez-Palma L. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic. Biol. Med. 2014 70 204 213 10.1016/j.freeradbiomed.2014.02.019 24582549
    [Google Scholar]
  172. Young M.L. Franklin J.L. The mitochondria-targeted antioxidant MitoQ inhibits memory loss, neuropathology, and extends lifespan in aged 3xTg-AD mice. Mol. Cell. Neurosci. 2019 101 103409 10.1016/j.mcn.2019.103409 31521745
    [Google Scholar]
  173. Zhang J. Bao X. Zhang M. MitoQ ameliorates testis injury from oxidative attack by repairing mitochondria and promoting the Keap1-Nrf2 pathway. Toxicol. Appl. Pharmacol. 2019 370 78 92 10.1016/j.taap.2019.03.001 30836114
    [Google Scholar]
  174. Fortner K.A. Blanco L.P. Buskiewicz I. Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL- lpr mice. Lupus Sci. Med. 2020 7 1 e000387 10.1136/lupus‑2020‑000387 32343673
    [Google Scholar]
  175. Capeloa T. Van de Velde J.A. d’Hose D. Inhibition of mitochondrial redox signaling with MitoQ prevents metastasis of human pancreatic cancer in mice. Cancers 2022 14 19 4918 10.3390/cancers14194918 36230841
    [Google Scholar]
  176. Pin F. Huot J.R. Bonetto A. The mitochondria-targeting agent MitoQ improves muscle atrophy, weakness and oxidative metabolism in C26 tumor-bearing mice. Front. Cell Dev. Biol. 2022 10 861622 10.3389/fcell.2022.861622 35392166
    [Google Scholar]
  177. Mao H. Zhang Y. Xiong Y. Zhu Z. Wang L. Liu X. Mitochondria-targeted antioxidant mitoquinone maintains mitochondrial homeostasis through the SIRT3-dependent pathway to mitigate oxidative damage caused by renal ischemia/reperfusion. Oxid. Med. Cell. Longev. 2022 2022 1 18 10.1155/2022/2213503 36193071
    [Google Scholar]
  178. Huang J. Chen Y. Peng X. Mitoquinone ameliorated airway inflammation by stabilizing -catenin destruction complex in a steroid-insensitive asthma model. Biomed. Pharmacother. 2023 162 114680 10.1016/j.biopha.2023.114680 37060658
    [Google Scholar]
  179. Márquez B.T. Leung T.C.S. Hui J. Charron F. McKinney R.A. Watt A.J. A mitochondrial-targeted antioxidant (MitoQ) improves motor coordination and reduces Purkinje cell death in a mouse model of ARSACS. Neurobiol. Dis. 2023 183 106157 10.1016/j.nbd.2023.106157 37209925
    [Google Scholar]
  180. Hou L. Wang G. Zhang X. Mitoquinone alleviates osteoarthritis progress by activating the NRF2-Parkin axis. iScience 2023 26 9 107647 10.1016/j.isci.2023.107647 37694150
    [Google Scholar]
  181. Ni R. Cao T. Xiong S. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic. Biol. Med. 2016 90 12 23 10.1016/j.freeradbiomed.2015.11.013 26577173
    [Google Scholar]
  182. Dludla P.V. Orlando P. Silvestri S. N-Acetyl cysteine ameliorates hyperglycemia-induced cardiomyocyte toxicity by improving mitochondrial energetics and enhancing endogenous Coenzyme Q9/10 levels. Toxicol. Rep. 2019 6 1240 1245 10.1016/j.toxrep.2019.11.004 31799124
    [Google Scholar]
  183. Dusabimana T. Kim S.R. Kim H.J. Park S.W. Kim H. Nobiletin ameliorates hepatic ischemia and reperfusion injury through the activation of SIRT-1/FOXO3a-mediated autophagy and mitochondrial biogenesis. Exp. Mol. Med. 2019 51 4 1 16 10.1038/s12276‑019‑0245‑z 31028246
    [Google Scholar]
  184. Li S. Li X. Chen F. Nobiletin mitigates hepatocytes death, liver inflammation, and fibrosis in a murine model of NASH through modulating hepatic oxidative stress and mitochondrial dysfunction. J. Nutr. Biochem. 2022 100 108888 10.1016/j.jnutbio.2021.108888 34695558
