Skip to content
2000
Volume 17, Issue 3
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Neurodegenerative movement disorders, encompassing conditions such as Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, represent a significant burden on individuals, families, and healthcare systems globally. Traditional drug discovery approaches for these disorders have encountered challenges, including high costs and lengthy timelines. Drug repurposing has emerged in recent years as a promising approach to expedite the discovery of new treatments by leveraging existing drugs approved for other indications. This review explores the landscape of drug repurposed for neurodegenerative movement disorders, highlighting promising candidates, underlying mechanisms, and clinical implications. The rationale behind repurposing, including the advantages of utilizing existing pharmacological agents with established safety profiles and known pharmacokinetics, along with techniques utilized for repurposing (computational and experimental), have been elaborated. Several studies on the potential of pre-existing drugs such as isradipine, tetracycline, ambroxol, metformin, deferiprone, simvastatin, ., which have been repurposed for neurodegenerative movement disorders, including Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, Multiple Sclerosis, . have been discussed. Further, the current scenario and future prospective of drug repurposing have also been touched upon.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775327220240822111611
2024-08-28
2025-09-18
Loading full text...

Full text loading...

References

  1. BakerN.C. EkinsS. WilliamsA.J. TropshaA. A bibliometric review of drug repurposing.Drug Discov. Today201823366167210.1016/j.drudis.2018.01.01829330123
    [Google Scholar]
  2. WalkerN. Accelerating drug development through repurposing, repositioning and rescue.Pharm. Outsourcing201718715
    [Google Scholar]
  3. RoyS. DhaneshwarS. BhasinB. Drug repurposing: an emerging tool for drug reuse, recycling and discovery.Curr. Drug Res. Rev.202113210111910.2174/258997751366621021116371133573567
    [Google Scholar]
  4. BallardC. AarslandD. CummingsJ. O’BrienJ. MillsR. MolinuevoJ.L. FladbyT. WilliamsG. DohertyP. CorbettA. SultanaJ. Drug repositioning and repurposing for Alzheimer disease.Nat. Rev. Neurol.2020161266167310.1038/s41582‑020‑0397‑432939050
    [Google Scholar]
  5. FernandezH.H. WalterB.L. RushT. AhmedA. A practical approach to movement disorders: diagnosis and management.2021Springer Publishing Company10.1891/9780826146595
    [Google Scholar]
  6. CloutierM. LangA.E. Movement disorders: an overview.Drug Induc. Mov. Disor.2005319
    [Google Scholar]
  7. FletcherE.J.R. KaminskiT. WilliamsG. DutyS. Drug repurposing strategies of relevance for Parkinson’s disease.Pharmacol. Res. Perspect.202194e0084110.1002/prp2.84134309236
    [Google Scholar]
  8. FormanM.S. TrojanowskiJ.Q. LeeV.M.Y. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs.Nat. Med.200410101055106310.1038/nm111315459709
    [Google Scholar]
  9. MurthyM. ChengY.Y. HoltonJ.L. BettencourtC. Neurodegenerative movement disorders: An epigenetics perspective and promise for the future.Neuropathol. Appl. Neurobiol.202147789790910.1111/nan.1275734318515
    [Google Scholar]
  10. ShahS. DoomsM.M. Amaral-GarciaS. Igoillo-EsteveM. Current drug repurposing strategies for rare neurodegenerative disorders.Front. Pharmacol.20211276802310.3389/fphar.2021.76802334992533
    [Google Scholar]
  11. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. DoigA. GuilliamsT. LatimerJ. McNameeC. NorrisA. SanseauP. CavallaD. PirmohamedM. Drug repurposing: progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.16830310233
