Skip to content
2000
image of Bioactive Compounds and their Therapeutic Potential in Gastrointestinal Disease

Abstract

The gastrointestinal tract (GIT) is inhabited by an extensive range of microorganisms known as the human gut microbiota, which includes fungi, bacteria, viruses, algae, and parasites. Through its relationships with the host and other bacteria, this microbiota generates an intricate ecosystem that is essential to preserving human health. The gastrointestinal microbiota is necessary for many physiological functions, including immune system regulation, nutrition metabolism, vitamin synthesis, medication and xenobiotic processing, gut mucosal barrier integrity, and pathogen defense. An immune system's response to tissue damage or injury caused by infections, physical and chemical stress, immune system deviations, or genetic factors is inflammation. Chronic inflammation is a condition that is fueled by the activity of immune cells and has been linked with several diseases. While lifestyle adjustments, dietary alterations, and medicines are now used to reduce inflammation, these strategies frequently prove ineffective. Beyond the basics of nutrition, bioactive compounds (BCs), known as nutritional ingredients found in small quantities in foods and plant extracts, give additional benefits for health. Their anti-inflammatory, anticancer, anti-metabolic syndrome, antioxidant, and antimicrobial properties make them an excellent choice for addressing a variety of GIT disorders. By adjusting inflammatory mediators, bioactive compounds can lessen the negative effects of inflammation. Although medications, dietary changes, and changes in behavior are now employed to lower inflammation, these tactics usually fail to succeed. BCs, occasionally referred to as nutritious elements present in trace amounts in foods and plant extracts, provide additional health benefits beyond the essentials of nutrition. Bioactive substances may reduce the adverse effects of inflammation by modifying mediators of inflammation.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775370010250720174808
2025-07-31
2025-09-28
Loading full text...

Full text loading...

References

  1. Chiu H.F. Venkatakrishnan K. Golovinskaia O. Wang C.K. Gastroprotective effects of polyphenols against various gastro-intestinal disorders: A mini-review with special focus on clinical evidence. Molecules 2021 26 7 2090 10.3390/molecules26072090 33917379
    [Google Scholar]
  2. Ghosh S. Playford R.J. Bioactive natural compounds for the treatment of gastrointestinal disorders. Clin. Sci. 2003 104 6 547 556 10.1042/CS20030067 12641494
    [Google Scholar]
  3. Ketnawa S. Reginio F.C. Thuengtung S. Ogawa Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2022 62 17 4684 4705 10.1080/10408398.2021.1878100 33511849
    [Google Scholar]
  4. Patra A.K. Amasheh S. Aschenbach J.R. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds – A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019 59 20 3237 3266 10.1080/10408398.2018.1486284 29889546
    [Google Scholar]
  5. Benameur T. Porro C. Twfieg M.E. Emerging paradigms in inflammatory disease management: Exploring bioactive compounds and the gut microbiota. Brain Sci. 2023 13 8 1226 10.3390/brainsci13081226 37626582
    [Google Scholar]
  6. Teodoro A.J. Bioactive compounds of food: their role in the prevention and treatment of diseases. Oxid. Med. Cell. Longev. 2019 2019 1 4 10.1155/2019/3765986 30984334
    [Google Scholar]
  7. Baumgart D.C. Carding S.R. Inflammatory bowel disease: Cause and immunobiology. Lancet 2007 369 9573 1627 1640 10.1016/S0140‑6736(07)60750‑8 17499605
    [Google Scholar]
  8. Podolsky D.K. Inflammatory bowel disease. N. Engl. J. Med. 2002 347 6 417 429 10.1056/NEJMra020831 12167685
    [Google Scholar]
  9. Kaser A. Zeissig S. Blumberg R.S. Inflammatory bowel disease. Annu. Rev. Immunol. 2010 28 1 573 621 10.1146/annurev‑immunol‑030409‑101225 20192811
    [Google Scholar]
  10. Sartor R.B. Mechanisms of disease: Pathogenesis of inflammatory bowel diseases. N. Engl. J. Med. 2006 355 19 2065 2078 10.1038/ncpgasthep0528 16819502
    [Google Scholar]
  11. Szuster-Ciesielska A. Ciesielski W. Kaczmarek M. The role of oxidative stress in the pathogenesis of gastrointestinal disorders. Antioxidants 2021 10 4 558 10.1097/00006676‑200104000‑00006 33916762
    [Google Scholar]
  12. Tzeng C-C. Wang C-C. Wang S-H. Oxidative stress and inflammation in gastrointestinal diseases: A critical review. World J. Gastroenterol. 2015 21 18 5460 5473 10.1021/acs.joc.4c02944
    [Google Scholar]
  13. Mousavi T. Hadizadeh N. Nikfar S. Abdollahi M. Drug discovery strategies for modulating oxidative stress in gastrointestinal disorders. Expert Opin. Drug Discov. 2020 15 11 1309 1341 10.1080/17460441.2020.1791077 32749894
    [Google Scholar]
  14. Cao C. Yue S. Lu A. Liang C. Host-gut microbiota metabolic interactions and their role in precision diagnosis and treatment of gastrointestinal cancers. Pharmacol. Res. 2024 207 107321 10.1016/j.phrs.2024.107321 39038631
    [Google Scholar]
  15. Maier L. Pruteanu M. Varela E. Extensive impact of gut microbiome on systemic inflammation. Nat. Commun. 2021 12 1 1017 10.1038/nature25979 33589641
    [Google Scholar]
  16. He J. Liu Y. Ouyang Q. Helicobacter pyloriand unignorable extragastric diseases: Mechanism and implications. Front. Microbiol. 2022 13 972777 10.3389/fmicb.2022.972777 35992650
