Skip to content
2000
Volume 17, Issue 3
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Background

Understanding the genetic foundations of brain development has been made possible by the use of traditional biological models. However, these models frequently fail to capture the complexity of human brain development, particularly the considerable cortical expansion that sets humans apart from other vertebrates and non-human primates.

Objectives

The purpose of this review is to outline the methodology, applications, and potential prospects for using human brain organoids as sophisticated models for researching brain development and illness mechanisms.

Methods

Organoids, or three-dimensional (3-D) structures, are generated by utilizing adult or embryonic stem cells to mimic the main structural and functional features of the human brain. The present investigation emphasizes the advantages of these organoids over traditional two-dimensional (2-D) monolayer models in relation to cellular variety and the ability to create complex 3-D networks, addressing various methods established by researchers to culture these cells.

Results

Organoids precisely mimic numerous features of human brain development, overcoming the limitations of conventional models. They have demonstrated significant utility in investigating the mechanisms that contribute to neurodegenerative diseases like Parkinson’s and Alzheimer’s, in addition to tumor biology, providing a valuable understanding of both the normal physiological processes and the underlying cause of the human brain.

Conclusion

Human brain organoids signify a notable progression in the field of neuroscience research, facilitating enhanced modeling of brain disorders. Future investigations will further enhance these methodologies and examine their applications, leading to innovative therapeutic strategies and broadening the knowledge of human brain disorders.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775369286250206050006
2025-02-19
2025-11-07
Loading full text...

Full text loading...

References

  1. XavierC.d.J. Santosd.H.S. MarinhoM.M. Nunes da RochaM. TeixeiraR.A.M. CoutinhoH.D.M. MarinhoE.S. Sucheta KumarN. MishraR. Chalcones as potent agents against staphylococcus aureus: A computational approach.Lett. Drug Des. Discov.202421468470010.2174/1570180820666230120145921
    [Google Scholar]
  2. MishraR. ChaudharyK. MishraI. Weapons and strategies against covid-19: A perspective.Curr. Pharm. Biotechnol.202325214415810.2174/138920102466623052516143237231727
    [Google Scholar]
  3. MishraR. ChaudharyK. MishraI. AI in health science: A perspective.Curr. Pharm. Biotechnol.20232491149116310.2174/138920102366622092914522036177622
    [Google Scholar]
  4. MishraR. KumarN. SachanN. Synthesis, biological evaluation, and docking analysis of novel tetrahydrobenzothiophene derivatives.Lett. Drug Des. Discov.202219653054010.2174/1570180819666220117123958
    [Google Scholar]
  5. MishraR. KumarN. SachanN. Synthesis, pharmacological evaluation, and in-silico studies of thiophene derivatives.Oncologie202123449351410.32604/oncologie.2021.018532
    [Google Scholar]
  6. MishraR. KumarN. MishraI. SachanN. A review on anticancer activities of thiophene and its analogs.Mini Rev. Med. Chem.202020191944196510.2174/138955752066620071510455532669077
    [Google Scholar]
  7. MittalR.K. MishraR. SharmaV. MishraI. 1,3,4-Thiadiazole: A versatile scaffold for drug discovery.Lett. Org. Chem.202421540041310.2174/0115701786274678231124101033
    [Google Scholar]
  8. MishraR. KaushalS. MishraI. Flavonoids as pyruvate kinase m2 inhibitor: An in silico analysis.Lett. Drug Des. Discov.202320132661267310.2174/1570180820666230816090541
    [Google Scholar]
  9. UpadhyayP.K. PathakS. MishraR. KumarR. JainA. A multifaceted scaffold for building bioactive compounds: Phenothiazine.Lett. Org. Chem.202320761863110.2174/1570178620666221202100529
    [Google Scholar]