    [Google Scholar]
  185. Amarsanaa K. Kim H.J. Ko E.A. Jo J. Jung S.C. Nobiletin exhibits neuroprotective effects against mitochondrial complex I inhibition via regulating apoptotic signaling. Exp. Neurobiol. 2021 30 1 73 86 10.5607/en20051 33424017
    [Google Scholar]
  186. Kim H.L. Park J. Park H. Platycodon grandiflorum A.de candolle ethanolic extract inhibits adipogenic regulators in 3T3-L1 cells and induces mitochondrial biogenesis in primary brown preadipocytes. J. Agric. Food Chem. 2015 63 35 7721 7730 10.1021/acs.jafc.5b01908 26244589
    [Google Scholar]
  187. Cerbaro A.F. Rodrigues V.S.B. Rigotti M. Grape seed proanthocyanidins improves mitochondrial function and reduces oxidative stress through an increase in sirtuin 3 expression in EA.hy926 cells in high glucose condition. Mol. Biol. Rep. 2020 47 5 3319 3330 10.1007/s11033‑020‑05401‑x 32266639
    [Google Scholar]
  188. Pajuelo D. Quesada H. Díaz S. Chronic dietary supplementation of proanthocyanidins corrects the mitochondrial dysfunction of brown adipose tissue caused by diet-induced obesity in Wistar rats. Br. J. Nutr. 2012 107 2 170 178 10.1017/S0007114511002728 21733324
    [Google Scholar]
  189. Luo Y. Zhuan Q. Li J. B2 improves oocyte maturation and subsequent development in type 1 diabetic mice by promoting mitochondrial function. Reprod. Sci. 2020 27 12 2211 2222 10.1007/s43032‑020‑00241‑3 32748223
    [Google Scholar]
  190. Yu F. Li B.Y. Yin M. Proteomic analysis of liver mitochondria of db/db mice treated with grape seed procyanidin B2. J. Food Biochem. 2020 44 11 e13443 10.1111/jfbc.13443 32815169
    [Google Scholar]
  191. Masuda I. Koike M. Nakashima S. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci. Rep. 2018 8 1 7229 10.1038/s41598‑018‑25348‑1 29739985
    [Google Scholar]
  192. Miura T. Chiba M. Kasai K. Apple procyanidins induce tumor cell apoptosis through mitochondrial pathway activation of caspase-3. Carcinogenesis 2007 29 3 585 593 10.1093/carcin/bgm198 17827407
    [Google Scholar]
  193. Rayamajhi N. Kim S.K. Go H. Quercetin induces mitochondrial biogenesis through activation of HO-1 in HepG2 cells. Oxid. Med. Cell. Longev. 2013 2013 1 10 10.1155/2013/154279 24288584
    [Google Scholar]
  194. Sharma D.R. Sunkaria A. Wani W.Y. Quercetin protects against aluminium induced oxidative stress and promotes mitochondrial biogenesis via activation of the PGC-1 signaling pathway. Neurotoxicology 2015 51 116 137 10.1016/j.neuro.2015.10.002 26493151
    [Google Scholar]
  195. Kim C.S. Kwon Y. Choe S.Y. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr. Metab. (Lond.) 2015 12 1 33 10.1186/s12986‑015‑0030‑5 26445592
    [Google Scholar]
  196. Nichols M. Zhang J. Polster B.M. Synergistic neuroprotection by epicatechin and quercetin: Activation of convergent mitochondrial signaling pathways. Neuroscience 2015 308 75 94 10.1016/j.neuroscience.2015.09.012 26363153
    [Google Scholar]
  197. Li X. Wang H. Gao Y. Protective effects of quercetin on mitochondrial biogenesis in experimental traumatic brain injury via the Nrf2 signaling pathway. PLoS One 2016 11 10 e0164237 10.1371/journal.pone.0164237 27780244
    [Google Scholar]
  198. Qiu L. Luo Y. Chen X. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomed. Pharmacother. 2018 103 1585 1591 10.1016/j.biopha.2018.05.003 29864946
    [Google Scholar]
  199. Zhang H. Jia H. Liu J. Combined R–lipoic acid and acetylLcarnitine exerts efficient preventative effects in a cellular model of Parkinson’s disease. J. Cell. Mol. Med. 2010 14 1-2 215 225 10.1111/j.1582‑4934.2008.00390.x 20414966