    [Google Scholar]
  17. Bales C.W. Porter Starr K.N. Obesity interventions for older adults: Diet as a determinant of physical function. Adv. Nutr. 2018 9 2 151 159 10.1093/advances/nmx016 29659687
    [Google Scholar]
  18. Veit M. van Asten R. Olie A. Prinz P. The role of dietary sugars, overweight, and obesity in type 2 diabetes mellitus: A narrative review. Eur. J. Clin. Nutr. 2022 76 11 1497 1501 10.1038/s41430‑022‑01114‑5 35314768
    [Google Scholar]
  19. Mentella M.C. Scaldaferri F. Ricci C. Gasbarrini A. Miggiano G.A.D. Cancer and Mediterranean diet: A review. Nutrients 2019 11 9 2059 10.3390/nu11092059 31480794
    [Google Scholar]
  20. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016 133 2 187 225 10.1161/CIRCULATIONAHA.115.018585 26746178
    [Google Scholar]
  21. Smith N.W. Fletcher A.J. Dave L.A. Hill J.P. McNabb W.C. Use of the DELTA model to understand the food system and global nutrition. J. Nutr. 2021 151 10 3253 3261 10.1093/jn/nxab199 34195827
    [Google Scholar]
  22. Kaput J. Kussmann M. Mendoza Y. Le Coutre R. Cooper K. Roulin A. Enabling nutrient security and sustainability through systems research. Genes Nutr. 2015 10 3 12 10.1007/s12263‑015‑0462‑6 25876838
    [Google Scholar]
  23. Chung M. Balk E.M. Ip S. Reporting of systematic reviews of micronutrients and health: A critical appraisal. Am. J. Clin. Nutr. 2009 89 4 1099 1113 10.3945/ajcn.2008.26821 19244363
    [Google Scholar]
  24. Hoang T. Kim J. Phytonutrient supplements and metabolic biomarkers of cardiovascular disease: An umbrella review of meta‐analyses of clinical trials. Phytother. Res. 2021 35 8 4171 4182 10.1002/ptr.7079 33724587
    [Google Scholar]
  25. de Vos W.M. Tilg H. Van Hul M. Cani P.D. Gut microbiome and health: Mechanistic insights. Gut 2022 71 5 1020 1032 10.1136/gutjnl‑2021‑326789 35105664
    [Google Scholar]
  26. Kussmann M. Abe Cunha D.H. Berciano S. Bioactive compounds for human and planetary health. Front. Nutr. 2023 10 1193848 10.3389/fnut.2023.1193848 37545571
    [Google Scholar]
  27. Talukder J. Nutraceuticals in gastrointestinal conditions.Nutraceuticals in Veterinary Medicine. Cham, Switzerland Springer 2019 467 479 10.1007/978‑3‑030‑04624‑8_31
    [Google Scholar]
  28. Myasoedova E. Talley N.J. Manek N.J. Crowson C.S. Prevalence and risk factors of gastrointestinal disorders in patients with rheumatoid arthritis: Results from a population-based survey in olmsted county, Minnesota. Gastroenterol. Res. Pract. 2011 2011 1 1 7 10.1155/2011/745829 22144996
    [Google Scholar]
  29. Eslamparast T. Zamani F. Hekmatdoost A. Effects of synbiotic supplementation on insulin resistance in subjects with the metabolic syndrome: A randomised, double-blind, placebo-controlled pilot study. Br. J. Nutr. 2014 112 3 438 445 10.1017/S0007114514000919 24848793
    [Google Scholar]
  30. Anderson J.W. Baird P. Davis R.H. Health benefits of dietary fiber. Nutr. Rev. 2009 67 4 188 205 10.1111/j.1753‑4887.2009.00189.x 19335713
    [Google Scholar]
  31. Hamer H.M. Jonkers D. Venema K. Vanhoutvin S. Troost F.J. Brummer R.J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008 27 2 104 119 10.1111/j.1365‑2036.2007.03562.x 17973645
    [Google Scholar]
  32. Allan E.S. Winter S. Light A.M. Allan A. Mucosal enzyme activity for butyrate oxidation; no defect in patients with ulcerative colitis. Gut 1996 38 6 886 893 10.1136/gut.38.6.886 8984028
    [Google Scholar]
  33. Mishra S.S. Behera P.K. Kar B. Ray R.C. Advances in probiotics, prebiotics and nutraceuticals. In: Innovations in Technologies for Fermented Food and Beverage Industries. Cham Springer 2018 121 141 10.1007/978‑3‑319‑74820‑7_7
    [Google Scholar]
  34. Sreeja V. Prajapati J.B. Probiotic formulations: Application and status as pharmaceuticals—A review. Probiotics Antimicrob. Proteins 2013 5 2 81 91 10.1007/s12602‑013‑9126‑2 26782733
    [Google Scholar]
  35. Almeida C.C. Lorena S.L.S. Pavan C.R. Akasaka H.M.I. Mesquita M.A. Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patients. Nutr. Clin. Pract. 2012 27 2 247 251 10.1177/0884533612440289 22402407
    [Google Scholar]
  36. Xue L. He J. Gao N. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci. Rep. 2017 7 1 45176 10.1038/srep45176 28349964
    [Google Scholar]
  37. Hord N.G. Eukaryotic-microbiota crosstalk: Potential mechanisms for health benefits of prebiotics and probiotics. Annu. Rev. Nutr. 2008 28 1 215 231 10.1146/annurev.nutr.28.061807.155402 18489258
    [Google Scholar]
  38. Gibson G.R. Probert H.M. Loo J.V. Rastall R.A. Roberfroid M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004 17 2 259 275 10.1079/NRR200479 19079930
    [Google Scholar]
  39. Davani-Davari D. Negahdaripour M. Karimzadeh I. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019 8 3 92 10.3390/foods8030092 30857316
    [Google Scholar]
  40. Verna E.C. Lucak S. Use of probiotics in gastrointestinal disorders: What to recommend? Therap. Adv. Gastroenterol. 2010 3 5 307 319 10.1177/1756283X10373814 21180611
    [Google Scholar]
  41. Fifi A.C. Axelrod C.H. Chakraborty P. Saps M. Herbs and spices in the treatment of functional gastrointestinal disorders: A review of clinical trials. Nutrients 2018 10 11 1715 10.3390/nu10111715 30423929
    [Google Scholar]
  42. Scazzocchio B. Minghetti L. D’Archivio M. Interaction between gut microbiota and curcumin: A new key of understanding for the health effects of curcumin. Nutrients 2020 12 9 2499 10.3390/nu12092499 32824993