  10. MishraR. KumarN. SachanN. Thiophene and its analogs as prospective antioxidant agents: A retrospective study.Mini Rev. Med. Chem.202222101420143710.2174/138955752166621102214545834719361
    [Google Scholar]
  11. MishraR. H1N1 infection complications and potential moieties for treatment: A systematic review.Inter. J. Pharma. Res.202012sp110.31838/ijpr/2020.SP1.139
    [Google Scholar]
  12. MishraI. MishraR. MujwarS. ChandraP. SachanN. A retrospect on antimicrobial potential of thiazole scaffold.J. Heterocycl. Chem.20205762304232910.1002/jhet.3970
    [Google Scholar]
  13. MishraR. SachanN. KumarN. MishraI. ChandP. Thiophene scaffold as prospective antimicrobial agent: A review.J. Heterocycl. Chem.20185592019203410.1002/jhet.3249
    [Google Scholar]
  14. MishraR. SharmaP.K. VermaP.K. TomerI. MathurG. DhakadP.K. Biological potential of thiazole derivatives of synthetic origin.J. Heterocycl. Chem.20175442103211610.1002/jhet.2827
    [Google Scholar]
  15. MishraR. TomarI. ChemInform abstract: Pyrimidine: The molecule of diverse biological and medicinal importance.ChemInform20114240chin.20114023510.1002/chin.201140235
    [Google Scholar]
  16. MittalR.K. KrishnaG. SharmaV. PurohitP. MishraR. Spirulina unveiled: A comprehensive review on biotechnological innovations, nutritional proficiency, and clinical implications.Curr. Pharm. Biotechnol.2024251610.2174/011389201030452424051402373538803172
    [Google Scholar]
  17. MishraI. ChandraP. SachanN. Thiazole derivatives as rorγt inhibitors: Synthesis, biological evaluation, and docking analysis.Lett. Drug Des. Discov.202421590591710.2174/1570180820666230217123456
    [Google Scholar]
  18. MishraI. SachanN. Thiazole scaffold: An overview on its synthetic and pharmaceutical aspects.ECS Trans.20221071177451776810.1149/10701.17745ecst
    [Google Scholar]
  19. MittalR.K. KrishnaG. MishraR. SharmaV. Biotechnological breakthroughs in resveratrol synthesis and health advancements.Curr. Pharm. Biotechnol.2024251610.2174/011389201029722824061211252038939992
    [Google Scholar]
  20. DhakadP.K. MishraR. MishraI. A concise review: Nutritional interventions for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Nat. Res. Hum. Health20233440342510.53365/nrfhh/175070
    [Google Scholar]
  21. MishraR. AgarwalR. A concise overview on recent advances in pharmaceutical aerosols and their commercial applications.Curr. Mat. Sci.202215212514110.2174/2666145414666211111102425
    [Google Scholar]
  22. DhakadP.K. SharmaP.K. MishraR. A review on phytochemistry, spermidine alkaloids and stachydrine: Capparis decidua (Forssk.) edgew.Res. J. Phar. Tech.20211421171117610.5958/0974‑360X.2021.00209.2
    [Google Scholar]
  23. MishraR. XavierC.d.J. KumarN. KrishnaG. DhakadP.K. Santosd.H.S. BandeiraP.N. RodriguesT.H.S. GondimD.R. RibeiroW.H.F. Silvad.D.S. TeixeiraA.M.R. PereiraW.F. MarinhoE.S. Exploring quinoline derivatives: Their antimalarial efficacy and structural features.Med. Chem.20242019612110.2174/0115734064318361240827072124
    [Google Scholar]
  24. MishraI. SharmaV. KumarN. KrishnaG. SethiV.A. MittalR. DhakadP.K. MishraR. Exploring thiophene derivatives: Synthesis strategies and biological significance.Med. Chem.2024201113110.2174/0115734064326879240801043412
    [Google Scholar]
  25. EgervariG. KozlenkovA. DrachevaS. HurdY.L. Molecular windows into the human brain for psychiatric disorders.Mol. Psychiatry201924565367310.1038/s41380‑018‑0125‑229955163
    [Google Scholar]
  26. HumphriesC.E. KohliM.A. NathansonL. WhiteheadP. BeechamG. MartinE. MashD.C. Pericak-VanceM.A. GilbertJ. Integrated whole transcriptome and DNA methylation analysis identifies gene networks specific to late-onset Alzheimer’s disease.J. Alzheimers Dis.201544397798710.3233/JAD‑14198925380588
    [Google Scholar]
  27. LiuX. HanD. SomelM. JiangX. HuH. GuijarroP. ZhangN. MitchellA. HaleneT. ElyJ.J. SherwoodC.C. HofP.R. QiuZ. PääboS. AkbarianS. KhaitovichP. Disruption of an evolutionarily novel synaptic expression pattern in autism.PLoS Biol.2016149e100255810.1371/journal.pbio.100255827685936