    [Google Scholar]
  12. PushpakomS. Introduction and historical overview of drug repurposing opportunities.Drug Repurposing2022Royal Society of Chemistry11310.1039/9781839163401‑00001
    [Google Scholar]
  13. ParvathaneniV. KulkarniN.S. MuthA. GuptaV. Drug repurposing: a promising tool to accelerate the drug discovery process.Drug Discov. Today201924102076208510.1016/j.drudis.2019.06.01431238113
    [Google Scholar]
  14. SleighS.H. BartonC.L. Repurposing strategies for therapeutics.Pharmaceut. Med.201024315115910.1007/BF03256811
    [Google Scholar]
  15. Lüscher DiasT. SchuchV. Beltrão-BragaP.C.B. Martins-de-SouzaD. BrentaniH.P. FrancoG.R. NakayaH.I. Drug repositioning for psychiatric and neurological disorders through a network medicine approach.Transl. Psychiatry202010114110.1038/s41398‑020‑0827‑532398742
    [Google Scholar]
  16. JiaZ. SongX. ShiJ. WangW. HeK. Gene Signature-Based Drug Repositioning.Drug Repurposing-Molecular Aspects and Therapeutic Applications.IntechOpen2021Shailendra K. Saxena
    [Google Scholar]
  17. ShuklaR. HenkelN.D. AlganemK. HamoudA. ReigleJ. AlnafisahR.S. EbyH.M. ImamiA.S. CreedenJ.F. MiruzziS.A. MellerJ. MccullumsmithR.E. Signature-based approaches for informed drug repurposing: targeting CNS disorders.Neuropsychopharmacology202146111613010.1038/s41386‑020‑0752‑632604402
    [Google Scholar]
  18. HodosR.A. KiddB.A. KhaderS. ReadheadB.P. DudleyJ.T. Computational approaches to drug repurposing and pharmacology.Wiley Interdiscip. Rev. Syst. Biol. Med.20168318610.1002/wsbm.133727080087
    [Google Scholar]
  19. KumarS. KumarS. Molecular docking: a structure-based approach for drug repurposing.In Silico Drug Design.Academic Press201916118910.1016/B978‑0‑12‑816125‑8.00006‑7
    [Google Scholar]
  20. ReayW.R. CairnsM.J. Advancing the use of genome-wide association studies for drug repurposing.Nat. Rev. Genet.2021221065867110.1038/s41576‑021‑00387‑z34302145
    [Google Scholar]
  21. SelvarajN. SwaroopA.K. NidamanuriB. KumarR.R. NatarajanJ. SelvarajJ. Network-based drug repurposing: a critical review.Curr. Drug Res. Rev.202214211613110.2174/258997751466622021412040335156575
    [Google Scholar]
  22. KhalidZ. SezermanO.U. Computational drug repurposing to predict approved and novel drug-disease associations.J. Mol. Graph. Model.201885919610.1016/j.jmgm.2018.08.00530130693
    [Google Scholar]
  23. TruongT.T.T. PanizzuttiB. KimJ.H. WalderK. Repurposing drugs via network analysis: Opportunities for psychiatric disorders.Pharmaceutics2022147146410.3390/pharmaceutics1407146435890359
    [Google Scholar]
  24. ZongN. WenA. MoonS. FuS. WangL. ZhaoY. YuY. HuangM. WangY. ZhengG. MielkeM.M. CerhanJ.R. LiuH. Computational drug repurposing based on electronic health records: a scoping review.NPJ Digit. Med.2022517710.1038/s41746‑022‑00617‑635701544
    [Google Scholar]
  25. ParanjpeM.D. TaubesA. SirotaM. Insights into computational drug repurposing for neurodegenerative disease.Trends Pharmacol. Sci.201940856557610.1016/j.tips.2019.06.00331326236
    [Google Scholar]
  26. DinićJ. EfferthT. García-SosaA.T. GrahovacJ. PadrónJ.M. PajevaI. RizzolioF. SaponaraS. SpenglerG. TsakovskaI. Repurposing old drugs to fight multidrug resistant cancers.Drug Resist. Updat.20205210071310.1016/j.drup.2020.10071332615525
    [Google Scholar]
  27. AdamG. RampášekL. SafikhaniZ. SmirnovP. Haibe-KainsB. GoldenbergA. Machine learning approaches to drug response prediction: challenges and recent progress.NPJ Precis. Oncol.2020411910.1038/s41698‑020‑0122‑132566759
    [Google Scholar]
  28. MavridouD. PsathaK. AivaliotisM. Proteomics and drug repurposing in CLL towards precision medicine.Cancers (Basel)20211314339110.3390/cancers1314339134298607