    [Google Scholar]
  43. Gupta M. Pharmacological properties and traditional therapeutic uses of important Indian spices: A review. Int. J. Food Prop. 2010 13 5 1092 1116 10.1080/10942910902963271
    [Google Scholar]
  44. Begum S.J.P. Pratibha S. Rawat J.M. Recent advances in green synthesis, characterization, and applications of bioactive metallic nanoparticles. Pharmaceuticals 2022 15 4 455 10.3390/ph15040455 35455452
    [Google Scholar]
  45. Li A. Ni W. Zhang Q. Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate‐induced colitis. Microbiol. Immunol. 2020 64 1 23 32 10.1111/1348‑0421.12749 31595527
    [Google Scholar]
  46. Sharma M. Gupta A. Prasad R. A review on herbs, spices and functional food used in diseases. Int J Res Rev 2017 4 1 103 108 10.4444/ijrr.1002/322
    [Google Scholar]
  47. Srinivasan K. Spices as influencers of body metabolism: An overview of three decades of research. Food Res. Int. 2005 38 1 77 86 10.1016/j.foodres.2004.09.001
    [Google Scholar]
  48. Yin C. Noratto G.D. Fan X. The impact of mushroom polysaccharides on gut microbiota and its beneficial effects to host: A review. Carbohydr. Polym. 2020 250 116942 10.1016/j.carbpol.2020.116942 33049854
    [Google Scholar]
  49. Tan J.K. Macia L. Mackay C.R. Dietary fiber and SCFAs in the regulation of mucosal immunity. J. Allergy Clin. Immunol. 2023 151 2 361 370 10.1016/j.jaci.2022.11.007 36543697
    [Google Scholar]
  50. Shen L. Ji H.F. Intestinal microbiota and metabolic diseases: Pharmacological Implications. Trends Pharmacol. Sci. 2016 37 3 169 171 10.1016/j.tips.2015.11.010 26706621
    [Google Scholar]
  51. Parada Venegas D. De la Fuente M.K. Landskron G. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019 10 277 10.3389/fimmu.2019.00277 30915065
    [Google Scholar]
  52. Markowiak-Kopeć P. Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 2020 12 4 1107 10.3390/nu12041107 32316181
    [Google Scholar]
  53. Al-Sheraji S.H. Ismail A. Manap M.Y. Mustafa S. Yusof R.M. Hassan F.A. Prebiotics as functional foods: A review. J. Funct. Foods 2013 5 4 1542 1553 10.1016/j.jff.2013.08.009
    [Google Scholar]
  54. Bron P.A. Kleerebezem M. Brummer R.J. Can probiotics modulate human disease by impacting intestinal barrier function? Br. J. Nutr. 2017 117 1 93 107 10.1017/S0007114516004037 28102115
    [Google Scholar]
  55. Lee K.M. Yeo M. Choue J.S. Protective mechanism of epigallocatechin-3-gallate against Helicobacter pylori-induced gastric epithelial cytotoxicity via the blockage of TLR-4 signaling. Helicobacter 2004 9 6 632 642 10.1111/j.1083‑4389.2004.00281.x 15610077
    [Google Scholar]
  56. Ohno M. Nishida A. Sugitani Y. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One 2017 12 10 e0185999 10.1371/journal.pone.0185999 28985227
    [Google Scholar]
  57. Oteiza P.I. Fraga C.G. Mills D.A. Taft D.H. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med. 2018 61 41 49 10.1016/j.mam.2018.01.001 29317252
    [Google Scholar]
  58. Maleki S.J. Crespo J.F. Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019 299 125124 10.1016/j.foodchem.2019.125124 31288163
    [Google Scholar]
  59. Górniak I. Bartoszewski R. Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019 18 1 241 272 10.1007/s11101‑018‑9591‑z
    [Google Scholar]
  60. Bondonno C.P. Croft K.D. Ward N. Considine M.J. Hodgson J.M. Dietary flavonoids and nitrate: Effects on nitric oxide and vascular function. Nutr. Rev. 2015 73 4 216 235 10.1093/nutrit/nuu014 26024545
    [Google Scholar]
  61. Dong S. Tong X. Li J. Total flavonoid of Litsea coreana leve exerts anti-oxidative effects and alleviates focal cerebral ischemia/reperfusion injury. Neural Regen. Res. 2013 8 34 3193 3202 10.3969/j.issn.1673‑5374.2013.34.003 25206640
    [Google Scholar]
  62. Kopustinskiene D.M. Jakstas V. Savickas A. Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020 12 2 457 10.3390/nu12020457 32059369
    [Google Scholar]
  63. Shukla R. Pandey V. Vadnere G.P. Lodhi S. Role of flavonoids in management of inflammatory disorders. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases. Cambridge, Massachusetts Academic Press 2019 293 322 10.1016/B978‑0‑12‑813820‑5.00018‑0
    [Google Scholar]
  64. Sinha K. Ghosh J. Sil P.C. Morin and its role in chronic diseases. Adv. Exp. Med. Biol. 2016 928 453 471 10.1007/978‑3‑319‑41334‑1_19 27671828
    [Google Scholar]
  65. Baky M.H. Elshahed M. Wessjohann L. Farag M.A. Interactions between dietary flavonoids and the gut microbiome: A comprehensive review. Br. J. Nutr. 2022 128 4 577 591 10.1017/S0007114521003627 34511152
    [Google Scholar]
  66. Wang W. Xu C. Li X. Exploration of the potential mechanism of Banxia Xiexin Decoction for the effects on TNBS-induced ulcerative colitis rats with the assistance of network pharmacology analysis. J. Ethnopharmacol. 2021 277 114197 10.1016/j.jep.2021.114197 34004261
    [Google Scholar]
  67. Naeem A. Ming Y. Pengyi H. The fate of flavonoids after oral administration: A comprehensive overview of its bioavailability. Crit. Rev. Food Sci. Nutr. 2022 62 22 6169 6186 10.1080/10408398.2021.1898333 33847202
    [Google Scholar]
  68. Gálvez J. Coelho G. Crespo M.E. Intestinal anti‐inflammatory activity of morin on chronic experimental colitis in the rat. Aliment. Pharmacol. Ther. 2001 15 12 2027 2039 10.1046/j.1365‑2036.2001.01133.x 11736735
    [Google Scholar]