    [Google Scholar]
  28. CarterR.J. LioneL.A. HumbyT. MangiariniL. MahalA. BatesG.P. DunnettS.B. MortonA.J. Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation.J. Neurosci.19991983248325710.1523/JNEUROSCI.19‑08‑03248.199910191337
    [Google Scholar]
  29. GurneyM.E. PuH. ChiuA.Y. CantoD.M.C. PolchowC.Y. AlexanderD.D. CaliendoJ. HentatiA. KwonY.W. DengH.X. ChenW. ZhaiP. SufitR.L. SiddiqueT. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.Science199426451661772177510.1126/science.82092588209258
    [Google Scholar]
  30. OakleyH. ColeS.L. LoganS. MausE. ShaoP. CraftJ. Guillozet-BongaartsA. OhnoM. DisterhoftJ. EldikV.L. BerryR. VassarR. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation.J. Neurosci.20062640101291014010.1523/JNEUROSCI.1202‑06.200617021169
    [Google Scholar]
  31. ThomsonJ.A. Itskovitz-EldorJ. ShapiroS.S. WaknitzM.A. SwiergielJ.J. MarshallV.S. JonesJ.M. Embryonic stem cell lines derived from human blastocysts.Science199828253911145114710.1126/science.282.5391.11459804556
    [Google Scholar]
  32. TakahashiK. TanabeK. OhnukiM. NaritaM. IchisakaT. TomodaK. YamanakaS. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell2007131586187210.1016/j.cell.2007.11.019
    [Google Scholar]
  33. MayhewC.N. SinghaniaR. A review of protocols for brain organoids and applications for disease modeling.STAR Prot.20234110186010.1016/j.xpro.2022.10186036566384
    [Google Scholar]
  34. Benito-KwiecinskiS. LancasterM.A. Brain organoids: Human neurodevelopment in a dish.Cold Spring Harb. Perspect. Biol.2020128a03570910.1101/cshperspect.a03570931767649
    [Google Scholar]
  35. SidhayeJ. KnoblichJ.A. Brain organoids: An ensemble of bioassays to investigate human neurodevelopment and disease.Cell Death Differ.2021281526710.1038/s41418‑020‑0566‑432483384
    [Google Scholar]
  36. MishraI. GuptaK. MishraR. ChaudharyK. SharmaV. An exploration of organoid technology: Present advancements, applications, and obstacles.Curr. Pharm. Biotechnol.20242581000102010.2174/011389201027302423092507523137807405
    [Google Scholar]
  37. DriehuisE. CleversH. CRISPR/Cas 9 genome editing and its applications in organoids.Am. J. Physiol. Gastrointest. Liver Physiol.20173123G257G26510.1152/ajpgi.00410.201628126704
    [Google Scholar]
  38. FischerJ. HeideM. HuttnerW.B. Genetic modification of brain organoids.Front. Cell. Neurosci.20191355810.3389/fncel.2019.0055831920558
    [Google Scholar]
  39. JoJ. XiaoY. SunA.X. CukurogluE. TranH.D. GökeJ. TanZ.Y. SawT.Y. TanC.P. LokmanH. LeeY. KimD. KoH.S. KimS.O. ParkJ.H. ChoN.J. HydeT.M. KleinmanJ.E. ShinJ.H. WeinbergerD.R. TanE.K. JeH.S. NgH.H. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons.Cell. Stem. Cell.201619224825710.1016/j.stem.2016.07.00527476966
    [Google Scholar]
  40. KadoshimaT. SakaguchiH. NakanoT. SoenM. AndoS. EirakuM. SasaiY. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex.Proc. Natl. Acad. Sci. USA201311050202842028910.1073/pnas.131571011024277810
    [Google Scholar]
  41. MariappanA. Goranci-BuzhalaG. Ricci-VitianiL. PalliniR. GopalakrishnanJ. Trends and challenges in modeling glioma using 3D human brain organoids.Cell Death Differ.2021281152310.1038/s41418‑020‑00679‑733262470
    [Google Scholar]
  42. QianX. SongH. MingG. Brain organoids: Advances, applications and challenges.Development20191468dev16607410.1242/dev.16607430992274
    [Google Scholar]
  43. ZhaoH.H. HaddadG. Brain organoid protocols and limitations.Front. Cell. Neurosci.202418135173410.3389/fncel.2024.135173438572070
    [Google Scholar]
  44. TakahashiK. YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell2006126466367610.1016/j.cell.2006.07.02416904174
    [Google Scholar]
  45. LancasterM.A. RennerM. MartinC.A. WenzelD. BicknellL.S. HurlesM.E. HomfrayT. PenningerJ.M. JacksonA.P. KnoblichJ.A. Cerebral organoids model human brain development and microcephaly.Nature2013501746737337910.1038/nature1251723995685