    [Google Scholar]
  29. KhataniarA. PathakU. RajkhowaS. JhaA.N. A comprehensive review of drug repurposing strategies against known drug targets of COVID-19.COVID20222214816710.3390/covid2020011
    [Google Scholar]
  30. KimT.W. Drug repositioning approaches for the discovery of new therapeutics for Alzheimer’s disease.Neurotherapeutics201512113214210.1007/s13311‑014‑0325‑725549849
    [Google Scholar]
  31. MiettinenT.P. BjörklundM. NQO2 is a reactive oxygen species generating off-target for acetaminophen.Mol. Pharm.201411124395440410.1021/mp500486625313982
    [Google Scholar]
  32. NishimuraY. HaraH. Editorial. Drug repositioning: current advances and future perspectives.Front. Pharmacol.20189106810.3389/fphar.2018.0106830294274
    [Google Scholar]
  33. JacquemetG. BaghirovH. GeorgiadouM. SihtoH. PeuhuE. Cettour-JanetP. HeT. PeräläM. KronqvistP. JoensuuH. IvaskaJ. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling.Nat. Commun.2016711329710.1038/ncomms1329727910855
    [Google Scholar]
  34. O’ReganG. deSouzaR.M. BalestrinoR. SchapiraA.H. Glucocerebrosidase mutations in Parkinson disease.J. Parkinsons Dis.20177341142210.3233/JPD‑17109228598856
    [Google Scholar]
  35. KakkarA.K. SinghH. MedhiB. Old wines in new bottles: Repurposing opportunities for Parkinson’s disease.Eur. J. Pharmacol.201883011512710.1016/j.ejphar.2018.04.02329689247
    [Google Scholar]
  36. MaharaniV.M. WirastutiK. SilvianaM. RiasariN.S. Ambroxol therapy for Parkinson’s disease: Systematic literature review.Rom. J. Neurol.2023222899210.37897/RJN.2023.2.1
    [Google Scholar]
  37. AgostiniF. MasatoA. BubaccoL. BisagliaM. Metformin repurposing for Parkinson disease therapy: opportunities and challenges.Int. J. Mol. Sci.202123139810.3390/ijms2301039835008822
    [Google Scholar]
  38. FletcherE.J.R. KaminskiT. WilliamsG. DutyS. Drug repurposing strategies of relevance for Parkinson’s disease.Pharmacol. Res. Perspect.2021944110.1002/prp2.84134309236
    [Google Scholar]
  39. PingF. JiangN. LiY. Association between metformin and neurodegenerative diseases of observational studies: systematic review and meta-analysis.BMJ Open Diabetes Res. Care202081137010.1136/bmjdrc‑2020‑00137032719079
    [Google Scholar]
  40. BortolanzaM. NascimentoG.C. SociasS.B. PloperD. ChehínR.N. Raisman-VozariR. Del-BelE. Tetracycline repurposing in neurodegeneration: focus on Parkinson’s disease.J. Neural Transm. (Vienna)2018125101403141510.1007/s00702‑018‑1913‑130109452
    [Google Scholar]
  41. Dominguez-MeijideA. ParralesV. VasiliE. González-LizárragaF. KönigA. LázaroD.F. LannuzelA. HaikS. Del BelE. ChehínR. Raisman-VozariR. MichelP.P. BizatN. OuteiroT.F. Doxycycline inhibits α-synuclein-associated pathologies in vitro and in vivo.Neurobiol. Dis.202115110525610.1016/j.nbd.2021.10525633429042
    [Google Scholar]
  42. Chaves FilhoA.J.M. MottinM. SoaresM.V.R. JucáP.M. AndradeC.H. MacedoD.S. Tetracyclines, a promise for neuropsychiatric disorders: from adjunctive therapy to the discovery of new targets for rational drug design in psychiatry.Behav. Pharmacol.2021322-312314110.1097/FBP.000000000000058533595954
    [Google Scholar]
  43. RahmaniM. Negro ÁlvarezS.E. HernándezE.B. The potential use of tetracyclines in neurodegenerative diseases and the role of nano-based drug delivery systems.Eur. J. Pharm. Sci.202217510623710.1016/j.ejps.2022.10623735710076
    [Google Scholar]
  44. MarkulinI. MatasinM. TurkV.E. Salković-PetrisicM. Challenges of repurposing tetracyclines for the treatment of Alzheimer’s and Parkinson’s disease.J. Neural Transm. (Vienna)20221295-677380410.1007/s00702‑021‑02457‑234982206
    [Google Scholar]