    [Google Scholar]
  200. Baur J.A. Pearson K.J. Price N.L. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006 444 7117 337 342 10.1038/nature05354 17086191
    [Google Scholar]
  201. Lagouge M. Argmann C. Gerhart-Hines Z. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1. Cell 2006 127 6 1109 1122 10.1016/j.cell.2006.11.013 17112576
    [Google Scholar]
  202. Sareen D. van Ginkel P.R. Takach J.C. Mitochondria as the primary target of resveratrol-induced apoptosis in human retinoblastoma cells. Invest. Ophthalmol. Vis. Sci. 2006 47 9 3708 3716 10.1167/iovs.06‑0119 16936077
    [Google Scholar]
  203. van Ginkel P.R. Sareen D. Subramanian L. Resveratrol inhibits tumor growth of human neuroblastoma and mediates apoptosis by directly targeting mitochondria. Clin. Cancer Res. 2007 13 17 5162 5169 10.1158/1078‑0432.CCR‑07‑0347 17785572
    [Google Scholar]
  204. van Ginkel P.R. Darjatmoko S.R. Sareen D. Resveratrol inhibits uveal melanoma tumor growth via early mitochondrial dysfunction. Invest. Ophthalmol. Vis. Sci. 2008 49 4 1299 1306 10.1167/iovs.07‑1233 18385041
    [Google Scholar]
  205. Csiszar A. Labinskyy N. Pinto J.T. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2009 297 1 H13 H20 10.1152/ajpheart.00368.2009 19429820
    [Google Scholar]
  206. Biala A. Tauriainen E. Siltanen A. Resveratrol induces mitochondrial biogenesis and ameliorates Ang II-induced cardiac remodeling in transgenic rats harboring human renin and angiotensinogen genes. Blood Press. 2010 19 3 196 205 10.3109/08037051.2010.481808 20429690
    [Google Scholar]
  207. Wang X.X. Li Y.B. Yao H.J. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 2011 32 24 5673 5687 10.1016/j.biomaterials.2011.04.029 21550109
    [Google Scholar]
  208. Park S.J. Ahmad F. Philp A. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 2012 148 3 421 433 10.1016/j.cell.2012.01.017 22304913
    [Google Scholar]
  209. Lin X. Wu G. Huo W.Q. Zhang Y. Jin F.S. Resveratrol induces apoptosis associated with mitochondrial dysfunction in bladder carcinoma cells. Int. J. Urol. 2012 19 8 757 764 10.1111/j.1442‑2042.2012.03024.x 22607368
    [Google Scholar]
  210. Zheng J. Chen L.L. Zhang H.H. Hu X. Kong W. Hu D. Resveratrol improves insulin resistance of catch-up growth by increasing mitochondrial complexes and antioxidant function in skeletal muscle. Metabolism 2012 61 7 954 965 10.1016/j.metabol.2011.11.005 22209670
    [Google Scholar]
  211. Lopes Costa A. Le Bachelier C. Mathieu L. Beneficial effects of resveratrol on respiratory chain defects in patients’ fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling. Hum. Mol. Genet. 2014 23 8 2106 2119 10.1093/hmg/ddt603 24365713
    [Google Scholar]
  212. Ma S. Feng J. Zhang R. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid. Med. Cell. Longev. 2017 2017 1 4602715 10.1155/2017/4602715 28883902
    [Google Scholar]
  213. Xiang S. Zhang K. Yang G. Gao D. Zeng C. He M. Mitochondria-targeted and resveratrol-loaded dual-function titanium disulfide nanosheets for photothermal-triggered tumor chemotherapy. Nanoscale Res. Lett. 2019 14 1 211 10.1186/s11671‑019‑3044‑5 31227943
    [Google Scholar]
  214. Zhang T. Chi Y. Kang Y. Resveratrol ameliorates podocyte damage in diabetic mice via SIRT1/PGC1 mediated attenuation of mitochondrial oxidative stress. J. Cell. Physiol. 2019 234 4 5033 5043 10.1002/jcp.27306 30187480