    [Google Scholar]
  46. LancasterM.A. KnoblichJ.A. Organogenesis in a dish: Modeling development and disease using organoid technologies.Science20143456194124712510.1126/science.124712525035496
    [Google Scholar]
  47. PamiesD. BarrerasP. BlockK. MakriG. KumarA. WiersmaD. SmirnovaL. ZangC. BresslerJ. ChristianK.M. HarrisG. MingG.L. BerlinickeC.J. KyroK. SongH. PardoC.A. HartungT. HogbergH.T. A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity.Altern. Anim. Exp.201734336237610.14573/altex.160912227883356
    [Google Scholar]
  48. LancasterM.A. CorsiniN.S. WolfingerS. GustafsonE.H. PhillipsA.W. BurkardT.R. OtaniT. LiveseyF.J. KnoblichJ.A. Guided self-organization and cortical plate formation in human brain organoids.Nat. Biotechnol.201735765966610.1038/nbt.390628562594
    [Google Scholar]
  49. YingQ.L. StavridisM. GriffithsD. LiM. SmithA. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture.Nat. Biotechnol.200321218318610.1038/nbt78012524553
    [Google Scholar]
  50. ZhangS.C. WernigM. DuncanI.D. BrüstleO. ThomsonJ.A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells.Nat. Biotechnol.200119121129113310.1038/nbt1201‑112911731781
    [Google Scholar]
  51. SatoT. VriesR.G. SnippertH.J. van de WeteringM. BarkerN. StangeD.E. Esv.J.H. AboA. KujalaP. PetersP.J. CleversH. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature2009459724426226510.1038/nature0793519329995
    [Google Scholar]
  52. EirakuM. TakataN. IshibashiH. KawadaM. SakakuraE. OkudaS. SekiguchiK. AdachiT. SasaiY. Self-organizing optic-cup morphogenesis in three-dimensional culture.Nature20114727341515610.1038/nature0994121475194
    [Google Scholar]
  53. HattoriN. Cerebral organoids model human brain development and microcephaly.Mov. Disord.201429218510.1002/mds.2574024375826
    [Google Scholar]
  54. WatanabeK. KamiyaD. NishiyamaA. KatayamaT. NozakiS. KawasakiH. WatanabeY. MizusekiK. SasaiY. Directed differentiation of telencephalic precursors from embryonic stem cells.Nat. Neurosci.20058328829610.1038/nn140215696161
    [Google Scholar]
  55. EirakuM. WatanabeK. Matsuo-TakasakiM. KawadaM. YonemuraS. MatsumuraM. WatayaT. NishiyamaA. MugurumaK. SasaiY. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals.Cell Stem Cell20083551953210.1016/j.stem.2008.09.00218983967
    [Google Scholar]
  56. EirakuM. SasaiY. Self-organizing optic-cup morphogenesis in three-dimensional culture.Neurosci. Res.201171e127e12810.1016/j.neures.2011.07.545
    [Google Scholar]
  57. NakanoT. AndoS. TakataN. KawadaM. MugurumaK. SekiguchiK. SaitoK. YonemuraS. EirakuM. SasaiY. Self-formation of optic cups and storable stratified neural retina from human ESCs.Cell. Stem. Cell.201210677178510.1016/j.stem.2012.05.00922704518
    [Google Scholar]
  58. MugurumaK. NishiyamaA. KawakamiH. HashimotoK. SasaiY. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells.Cell Rep.201510453755010.1016/j.celrep.2014.12.05125640179
    [Google Scholar]
  59. QianX. NguyenH.N. SongM.M. HadionoC. OgdenS.C. HammackC. YaoB. HamerskyG.R. JacobF. ZhongC. YoonK. JeangW. LinL. LiY. ThakorJ. BergD.A. ZhangC. KangE. ChickeringM. NauenD. HoC.Y. WenZ. ChristianK.M. ShiP.Y. MaherB.J. WuH. JinP. TangH. SongH. MingG. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure.Cell201616551238125410.1016/j.cell.2016.04.03227118425
    [Google Scholar]
  60. NickelsS.L. ModamioJ. Mendes-PinheiroB. MonzelA.S. BetsouF. SchwambornJ.C. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson’s disease.Stem Cell Res.20204610187010187010.1016/j.scr.2020.10187032534166
    [Google Scholar]
  61. XiangY. CakirB. ParkI.H. Generation of regionally specified human brain organoids resembling thalamus development.STAR Protocols20201110000110.1016/j.xpro.2019.10000133103124
    [Google Scholar]