  69. Ocete M.A. Gálvez J. Crespo M.E. Effects of morin on an experimental model of acute colitis in rats. Pharmacology 1998 57 5 261 270 10.1159/000028250 9742291
    [Google Scholar]
  70. Thakur K. Zhu Y.Y. Feng J.Y. Morin as an imminent functional food ingredient: An update on its enhanced efficacy in the treatment and prevention of metabolic syndromes. Food Funct. 2020 11 10 8424 8443 10.1039/D0FO01444C 33043925
    [Google Scholar]
  71. Salaritabar A. Darvishi B. Hadjiakhoondi F. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J. Gastroenterol. 2017 23 28 5097 5114 10.3748/wjg.v23.i28.5097 28811706
    [Google Scholar]
  72. Tang X. Huang G. Zhang T. Li S. Elucidation of colon-protective efficacy of diosgenin in experimental TNBS-induced colitis: Inhibition of NF-κB/IkB-α and Bax/Caspase-1 signaling pathways. Biosci. Biotechnol. Biochem. 2020 84 9 1903 1912 10.1080/09168451.2020.1776590 32525764
    [Google Scholar]
  73. Chen J. Zhong H. Huang Z. Chen X. You J. Zou T. A critical review of kaempferol in intestinal health and diseases. Antioxidants 2023 12 8 1642 10.3390/antiox12081642 37627637
    [Google Scholar]
  74. Calderón-Montaño J.M. Burgos-Morón E. Pérez-Guerrero C. López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011 11 4 298 344 10.2174/138955711795305335 21428901
    [Google Scholar]
  75. Wang M. Firrman J. Liu L. Yam K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Res. Int. 2019 2019 1 1 18 10.1155/2019/7010467 31737673
    [Google Scholar]
  76. Márquez-Flores Y.K. Villegas I. Cárdeno A. Rosillo M.Á. Alarcón-de-la-Lastra C. Apigenin supplementation protects the development of dextran sulfate sodium-induced murine experimental colitis by inhibiting canonical and non-canonical inflammasome signaling pathways. J. Nutr. Biochem. 2016 30 143 152 10.1016/j.jnutbio.2015.12.002 27012631
    [Google Scholar]
  77. Telliez A. Furman C. Pommery N. Hénichart J.P. Mechanisms leading to COX-2 expression and COX-2 induced tumorigenesis: Topical therapeutic strategies targeting COX-2 expression and activity. Anticancer. Agents Med. Chem. 2006 6 3 187 208 10.2174/187152006776930891 16712448
    [Google Scholar]
  78. Prasad S. Phromnoi K. Yadav V. Chaturvedi M. Aggarwal B. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med. 2010 76 11 1044 1063 10.1055/s‑0030‑1250111 20635307
    [Google Scholar]
  79. Fu R. Wang L. Meng Y. Apigenin remodels the gut microbiota to ameliorate ulcerative colitis. Front. Nutr. 2022 9 1062961 10.3389/fnut.2022.1062961 36590200
    [Google Scholar]
  80. Karrasch T. Kim J.S. Jang B.I. Jobin C. The flavonoid luteolin worsens chemical-induced colitis in NF-kappaB(EGFP) transgenic mice through blockade of NF-kappaB-dependent protective molecules. PLoS One 2007 2 7 e596 10.1371/journal.pone.0000596 17611628
    [Google Scholar]
  81. Charalabopoulos A. Davakis S. Lambropoulou M. Papalois A. Simopoulos C. Tsaroucha A. Apigenin exerts anti-inflammatory effects in an experimental model of acute pancreatitis by down-regulating TNF-α. In Vivo 2019 33 4 1133 1141 10.21873/invivo.11583 31280202
    [Google Scholar]
  82. Li Z. Zhou J. Ji L. Liang Y. Xie S. Recent advances in the pharmacological actions of apigenin, its complexes, and its derivatives. Food Rev. Int. 2023 39 9 6568 6601 10.1080/87559129.2022.2122989
    [Google Scholar]
  83. Bougioukas I. Didilis V. Emmert A. Apigenin reduces NF-κB and subsequent cytokine production as protective effect in a rodent animal model of lung ischemia-reperfusion injury. J. Invest. Surg. 2018 31 2 96 106 10.1080/08941939.2017.1296512 28340319
    [Google Scholar]
  84. Salehi B. Venditti A. Sharifi-Rad M. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019 20 6 1305 10.3390/ijms20061305 30875872
    [Google Scholar]
  85. Farkas O. Palócz O. Pászti-Gere E. Gálfi P. Polymethoxyflavone apigenin‐trimethylether suppresses LPS‐induced inflammatory response in nontransformed porcine intestinal cell line IPEC‐J2. Oxid. Med. Cell. Longev. 2015 2015 1 1 10 10.1155/2015/673847 26180592
    [Google Scholar]
  86. Ben-Arye E. Goldin E. Wengrower D. Stamper A. Kohn R. Berry E. Wheat grass juice in the treatment of active distal ulcerative colitis: A randomized double-blind placebo-controlled trial. Scand. J. Gastroenterol. 2002 37 4 444 449 10.1080/003655202317316088 11989836
    [Google Scholar]
  87. Nunes C. Almeida L. Barbosa R.M. Laranjinha J. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food Funct. 2017 8 1 387 396 10.1039/C6FO01529H 28067377
    [Google Scholar]
  88. Nishitani Y. Yamamoto K. Yoshida M. Intestinal anti‐inflammatory activity of luteolin: Role of the aglycone in NF‐κB inactivation in macrophages co‐cultured with intestinal epithelial cells. Biofactors 2013 39 5 522 533 10.1002/biof.1091 23460110
    [Google Scholar]
  89. Santana M. Cercato L. Oliveira J. Camargo E. Medicinal plants in the treatment of colitis: Evidence from preclinical studies. Planta Med. 2017 83 7 588 614 10.1055/s‑0043‑104933 28291990
    [Google Scholar]
  90. Malhotra H. Ashri A. Singla R.K. Gautam R.K. Eupatilin: Sources, extraction, derivatives, and pharmacological activity. In: Handbook of Dietary Flavonoids. Cham Springer 2023 1 50 10.1007/978‑3‑030‑94753‑8_84‑1
    [Google Scholar]
  91. Arya V.S. Kanthlal S.K. Linda G. The role of dietary polyphenols in inflammatory bowel disease: A possible clue on the molecular mechanisms involved in the prevention of immune and inflammatory reactions. J. Food Biochem. 2020 44 11 e13369 10.1111/jfbc.13369 32885438