    [Google Scholar]
  215. Han Y. Chu X. Cui L. Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv. 2020 27 1 502 518 10.1080/10717544.2020.1745328 32228100
    [Google Scholar]
  216. Zheng M. Bai Y. Sun X. Resveratrol reestablishes mitochondrial quality control in myocardial ischemia/reperfusion injury through Sirt1/Sirt3-Mfn2-Parkin-PGC-1α pathway. Molecules 2022 27 17 5545 10.3390/molecules27175545 36080311
    [Google Scholar]
  217. Jiang L. Yu H. Wang C. The anti-cancer effects of mitochondrial-targeted triphenylphosphonium–resveratrol conjugate on breast cancer cells. Pharmaceuticals 2022 15 10 1271 10.3390/ph15101271 36297383
    [Google Scholar]
  218. Jang Y. Lee J.H. Lee M.J. Schisandra extract and ascorbic acid synergistically enhance cognition in mice through modulation of mitochondrial respiration. Nutrients 2020 12 4 897 10.3390/nu12040897 32218327
    [Google Scholar]
  219. Demyanenko I.A. Zakharova V.V. Ilyinskaya O.P. Mitochondria-targeted antioxidant SkQ1 improves dermal wound healing in genetically diabetic mice. Oxid. Med. Cell. Longev. 2017 2017 1 6408278 10.1155/2017/6408278 28761623
    [Google Scholar]
  220. Jia B. Ye J. Gan L. Mitochondrial antioxidant SkQ1 decreases inflammation following hemorrhagic shock by protecting myocardial mitochondria. Front. Physiol. 2022 13 1047909 10.3389/fphys.2022.1047909 36467681
    [Google Scholar]
  221. Kolosova N.G. Tyumentsev M.A. Muraleva N.A. Kiseleva E. Vitovtov A.O. Stefanova N.A. Antioxidant SkQ1 alleviates signs of Alzheimer’s disease-like pathology in old OXYS rats by reversing mitochondrial deterioration. Curr. Alzheimer Res. 2017 14 12 1283 1292 10.2174/1567205014666170621111033 28637402
    [Google Scholar]
  222. Stefanova N.A. Muraleva N.A. Maksimova K.Y. An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology. Aging (Albany NY) 2016 8 11 2713 2733 10.18632/aging.101054 27750209
    [Google Scholar]
  223. Shabalina I.G. Vyssokikh M.Y. Gibanova N. Improved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1. Aging (Albany NY) 2017 9 2 315 339 10.18632/aging.101174 28209927
    [Google Scholar]
  224. Liu Y. Lin M. Mu X. Protective effect of solanesol in glucose-induced hepatocyte injury: Mechanistic insights on oxidative stress and mitochondrial preservation. Chem. Biol. Interact. 2023 383 110676 10.1016/j.cbi.2023.110676 37586544
    [Google Scholar]
  225. Tsutsumi R. Yoshida T. Nii Y. Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle. Nutr. Metab. (Lond.) 2014 11 1 32 10.1186/1743‑7075‑11‑32 25114710
    [Google Scholar]
  226. Rashedinia M. Alimohammadi M. Shafroushan N. Neuroprotective effect of syringic acid by modulation of oxidative stress and mitochondrial mass in diabetic rats. BioMed Res. Int. 2020 2020 1 8297984 10.1155/2020/8297984 33457416
    [Google Scholar]
  227. Zhang J. Gao B. Ye B. Mitochondrial-targeted delivery of polyphenol-mediated antioxidant complexes against pyroptosis and inflammatory diseases. Adv. Mater. 2023 35 11 2208571 10.1002/adma.202208571 36648306
    [Google Scholar]
  228. Ranjbar A. Kheiripour N. Ghasemi H. Seif Rabiei M.A. Dadras F. Khoshjou F. Antioxidative effects of tempol on mitochondrial dysfunction in diabetic nephropathy. Iran. J. Kidney Dis. 2018 12 2 84 90 [PMID: 29507270
    [Google Scholar]