  62. MohamedN.V. MathurM. Silvad.R.V. ThomasR.A. LepineP. BeitelL.K. FonE.A. DurcanT.M. Generation of human midbrain organoids from induced pluripotent stem cells.MNI Open Res.201931610.12688/mniopenres.12816.2
    [Google Scholar]
  63. HaJ. KangJ.S. LeeM. BaekA. KimS. ChungS.K. LeeM.O. KimJ. Simplified brain organoids for rapid and robust modeling of brain disease.Front. Cell Dev. Biol.2020859409010.3389/fcell.2020.59409033195269
    [Google Scholar]
  64. BodnarB. ZhangY. LiuJ. LinY. WangP. WeiZ. SaribasS. ZhuY. LiF. WangX. YangW. LiQ. HoW.Z. HuW. Novel scalable and simplified system to generate microglia-containing cerebral organoids from human induced pluripotent stem cells.Front. Cell. Neurosci.20211568227210.3389/fncel.2021.68227234290591
    [Google Scholar]
  65. Reisd.R.S. SantS. KeeneyH. WagnerM.C.E. AyyavooV. Modeling HIV-1 neuropathogenesis using three-dimensional human brain organoids (hBORGs) with HIV-1 infected microglia.Sci. Rep.20201011520910.1038/s41598‑020‑72214‑032938988
    [Google Scholar]
  66. RothenbücherT.S.P. GürbüzH. PereiraM.P. HeiskanenA. EmneusJ. Martinez-SerranoA. Next generation human brain models: Engineered flat brain organoids featuring gyrification.Biofabrication202113101100110.1088/1758‑5090/abc95e33724233
    [Google Scholar]
  67. Sivitilli ghiasiP. AttisanoL. Production of phenotypically uniform human cerebral organoids from pluripotent stem cells.Bio Protoc.2021118e398510.21769/BioProtoc.398534124288
    [Google Scholar]
  68. AoZ. CaiH. WuZ. SongS. KarahanH. KimB. LuH.C. KimJ. MackieK. GuoF. Tubular human brain organoids to model microglia-mediated neuroinflammation.Lab Chip202121142751276210.1039/D1LC00030F34021557
    [Google Scholar]
  69. FernandoM. LeeS. WarkJ.R. XiaoD. LimB.Y. O’Hara-WrightM. KimH.J. SmithG.C. WongT. TeberE.T. AliR.R. YangP. GrahamM.E. Gonzalez-CorderoA. Differentiation of brain and retinal organoids from confluent cultures of pluripotent stem cells connected by nerve-like axonal projections of optic origin.Stem Cell Reports20221761476149210.1016/j.stemcr.2022.04.00335523177
    [Google Scholar]
  70. ShakerM.R. HunterZ.L. WolvetangE.J. Robust and highly reproducible generation of cortical brain organoids for modelling brain neuronal senescence in vitro.J. Vis. Exp.202218310.3791/63714‑v35604169
    [Google Scholar]
  71. KochL.S. BuentelloC.D. BroersenK. Robust tissue fabrication for long-term culture of ipsc-derived brain organoids for aging research.J. Vis. Exp.20231951610.3791/6458637246867
    [Google Scholar]
  72. MuñizA.J. TopalT. BrooksM.D. SzeA. KimD.H. JordahlJ. NguyenJ. KrebsbachP.H. SavelieffM.G. FeldmanE.L. LahannJ. Engineered extracellular matrices facilitate brain organoids from human pluripotent stem cells.Ann. Clin. Transl. Neurol.20231071239125310.1002/acn3.5182037283238
    [Google Scholar]
  73. FitzgeraldM.Q. ChuT. PuppoF. BlanchR. ChillónM. SubramaniamS. MuotriA.R. Generation of ‘semi-guided’ cortical organoids with complex neural oscillations.Nat. Protoc.20241992712273810.1038/s41596‑024‑00994‑038702386
    [Google Scholar]
  74. BireyF. AndersenJ. MakinsonC.D. IslamS. WeiW. HuberN. FanH.C. MetzlerK.R.C. PanagiotakosG. ThomN. O’RourkeN.A. SteinmetzL.M. BernsteinJ.A. HallmayerJ. HuguenardJ.R. PaşcaS.P. Assembly of functionally integrated human forebrain spheroids.Nature20175457652545910.1038/nature2233028445465
    [Google Scholar]
  75. XiangY. TanakaY. PattersonB. KangY.J. GovindaiahG. RoselaarN. CakirB. KimK.Y. LombrosoA.P. HwangS.M. ZhongM. StanleyE.G. ElefantyA.G. NaegeleJ.R. LeeS.H. WeissmanS.M. ParkI.H. Fusion of regionally specified hpsc-derived organoids models human brain development and interneuron migration.Cell Stem Cell2017213383398.e710.1016/j.stem.2017.07.00728757360
    [Google Scholar]
  76. XiangY. TanakaY. CakirB. PattersonB. KimK.Y. SunP. KangY.J. ZhongM. LiuX. PatraP. LeeS.H. WeissmanS.M. ParkI.H. hESC-Derived thalamic organoids form reciprocal projections when fused with cortical organoids.Cell Stem Cell2019243487497.e710.1016/j.stem.2018.12.01530799279