    [Google Scholar]
  92. Gerges S.H. Wahdan S.A. Elsherbiny D.A. El-Demerdash E. Pharmacology of diosmin, a citrus flavone glycoside: An updated review. Eur. J. Drug Metab. Pharmacokinet. 2022 47 1 1 18 10.1007/s13318‑021‑00731‑y 34687440
    [Google Scholar]
  93. Crespo M. Gálvez J. Cruz T. Ocete M. Zarzuelo A. Anti-inflammatory activity of diosmin and hesperidin in rat colitis induced by TNBS. Planta Med. 1999 65 7 651 653 10.1055/s‑2006‑960838 10575379
    [Google Scholar]
  94. Huwait E. Mobashir M. Potential and therapeutic roles of diosmin in human diseases. Biomedicines 2022 10 5 1076 10.3390/biomedicines10051076 35625813
    [Google Scholar]
  95. Park S. Hahm K.B. Oh T.Y. Jin J.H. Choue R. Preventive effect of the flavonoid, wogonin, against ethanol-induced gastric mucosal damage in rats. Dig. Dis. Sci. 2004 49 3 384 394 10.1023/B:DDAS.0000020490.34220.6d 15139485
    [Google Scholar]
  96. Wang W. Xia T. Yu X. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro. Inflamm. Res. 2015 64 6 423 431 10.1007/s00011‑015‑0822‑0 25917044
    [Google Scholar]
  97. Wang Z. Cheng L. Shang Z. Network pharmacology for analyzing the key targets and potential mechanism of wogonin in gliomas. Front. Pharmacol. 2021 12 646187 10.3389/fphar.2021.646187 33897434
    [Google Scholar]
  98. Musumeci L. Maugeri A. Cirmi S. Citrusfruits and their flavonoids in inflammatory bowel disease: An overview. Nat. Prod. Res. 2020 34 1 122 136 10.1080/14786419.2019.1601196 30990326
    [Google Scholar]
  99. Ashrafizadeh M. Ahmadi Z. Mohammadinejad R. Ghasemipour Afshar E. Tangeretin: A mechanistic review of its pharmacological and therapeutic effects. J. Basic Clin. Physiol. Pharmacol. 2020 31 4 20190191 10.1515/jbcpp‑2019‑0191 32329752
    [Google Scholar]
  100. Chen B. Luo J. Han Y. Dietary tangeretin alleviated dextran sulfate sodium-induced colitis in mice via inhibiting inflammatory response, restoring intestinal barrier function, and modulating gut microbiota. J. Agric. Food Chem. 2021 69 27 7663 7674 10.1021/acs.jafc.1c03046 34182753
    [Google Scholar]
  101. Ribeiro D. Proenca C. Rocha S. Immunomodulatory effects of flavonoids in the prophylaxis and treatment of inflammatory bowel diseases: A comprehensive review. Curr. Med. Chem. 2018 25 28 3374 3412 10.2174/0929867325666180214121734 29446723
    [Google Scholar]
  102. Ginger M.R. Grigor M.R. Comparative aspects of milk caseins. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999 124 2 133 145 10.1016/S0305‑0491(99)00110‑8 10584297
    [Google Scholar]
  103. Daniel H. Vohwinkel M. Rehner G. Effect of casein and β-casomorphins on gastrointestinal motility in rats. J. Nutr. 1990 120 3 252 257 10.1093/jn/120.3.252 2319342
    [Google Scholar]
  104. Pessi T. Isolauri E. Sütas Y. Kankaanranta H. Moilanen E. Hurme M. Suppression of T-cell activation by Lactobacillus rhamnosus GG-degraded bovine casein. Int. Immunopharmacol. 2001 1 2 211 218 10.1016/S1567‑5769(00)00018‑7 11360922
    [Google Scholar]
  105. Meister D. Bode J. Shand A. Ghosh S. Anti-inflammatory effects of enteral diet components on Crohn’s disease-affected tissues in vitro. Dig. Liver Dis. 2002 34 6 430 438 10.1016/S1590‑8658(02)80041‑X 12132791
    [Google Scholar]
  106. Playford R.J. Woodman A.C. Vesey D. Effect of luminal growth factor preservation on intestinal growth. Lancet 1993 341 8849 843 848 10.1016/0140‑6736(93)93057‑8 8096559
    [Google Scholar]
  107. Kimura T. Murakawa Y. Ohno M. Ohtani S. Higaki K. Gastrointestinal absorption of recombinant human insulin-like growth factor-I in rats. J. Pharmacol. Exp. Ther. 1997 283 2 611 618 10.1016/S0022‑3565(24)37082‑X 9353376
    [Google Scholar]
  108. Dunbar A.J. Priebe I.K. Belford D.A. Goddard C. Identification of betacellulin as a major peptide growth factor in milk: Purification, characterization and molecular cloning of bovine betacellulin. Biochem. J. 1999 344 3 713 721 10.1042/bj3440713 10585857
    [Google Scholar]
  109. Matsumoto H. Shimokawa Y. Ushida Y. Toida T. Hayasawa H. New biological function of bovine α-lactalbumin: Protective effect against ethanol- and stress-induced gastric mucosal injury in rats. Biosci. Biotechnol. Biochem. 2001 65 5 1104 1111 10.1271/bbb.65.1104 11440124
    [Google Scholar]
  110. Link A.R. Luzhnikov E.A. Il’iashenko K.K. Iastrebova E.V. Shul’tess V. Lind R.M. Use of SGOL-1-40 milk whey in the complex therapy of patients with acute chemical poisoning and burns of the gastrointestinal tract. Vopr. Pitan. 2001 70 5 35 38 11715697
    [Google Scholar]
  111. Meydani S.N. Ha W.K. Immunologic effects of yogurt. Am. J. Clin. Nutr. 2000 71 4 861 872 10.1093/ajcn/71.4.861 10731490
    [Google Scholar]
  112. De Moreno De Leblanc A. Valdéz J. Perdigón G. Inflammatory immune response. Eur. J. Inflamm. 2004 2 1 21 31 10.1177/1721727X0400200104
    [Google Scholar]
  113. Chaves S. Perdigon G. De Leblanc A.D.M. Yoghurt consumption regulates the immune cells implicated in acute intestinal inflammation and prevents the recurrence of the inflammatory process in a mouse model. J. Food Prot. 2011 74 5 801 811 10.4315/0362‑028X.JFP‑10‑375 21549052
    [Google Scholar]
  114. Playford R.J. Macdonald C.E. Johnson W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr. 2000 72 1 5 14 10.1093/ajcn/72.1.5 10871554
    [Google Scholar]