  229. Liu X. Gao J. Yan Y. Mitochondria-targeted triphenylphosphonium-hydroxytyrosol prevents lipotoxicity-induced endothelial injury by enhancing mitochondrial function and redox balance via promoting FoxO1 and Nrf2 nuclear translocation and suppressing inflammation via inhibiting p38/NF-B pathway. Antioxidants 2023 12 1 175 10.3390/antiox12010175 36671037
    [Google Scholar]
  230. Parihar P. Shetty R. Ghafourifar P. Parihar M.S. Increase in oxidative stress and mitochondrial impairment in hypothalamus of streptozotocin treated diabetic rat: Antioxidative effect of Withania somnifera. Cell. Mol. Biol. 2016 62 1 73 83 [PMID: 26828992
    [Google Scholar]
  231. Kyathanahalli C.N. Manjunath M.J. Muralidhara M. Oral supplementation of standardized extract of Withania somnifera protects against diabetes-induced testicular oxidative impairments in prepubertal rats. Protoplasma 2014 251 5 1021 1029 10.1007/s00709‑014‑0612‑5 24488064
    [Google Scholar]
  232. dos Santos T.W. Miranda J. Teixeira L. Yerba mate stimulates mitochondrial biogenesis and thermogenesis in high-fat-diet-induced obese mice. Mol. Nutr. Food Res. 2018 62 15 1800142 10.1002/mnfr.201800142 29851217
    [Google Scholar]
  233. Ma B. Li X. Resveratrol extracted from Chinese herbal medicines: A novel therapeutic strategy for lung diseases. Chin. Herb. Med. 2020 12 4 349 358 10.1016/j.chmed.2020.07.003 32963508
    [Google Scholar]
  234. Szkudelska K. Szkudelski T. Resveratrol, obesity and diabetes. Eur. J. Pharmacol. 2010 635 1-3 1 8 10.1016/j.ejphar.2010.02.054 20303945
    [Google Scholar]
  235. Faisal Z. Mazhar A. Batool S.A. Exploring the multimodal healthpromoting properties of resveratrol: A comprehensive review. Food Sci. Nutr. 2024 12 4 2240 2258 10.1002/fsn3.3933 38628180
    [Google Scholar]
  236. Escribano-Lopez I. Diaz-Morales N. Rovira-Llopis S. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biol. 2016 10 200 205 10.1016/j.redox.2016.10.017 27810734
    [Google Scholar]
  237. Sulaimon L.A. Afolabi L.O. Adisa R.A. Pharmacological significance of MitoQ in ameliorating mitochondria-related diseases. Adv Redox Res 2022 5 100037 10.1016/j.arres.2022.100037
    [Google Scholar]
  238. Rauf A. Imran M. Khan I.A. Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018 32 11 2109 2130 10.1002/ptr.6155 30039547
    [Google Scholar]
  239. Almeida A.F. Borge G.I.A. Piskula M. Bioavailability of quercetin in humans with a focus on interindividual variation. Compr. Rev. Food Sci. Food Saf. 2018 17 3 714 731 10.1111/1541‑4337.12342 33350133
    [Google Scholar]
  240. Aghababaei F. Hadidi M. Recent advances in potential health benefits of quercetin. Pharmaceuticals 2023 16 7 1020 10.3390/ph16071020 37513932
    [Google Scholar]
  241. Deepika P.K. Maurya P.K. Maurya, Health benefits of quercetin in age-related diseases. Molecules 2022 27 8 2498 10.3390/molecules27082498 35458696
    [Google Scholar]
  242. Kotha R.R. Luthria D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019 24 16 2930 10.3390/molecules24162930 31412624
    [Google Scholar]
  243. Filardi T. Varì R. Ferretti E. Zicari A. Morano S. Santangelo C. Curcumin: could this compound be useful in pregnancy and pregnancy-related complications? Nutrients 2020 12 10 3179 10.3390/nu12103179 33080891
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775370658250713030329
Loading
/content/journals/cdrr/10.2174/0125899775370658250713030329
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Antioxidants ; polyphenols ; mitochondrial dysfunction ; diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test