    [Google Scholar]
  77. GiandomenicoS.L. SutcliffeM. LancasterM.A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development.Nat. Protoc.202116257960210.1038/s41596‑020‑00433‑w33328611
    [Google Scholar]
  78. SozziE. KajtezJ. BruzeliusA. WesselerM.F. NilssonF. BirteleM. LarsenN.B. OttossonD.R. StormP. ParmarM. FiorenzanoA. Silk scaffolding drives self-assembly of functional and mature human brain organoids.Front. Cell Dev. Biol.202210102327910.3389/fcell.2022.102327936313550
    [Google Scholar]
  79. HongY.J. LeeS. ChoiJ. YoonS.H. DoJ.T. A simple method for generating cerebral organoids from human pluripotent stem cells.Int. J. Stem Cells20221519510310.15283/ijsc2119535220295
    [Google Scholar]
  80. HuangS. HuangF. ZhangH. YangY. LuJ. ChenJ. ShenL. PeiG. In vivo development and single‐cell transcriptome profiling of human brain organoids.Cell Prolif.2022553e1320110.1111/cpr.1320135141969
    [Google Scholar]
  81. Al-mhanawiB. MartiM.B. MorrisonS.D. GuptaP. AlaniM. NoakesP.G. WolvetangE.J. ShakerM.R. Protocol for generating embedding-free brain organoids enriched with oligodendrocytes.STAR Protocols20234410272510.1016/j.xpro.2023.10272537976154
    [Google Scholar]
  82. GabrielE. AlbannaW. PasquiniG. RamaniA. JosipovicN. MariappanA. RiparbelliM.G. CallainiG. KarchC.M. GoureauO. PapantonisA. BusskampV. SchneiderT. GopalakrishnanJ. Generation of iPSC-derived human forebrain organoids assembling bilateral eye primordia.Nat. Protoc.20231861893192910.1038/s41596‑023‑00814‑x37198320
    [Google Scholar]
  83. ChenH. JinX. LiT. YeZ. Brain organoids: Establishment and application.Front. Cell Dev. Biol.202210102987310.3389/fcell.2022.102987336506083
    [Google Scholar]
  84. PengW.C. KraaierL.J. KluiverT.A. Hepatocyte organoids and cell transplantation: What the future holds.Exp. Mol. Med.202153101512152810.1038/s12276‑021‑00579‑x34663941
    [Google Scholar]
  85. SaharaM. Recent Advances in Generation of In Vitro Cardiac Organoids.Int. J. Mol. Sci.2023247624410.3390/ijms2407624437047216
    [Google Scholar]
  86. HuH. GehartH. ArtegianiB. LÖpez-IglesiasC. DekkersF. BasakO. Esv.J. LopesC.d.S.S.M. BegthelH. KorvingJ. van den BornM. ZouC. QuirkC. ChiribogaL. RiceC.M. MaS. RiosA. PetersP.J. Jongd.Y.P. CleversH. Long-term expansion of functional mouse and human hepatocytes as 3D organoids.Cell2018175615911606.e1910.1016/j.cell.2018.11.01330500538
    [Google Scholar]
  87. GarretaE. PradoP. TarantinoC. OriaR. FanloL. MartíE. ZalvideaD. TrepatX. Roca-CusachsP. Gavaldà-NavarroA. CozzutoL. CampistolJ.M. BelmonteI.J.C. Hurtado del PozoC. MontserratN. Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells.Nat. Mater.201918439740510.1038/s41563‑019‑0287‑630778227
    [Google Scholar]
  88. GuptaK.A. SarkarP. WertheimJ.A. PanX. CarrollT.J. OxburghL. Asynchronous mixing of kidney progenitor cells potentiates nephrogenesis in organoids.Commun. Biol.20203123110.1038/s42003‑020‑0948‑732393756
    [Google Scholar]
  89. VelascoS. KedaigleA.J. SimmonsS.K. NashA. RochaM. QuadratoG. PaulsenB. NguyenL. AdiconisX. RegevA. LevinJ.Z. ArlottaP. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex.Nature2019570776252352710.1038/s41586‑019‑1289‑x31168097
    [Google Scholar]
  90. EzeU.C. BhaduriA. HaeusslerM. NowakowskiT.J. KriegsteinA.R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia.Nat. Neurosci.202124458459410.1038/s41593‑020‑00794‑133723434
    [Google Scholar]
  91. RossiF. CattaneoE. Neural stem cell therapy for neurological diseases: Dreams and reality.Nat. Rev. Neurosci.20023540140910.1038/nrn80911988779
    [Google Scholar]
  92. GrochowskiC. RadzikowskaE. MaciejewskiR. Neural stem cell therapy—Brief review.Clin. Neurol. Neurosurg.201817381410.1016/j.clineuro.2018.07.01330053745
    [Google Scholar]
  93. HeemelsM.T. Neurodegenerative diseases.Nature2016539762817910.1038/539179a27830810
    [Google Scholar]