  115. Schlimme E. Martin D. Meisel H. Nucleosides and nucleotides: Natural bioactive substances in milk and colostrum. Br. J. Nutr. 2000 84 Suppl. 1 S59 S68 10.1017/s0007114500002269 11242448
    [Google Scholar]
  116. Artym J. Zimecki M. Colostrum and Lactoferrin protect against side effects of therapy with antibiotics, anti-inflammatory drugs and steroids, and psychophysical stress: A comprehensive review. Biomedicines 2023 11 4 1015 10.3390/biomedicines11041015 37189633
    [Google Scholar]
  117. Buttar H.S. Bagwe S.M. Bhullar S.K. Kaur G. Health benefits of bovine colostrum in children and adults. In: Dairy in Human Health and Disease Across the Lifespan. Cambridge, Massachusetts Academic Press 2017 3 20 10.1016/B978‑0‑12‑809868‑4.00001‑7
    [Google Scholar]
  118. Bagwe-Parab S. Yadav P. Kaur G. Tuli H.S. Buttar H.S. Therapeutic applications of human and bovine colostrum in the treatment of gastrointestinal diseases and distinctive cancer types: The current evidence. Front. Pharmacol. 2020 11 01100 10.3389/fphar.2020.01100 33071773
    [Google Scholar]
  119. Seifert J. Molkewehrum M. Oesser S. Nebermann L. Schulze C. Endotoxin inactivation by enterally applied colostrum of different composition. Eur. Surg. Res. 2002 34 1-2 68 72 10.1159/000048890 11867904
    [Google Scholar]
  120. Godhia M. Patel N. Colostrum - Its composition, benefits as a nutraceutical: A review. Curr. Res. Nutr. Food Sci. 2013 1 1 37 47 10.12944/CRNFSJ.1.1.04
    [Google Scholar]
  121. Sun H. Xiao D. Liu W. Well-known polypeptides of deer antler velvet with key actives: modern pharmacological advances. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 1 15 31 10.1007/s00210‑023‑02642‑y 37555852
    [Google Scholar]
  122. Li X. Shi W. Wei G. Galectin-1 promotes angiogenesis and chondrogenesis during antler regeneration. Cell. Mol. Biol. Lett. 2023 28 1 40 10.1186/s11658‑023‑00456‑7 37189051
    [Google Scholar]
  123. Ker D.F.E. Wang D. Sharma R. Identifying deer antler uhrf1 proliferation and s100a10 mineralization genes using comparative RNA-seq. Stem Cell Res. Ther. 2018 9 1 292 10.1186/s13287‑018‑1027‑6 30376879
    [Google Scholar]
  124. Li Z. Wang X. Zhang T. The development of microbiota and metabolome in small intestine of sika deer (Cervus nippon) from birth to weaning. Front. Microbiol. 2018 9 4 10.3389/fmicb.2018.00004 29410651
    [Google Scholar]
  125. Suh J.S. Eun J.S. So J.N. Seo J.T. Jhon G.J. Phagocytic activity of ethyl alcohol fraction of deer antler in murine peritoneal macrophage. Biol. Pharm. Bull. 1999 22 9 932 935 10.1248/bpb.22.932 10513615
    [Google Scholar]
  126. Mijan M.A. Lim B.O. Diets, functional foods, and nutraceuticals as alternative therapies for inflammatory bowel disease: Present status and future trends. World J. Gastroenterol. 2018 24 25 2673 2685 10.3748/wjg.v24.i25.2673 29991873
    [Google Scholar]
  127. Scarpellini E. Broeders B. Schol J. The use of peppermint oil in gastroenterology. Curr. Pharm. Des. 2023 29 8 576 583 10.2174/1381612829666230328163449 36994979
    [Google Scholar]
  128. Malfertheiner P. STW 5 (Iberogast) therapy in gastrointestinal functional disorders. Dig Dis 2017 35 25 9 (Suppl. 1) 10.1159/000485410 29421817
    [Google Scholar]
  129. Allescher H.D. Burgell R. Malfertheiner P. Mearin F. Multi-target treatment for irritable bowel syndrome with STW 5: Pharmacological modes of action. J. Gastrointestin. Liver Dis. 2020 29 2 227 233 10.15403/jgld‑814 32530990
    [Google Scholar]
  130. Lauche R. Kumar S. Hallmann J. Efficacy and safety of Ayurvedic herbs in diarrhoea-predominant irritable bowel syndrome: A randomised controlled crossover trial. Complement. Ther. Med. 2016 26 171 177 10.1016/j.ctim.2016.04.002 27261998
    [Google Scholar]
  131. Balmus I.M. Copolovici D. Copolovici L. Ciobica A. Gorgan D.L. Biomolecules from plant wastes potentially relevant in the management of irritable bowel syndrome and co-occurring symptomatology. Molecules 2022 27 8 2403 10.3390/molecules27082403 35458601
    [Google Scholar]
  132. Tal-Dia A. Toure K. Sarr O. A baobab solution for the prevention and treatment of acute dehydration in infantile diarrhea. Bull. Soc. Med. Afr. Noire Lang. Fr. 1997 42 1 68 73 9827122
    [Google Scholar]
  133. Chauhan R.K.S. Jain A.M. Dube M.K. Bhandari B. A combination of sulfadimidine, neomycin and berberine in the treatment of infectious diarrhoea. Indian J. Pediatr. 1969 36 7 242 244 10.1007/BF02749333 5355320
    [Google Scholar]
  134. Zhou F.F. Wu S. Klena J.D. Huang H.H. Clinical characteristics of Clostridium difficile infection in hospitalized patients with antibiotic-associated diarrhea in a university hospital in China. Eur. J. Clin. Microbiol. Infect. Dis. 2014 33 10 1773 1779 10.1007/s10096‑014‑2132‑9 24820293
    [Google Scholar]
  135. Qassadi F.I. Zhu Z. Monaghan T.M. Plant-derived products with therapeutic potential against gastrointestinal bacteria. Pathogens 2023 12 2 333 10.3390/pathogens12020333 36839605
    [Google Scholar]
  136. Sanchez-Muñoz F. Dominguez-Lopez A. Yamamoto-Furusho J.K. Role of cytokines in inflammatory bowel disease. World J. Gastroenterol. 2008 14 27 4280 4288 10.3748/wjg.14.4280 18666314
    [Google Scholar]
  137. Li M.C. He S.H. IL-10 and its related cytokines for treatment of inflammatory bowel disease. World J. Gastroenterol. 2004 10 5 620 625 10.3748/wjg.v10.i5.620 14991925
    [Google Scholar]
  138. Fooks LJ Gibson GR Probiotics as modulators of the gut flora. Br J Nutr 2002 88 S1 s39 49 (Suppl. 1) 10.1079/BJN2002628 12215180