  94. LeeD.A. BedontJ.L. PakT. WangH. SongJ. Miranda-AnguloA. TakiarV. CharubhumiV. BalordiF. TakebayashiH. AjaS. FordE. FishellG. BlackshawS. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche.Nat. Neurosci.201215570070210.1038/nn.307922446882
    [Google Scholar]
  95. XiaoY.Z. YangM. XiaoY. GuoQ. HuangY. LiC.J. CaiD. LuoX.H. Reducing hypothalamic stem cell senescence protects against aging-associated physiological decline.Cell Metab.2020313534548.e510.1016/j.cmet.2020.01.00232004475
    [Google Scholar]
  96. ZhangY. KimM.S. JiaB. YanJ. Zuniga-HertzJ.P. HanC. CaiD. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs.Nature20175487665525710.1038/nature2328228746310
    [Google Scholar]
  97. TangX.Y. WuS. WangD. ChuC. HongY. TaoM. HuH. XuM. GuoX. LiuY. Human organoids in basic research and clinical applications.Signal Transduct. Target. Ther.20227116810.1038/s41392‑022‑01024‑935610212
    [Google Scholar]
  98. KimJ. KooB.K. KnoblichJ.A. Human organoids: Model systems for human biology and medicine.Nat. Rev. Mol. Cell Biol.2020211057158410.1038/s41580‑020‑0259‑332636524
    [Google Scholar]
  99. CostamagnaG. ComiG.P. CortiS. Advancing drug discovery for neurological disorders using iPSC-derived neural organoids.Int. J. Mol. Sci.2021225265910.3390/ijms2205265933800815
    [Google Scholar]
  100. SmirnovaL. HartungT. The promise and potential of brain organoids.Adv. Healthc. Mater.20241321230274510.1002/adhm.20230274538252094
    [Google Scholar]
  101. EichmüllerO.L. KnoblichJ.A. Human cerebral organoids — a new tool for clinical neurology research.Nat. Rev. Neurol.2022181166168010.1038/s41582‑022‑00723‑936253568
    [Google Scholar]
  102. PriyathilakaT.T. LaakerC.J. HerbathM. FabryZ. SandorM. Modeling infectious diseases of the central nervous system with human brain organoids.Transl. Res.2022250183510.1016/j.trsl.2022.06.01335811019
    [Google Scholar]
  103. MarianiJ. CoppolaG. ZhangP. AbyzovA. ProviniL. TomasiniL. AmenduniM. SzekelyA. PalejevD. WilsonM. GersteinM. GrigorenkoE.L. ChawarskaK. PelphreyK.A. HoweJ.R. VaccarinoF.M. FOXG1-Dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders.Cell2015162237539010.1016/j.cell.2015.06.03426186191
    [Google Scholar]
  104. PavoniS. JarrayR. NassorF. GuyotA.C. CottinS. RontardJ. MikolJ. MabondzoA. DeslysJ.P. YatesF. Small-molecule induction of Aβ-42 peptide production in human cerebral organoids to model Alzheimer’s disease associated phenotypes.PLoS One20181312e020915010.1371/journal.pone.020915030557391
    [Google Scholar]
  105. MahairakiV. KimS.J. LiJ. Stem cell-derived three-dimensional (organoid) models of Alzheimer’s disease: A precision medicine approach.Neural Regen. Res.20211681546154710.4103/1673‑5374.30301933433475
    [Google Scholar]
  106. BallabioC. AnderleM. GianeselloM. LagoC. MieleE. CardanoM. AielloG. PiazzaS. CaronD. GiannoF. CiolfiA. PedaceL. MastronuzziA. TartagliaM. LocatelliF. FerrettiE. GiangasperoF. TiberiL. Modeling medulloblastoma in vivo and with human cerebellar organoids.Nat. Commun.202011158310.1038/s41467‑019‑13989‑331996670
    [Google Scholar]
  107. ChiaS.P.S. KongS.L.Y. PangJ.K.S. SohB.S. 3D human organoids: The next “Viral” model for the molecular basis of infectious diseases.Biomedicines2022107154110.3390/biomedicines1007154135884846
    [Google Scholar]
  108. BarrerasP. PamiesD. HartungT. PardoC.A. Human brain microphysiological systems in the study of neuroinfectious disorders.Exp. Neurol.202336511440911440910.1016/j.expneurol.2023.11440937061175
    [Google Scholar]
  109. GarcezP.P. LoiolaE.C. Madeiro da CostaR. HigaL.M. TrindadeP. DelvecchioR. NascimentoJ.M. BrindeiroR. TanuriA. RehenS.K. Zika virus impairs growth in human neurospheres and brain organoids.Science2016352628781681810.1126/science.aaf611627064148
    [Google Scholar]
  110. BrownR.M. RanaP.S.J.B. JaegerH.K. O’DowdJ.M. BalembaO.B. FortunatoE.A. Human cytomegalovirus compromises development of cerebral organoids.J. Virol.20199317e00957-1910.1128/JVI.00957‑1931217239
    [Google Scholar]
  111. QiaoH. ZhaoW. GuoM. ZhuL. ChenT. WangJ. XuX. ZhangZ. WuY. ChenP. Cerebral organoids for modeling of HSV-1-induced-amyloid β associated neuropathology and phenotypic rescue.Int. J. Mol. Sci.20222311598110.3390/ijms2311598135682661
    [Google Scholar]
  112. Rybak-WolfA. WylerE. PentimalliT.M. LegniniI. MartinezO.A. GlažarP. LoewaA. KimS.J. KauferB.B. WoehlerA. LandthalerM. RajewskyN. Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids.Nat. Microbiol.2023871252126610.1038/s41564‑023‑01405‑y37349587
    [Google Scholar]
  113. AbreuC.M. GamaL. KrasemannS. ChesnutM. Odwin-DacostaS. HogbergH.T. HartungT. PamiesD. Microglia increase inflammatory responses in ipsc-derived human brainspheres.Front. Microbiol.20189276610.3389/fmicb.2018.0276630619100
    [Google Scholar]
  114. MathieuC. BovierF.T. FerrenM. LiebermanN.A.P. PredellaC. LalandeA. PedduV. LinM.J. AddetiaA. PatelA. OutlawV. CorneoB. DorrelloN.V. BrieseT. HardieD. HorvatB. MosconaA. GreningerA.L. PorottoM. Molecular features of the measles virus viral fusion complex that favor infection and spread in the brain.MBio2021123e00799-2110.1128/mBio.00799‑2134061592
    [Google Scholar]
  115. RamaniA. MüllerL. OstermannP.N. GabrielE. Abida-IslamP. Müller-SchiffmannA. MariappanA. GoureauO. GruellH. WalkerA. AndréeM. HaukaS. HouwaartT. DiltheyA. WohlgemuthK. OmranH. KleinF. WieczorekD. AdamsO. TimmJ. KorthC. SchaalH. GopalakrishnanJ. SARS ‐CoV‐2 targets neurons of 3D human brain organoids.EMBO J.20203920e10623010.15252/embj.202010623032876341
    [Google Scholar]
  116. FanW. ChristianK.M. SongH. MingG. Applications of brain organoids for infectious diseases.J. Mol. Biol.2022434316724310.1016/j.jmb.2021.16724334536442
    [Google Scholar]
  117. Urrestizala-ArenazaN. CerchioS. CavaliereF. MagliaroC. Limitations of human brain organoids to study neurodegenerative diseases: A manual to survive.Front. Cell. Neurosci.202418141952610.3389/fncel.2024.141952639049825
    [Google Scholar]
  118. EremeevA.V. LebedevaO.S. BogomiakovaM.E. LagarkovaM.A. BogomazovaA.N. Cerebral organoids—challenges to establish a brain prototype.Cells2021107179010.3390/cells1007179034359959
    [Google Scholar]
  119. SandovalS.O. CappuccioG. KruthK. OsenbergS. KhalilS.M. Méndez-AlbeloN.M. PadmanabhanK. WangD. NiciuM.J. BhattacharyyaA. SteinJ.L. SousaA.M.M. WaxmanE.A. ButtermoreE.D. WhyeD. SiroisC.L. AndersonS. Anita Bhattacharyya ButtermoreE. ChangQ. FrenchD. Hashimoto-ToriiK. KornblumH. KrollK. LachmanH.M. Maletic-SavaticM. NiciuM. NovitchB. PadmanabhanK. ProschelC. SahinM. SousaA. SteinJ. WangD. WaxmanE. WhyeD. WilliamsA. ZhaoX. WilliamsA. Maletic-SavaticM. ZhaoX. Rigor and reproducibility in human brain organoid research: Where we are and where we need to go.Stem. Cell. Rep.202419679681610.1016/j.stemcr.2024.04.00838759644
    [Google Scholar]
  120. KataokaM. LeeT.L. SawaiT. Human Brain Organoid Research and Applications: Where and How to Meet Legal Challenges?J. Bioeth. Inq.20241810.1007/s11673‑024‑10349‑938969917
    [Google Scholar]
  121. BockC. BoutrosM. CampJ.G. ClarkeL. CleversH. KnoblichJ.A. LiberaliP. RegevA. RiosA.C. StegleO. StunnenbergH.G. TeichmannS.A. TreutleinB. VriesR.G.J. The organoid cell atlas.Nat. Biotechnol.2021391131710.1038/s41587‑020‑00762‑x33384458
    [Google Scholar]
  122. Goto-SilvaL. JunqueiraM. Single-cell proteomics: A treasure trove in neurobiology.Biochim. Biophys. Acta. Proteins Proteomics20211869714065810.1016/j.bbapap.2021.14065833845200
    [Google Scholar]
  123. PorciúnculaL.O. Goto-SilvaL. LedurP.F. RehenS.K. The age of brain organoids: Tailoring cell identity and functionality for normal brain development and disease modeling.Front. Neurosci.20211567456310.3389/fnins.2021.67456334483818
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775369286250206050006
Loading
/content/journals/cdrr/10.2174/0125899775369286250206050006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test