    [Google Scholar]
  139. Naini M.A. Zargari-Samadnejad A. Mehrvarz S. Anti‐inflammatory, antioxidant, and healing‐promoting effects of Aloe vera extract in the experimental colitis in rats. Evid. Based Complement. Alternat. Med. 2021 2021 1 1 12 10.1155/2021/9945244 34912469
    [Google Scholar]
  140. Shi G. Jiang H. Feng J. Aloe vera mitigates dextran sulfate sodium-induced rat ulcerative colitis by potentiating colon mucus barrier. J. Ethnopharmacol. 2021 279 114108 10.1016/j.jep.2021.114108 33839199
    [Google Scholar]
  141. Ahmed S.R. Rabbee M.F. Roy A. Therapeutic promises of medicinal plants in Bangladesh and their bioactive compounds against ulcers and inflammatory diseases. Plants 2021 10 7 1348 10.3390/plants10071348 34371551
    [Google Scholar]
  142. Dörr J.A. Majolo F. Bortoluzzi L. Antiulcerogenic potential of the ethanolic extract of ceiba speciosa (A. St.-Hil.) ravenna evaluated by in vitro and in vivo studies. Int. J. Mol. Sci. 2022 23 24 15634 10.3390/ijms232415634 36555275
    [Google Scholar]
  143. Chaachouay N. Synergy, additive effects, and antagonism of drugs with plant bioactive compounds. Drugs and Drug Candidates 2025 4 1 4 10.3390/ddc4010004
    [Google Scholar]
  144. Hu Z. Yang X. Ho P.C.L. Herb-drug interactions. Drugs 2005 65 9 1239 1282 10.2165/00003495‑200565090‑00005 15916450
    [Google Scholar]
  145. Tran N. Pham B. Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology 2020 9 9 252 10.3390/biology9090252 32872226
    [Google Scholar]
  146. B K, Babu AK, Pillay SM, et al. A review of herbal treatment for functional gastrointestinal disorders and infection. Prog Microbes Mol Biol 2023 6 1 2 19 10.36877/pmmb.a0000346
    [Google Scholar]
  147. Martínez V. Iriondo De-Hond A. Borrelli F. Capasso R. del Castillo M.D. Abalo R. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: Useful nutraceuticals? Int. J. Mol. Sci. 2020 21 9 3067 10.3390/ijms21093067 32357565
    [Google Scholar]
  148. Wu W. Lin Y. Farag M.A. Li Z. Shao P. Dendrobium as a new natural source of bioactive for the prevention and treatment of digestive tract diseases: A comprehensive review with future perspectives. Phytomedicine 2023 114 154784 10.1016/j.phymed.2023.154784 37011417
    [Google Scholar]
  149. Patil B.S. Jayaprakasha G.K. Chidambara Murthy K.N. Vikram A. Bioactive compounds: Historical perspectives, opportunities, and challenges. J. Agric. Food Chem. 2009 57 18 8142 8160 10.1021/jf9000132 19719126
    [Google Scholar]
  150. Rein M.J. Renouf M. Cruz-Hernandez C. Actis-Goretta L. Thakkar S.K. da Silva Pinto M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013 75 3 588 602 10.1111/j.1365‑2125.2012.04425.x 22897361
    [Google Scholar]
  151. Vecchi Brumatti L. Marcuzzi A. Tricarico P. Zanin V. Girardelli M. Bianco A. Curcumin and inflammatory bowel disease: Potential and limits of innovative treatments. Molecules 2014 19 12 21127 21153 10.3390/molecules191221127 25521115
    [Google Scholar]
  152. Penner R. Fedorak R. Madsen K. Probiotics and nutraceuticals: Non-medicinal treatments of gastrointestinal diseases. Curr. Opin. Pharmacol. 2005 5 6 596 603 10.1016/j.coph.2005.06.009 16214413
    [Google Scholar]
  153. Suri C. Pande B. Sahu T. Sahithi L.S. Verma H.K. Revolutionizing gastrointestinal disorder management: Cutting-edge advances and future prospects. J. Clin. Med. 2024 13 13 3977 10.3390/jcm13133977 38999541
    [Google Scholar]
  154. Li-Chan E.C.Y. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015 1 28 37 10.1016/j.cofs.2014.09.005
    [Google Scholar]
  155. Cicero A.F.G. Colletti A. Nutraceuticals and blood pressure control: Results from clinical trials and meta-analyses. High Blood Press. Cardiovasc. Prev. 2015 22 3 203 213 10.1007/s40292‑015‑0081‑8 25788027
    [Google Scholar]
  156. Singh B.P. Aluko R.E. Hati S. Solanki D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit. Rev. Food Sci. Nutr. 2022 62 17 4593 4606 10.1080/10408398.2021.1877109 33506720
    [Google Scholar]
  157. Craik D.J. Fairlie D.P. Liras S. Price D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013 81 1 136 147 10.1111/cbdd.12055 23253135
    [Google Scholar]
  158. McClements D.J. Nano-enabled personalized nutrition: Developing multicomponent-bioactive colloidal delivery systems. Adv. Colloid Interface Sci. 2020 282 102211 10.1016/j.cis.2020.102211 32721626
    [Google Scholar]
  159. Saito T. Sato H. Virgona N. Negative growth control of osteosarcoma cell by Bowman–Birk protease inhibitor from soybean; involvement of connexin 43. Cancer Lett. 2007 253 2 249 257 10.1016/j.canlet.2007.01.021 17343982
    [Google Scholar]
  160. Spisni E. Turroni S. Alvisi P. Nutraceuticals in the modulation of the intestinal microbiota: Current status and future directions. Front. Pharmacol. 2022 13 841782 10.3389/fphar.2022.841782 35370685
    [Google Scholar]
  161. Li L.Q. Chen X. Zhu J. Advances and challenges in interaction between heteroglycans and Bifidobacterium: Utilization strategies, intestinal health and future perspectives. Trends Food Sci. Technol. 2023 134 112 122 10.1016/j.tifs.2023.02.018
    [Google Scholar]
  162. Donnet-Hughes A. Duc N. Serrant P. Vidal K. Schiffrin E. Bioactive molecules in milk and their role in health and disease: The role of transforming growth factor‐β. Immunol. Cell Biol. 2000 78 1 74 79 10.1046/j.1440‑1711.2000.00882.x 10651932
    [Google Scholar]
  163. dos Santos A.M. Carvalho S.G. Meneguin A.B. Sábio R.M. Gremião M.P.D. Chorilli M. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: Challenges, advances and future perspectives. J. Control. Release 2021 334 353 366 10.1016/j.jconrel.2021.04.026 33901582
    [Google Scholar]
  164. Liu T. Asif I.M. Bai C. Huang Y. Li B. Wang L. The effectiveness and safety of natural food and food-derived extract supplements for treating functional gastrointestinal disorders—current perspectives. Nutr. Rev. 2025 83 3 e1158 e1171 10.1093/nutrit/nuae047 38908001
    [Google Scholar]
  165. Wang T. Luo Y. Biological fate of ingested lipid-based nanoparticles: Current understanding and future directions. Nanoscale 2019 11 23 11048 11063 10.1039/C9NR03025E 31149694
    [Google Scholar]
  166. Fernández-Tomé S. Hernández-Ledesma B. Gastrointestinal digestion of food proteins under the effects of released bioactive peptides on digestive health. Mol. Nutr. Food Res. 2020 64 21 2000401 10.1002/mnfr.202000401 32974997
    [Google Scholar]
  167. Majumder K. Mine Y. Wu J. The potential of food protein‐derived anti‐inflammatory peptides against various chronic inflammatory diseases. J. Sci. Food Agric. 2016 96 7 2303 2311 10.1002/jsfa.7600 26711001
    [Google Scholar]
  168. Danxi Y. Likai Z. Bohui D. Role of bioactive ingredients from medicine food homology species in the regulation of chronic gastritis. Nat. Prod. Commun. 2025 20 1 10.1177/1934578X251315061
    [Google Scholar]
  169. Wang H.K. The therapeutic potential of flavonoids. Expert Opin. Investig. Drugs 2000 9 9 2103 2119 10.1517/13543784.9.9.2103 11060796
    [Google Scholar]
  170. Yi H. Peng H. Wu X. The therapeutic effects and mechanisms of quercetin on metabolic diseases: Pharmacological data and clinical evidence. Oxid. Med. Cell. Longev. 2021 2021 1 6678662 10.1155/2021/6678662 34257817
    [Google Scholar]
  171. Miles S.L. McFarland M. Niles R.M. Molecular and physiological actions of quercetin: Need for clinical trials to assess its benefits in human disease. Nutr. Rev. 2014 72 11 720 734 10.1111/nure.12152 25323953
    [Google Scholar]
  172. Celli G.B. Ghanem A. Brooks M.S.L. Bioactive encapsulated powders for functional foods—A review of methods and current limitations. Food Bioprocess Technol. 2015 8 9 1825 1837 10.1007/s11947‑015‑1559‑z
    [Google Scholar]
  173. Sahoo D.K. Heilmann R.M. Paital B. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front. Endocrinol. 2023 14 1217165 10.3389/fendo.2023.1217165 37701897
    [Google Scholar]
  174. Juritsch A.F. Moreau R. Role of soybean-derived bioactive compounds in inflammatory bowel disease. Nutr. Rev. 2018 76 8 618 638 10.1093/nutrit/nuy021 29800381
    [Google Scholar]
  175. Yue N. Xu H. Xu J. Application of nanoparticles in the diagnosis of gastrointestinal diseases: A complete future perspective. Int. J. Nanomedicine 2023 18 4143 4170 10.2147/IJN.S413141 37525691
    [Google Scholar]
  176. Salinas E. Reyes-Pavón D. Cortes-Perez N.G. Bioactive compounds in food as a current therapeutic approach to maintain a healthy intestinal epithelium. Microorganisms 2021 9 8 1634 10.3390/microorganisms9081634 34442713
    [Google Scholar]
  177. Dima C. Assadpour E. Dima S. Jafari S.M. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Compr. Rev. Food Sci. Food Saf. 2020 19 6 2862 2884 10.1111/1541‑4337.12623 33337033
    [Google Scholar]
  178. Xiao J Tian W ,Abdullah , et al Updated design strategies for oral delivery systems: maximized bioefficacy of dietary bioactive compounds achieved by inducing proper digestive fate and sensory attributes. Crit. Rev. Food Sci. Nutr. 2024 64 3 817 836 10.1080/10408398.2022.2109583 35959723
    [Google Scholar]
  179. Zhao S. Zhao Y. Yang X. Zhao T. Recent research advances on oral colon-specific delivery system of nature bioactive components: A review. Food Res. Int. 2023 173 Pt 2 113403 10.1016/j.foodres.2023.113403 37803751
    [Google Scholar]
  180. Chenxi Z. Hemmat A. Thi N.H. Afrand M. Nanoparticle-enhanced drug delivery systems: An up-to-date review. J. Mol. Liq. 2025 424 126999 10.1016/j.molliq.2025.126999
    [Google Scholar]
  181. Sharma M. Wasan A. Sharma R.K. Recent developments in probiotics: An emphasis on Bifidobacterium. Food Biosci. 2021 41 100993 10.1016/j.fbio.2021.100993
    [Google Scholar]
  182. Anheyer D. Frawley J. Koch A.K. Herbal medicines for gastrointestinal disorders in children and adolescents: A systematic review. Pediatrics 2017 139 6 e20170062 10.1542/peds.2017‑0062 28562281
    [Google Scholar]
  183. Al-Madhagy S. Ashmawy N.S. Mamdouh A. Eldahshan O.A. Farag M.A. A comprehensive review of the health benefits of flaxseed oil in relation to its chemical composition and comparison with other omega-3-rich oils. Eur. J. Med. Res. 2023 28 1 240 10.1186/s40001‑023‑01203‑6 37464425
    [Google Scholar]
  184. Horvath A. Dziechciarz P. Szajewska H. Systematic review of randomized controlled trials: Fiber supplements for abdominal pain-related functional gastrointestinal disorders in childhood. Ann. Nutr. Metab. 2012 61 2 95 101 10.1159/000338965 22889919
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775370010250720174808
Loading
/content/journals/cdrr/10.2174/0125899775370010250720174808
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: bioactives ; Gastrointestinal disease ; gut microbiota ; gut mucosa ; inflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test