  45. SandovalA. DuranP. Corzo-LópezA. Fernández-GallardoM. Muñoz-HerreraD. Leyva-LeyvaM. González-RamírezR. FelixR. The role of voltage-gated calcium channels in the pathogenesis of Parkinson’s disease.Int. J. Neurosci.2022134545246135993158
    [Google Scholar]
  46. HurleyM.J. DexterD.T. Voltage-gated calcium channels and Parkinson’s disease.Pharmacol. Ther.2012133332433310.1016/j.pharmthera.2011.11.00622133841
    [Google Scholar]
  47. GudalaK. KanukulaR. BansalD. Reduced risk of Parkinson’s disease in users of calcium channel blockers: a meta-analysis.Int. J. Chronic Dis.201520151710.1155/2015/69740426464872
    [Google Scholar]
  48. BiglanK.M. OakesD. LangA.E. HauserR.A. HodgemanK. GrecoB. LowellJ. RockhillR. ShoulsonI. VenutoC. YoungD. SimuniT. A novel design of a Phase III trial of isradipine in early Parkinson disease (STEADY‐PD III).Ann. Clin. Transl. Neurol.20174636036810.1002/acn3.41228589163
    [Google Scholar]
  49. PaganoniS. SchwarzschildM.A. Urate as a marker of risk and progression of neurodegenerative disease.Neurotherapeutics201714114815310.1007/s13311‑016‑0497‑427995438
    [Google Scholar]
  50. ChangH. WangB. ShiY. ZhuR. Dose-response meta-analysis on urate, gout, and the risk for Parkinson’s disease.NPJ Parkinsons Dis.20228116010.1038/s41531‑022‑00433‑536418349
    [Google Scholar]
  51. Inosine to increase serum and CSF urate in Parkinson disease: A randomized, placebo-controlled trial.JAMA Neurol.201471214110.1001/jamaneurol.2013.552824366103
    [Google Scholar]
  52. MestreT.A. MacklinE.A. AscherioA. FerreiraJ.J. LangA.E. SchwarzschildM.A. Expectations of benefit in a trial of a candidate disease‐modifying treatment for Parkinson disease.Mov. Disord.20213681964196710.1002/mds.2863033942376
    [Google Scholar]
  53. BelmontA. KwiatkowskiJ.L. Deferiprone for the treatment of transfusional iron overload in thalassemia.Expert Rev. Hematol.201710649350310.1080/17474086.2017.131805228448199
    [Google Scholar]
  54. KumarH. LimH.W. MoreS.V. KimB.W. KoppulaS. KimI.S. ChoiD.K. The role of free radicals in the aging brain and Parkinson’s Disease: convergence and parallelism.Int. J. Mol. Sci.2012138104781050410.3390/ijms13081047822949875
    [Google Scholar]
  55. BologninS. DragoD. MessoriL. ZattaP. Chelation therapy for neurodegenerative diseases.Med. Res. Rev.200929454757010.1002/med.2014819177468
    [Google Scholar]
  56. Martin-BastidaA. WardR.J. NewbouldR. PicciniP. SharpD. KabbaC. PatelM.C. SpinoM. ConnellyJ. TrictaF. CrichtonR.R. DexterD.T. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease.Sci. Rep.201771139810.1038/s41598‑017‑01402‑228469157
    [Google Scholar]
  57. CarrollC.B. WyseR.K.H. Simvastatin as a potential disease-modifying therapy for patients with Parkinson’s disease: rationale for clinical trial, and current progress.J. Parkinsons Dis.20177454556810.3233/JPD‑17120329036837
    [Google Scholar]
  58. GhoshA. RoyA. MatrasJ. BrahmachariS. GendelmanH.E. PahanK. Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease.J. Neurosci.20092943135431355610.1523/JNEUROSCI.4144‑09.200919864567
    [Google Scholar]
  59. StevensK.N. CreanorS. JefferyA. WhoneA. ZajicekJ. FoggoA. JonesB. ChapmanR. CockingL. WilksJ. WebbD. CarrollC. InchesJ. UnderwoodD. FrostJ. JamesA. SchofieldC. JamesR. O’ReillyC. SheridanR. StattonS. GoffA. RussellT. WhitcherA. CrawS. LewisA. SophiaR. AmarK. HernandezR. PitcherA. CarveyS. HamlinR. LyellV. AubryL. CareyG. CoeberghJ. MojelaI. MolloyS. Berceruelo BergazY. CameraB. CampbellP. MorrisH. SamakomvaT. SchragA. FullerS. MisbahuddinA. ParkerL. VisentinE. GallehawkS. RuddJ. SinghS. WilsonS. CrevenJ. CroucherY. TlukS. WattsP. HargreavesS. JohnsonD. WorboysL. WorthP. BrookeJ. KobyleckiC. ParkerV. JohnsonL. JosephR. MelvilleJ. RawJ. BirtJ. HareM. ShaikS. AltyJ. CosgroveJ. BurnD. GreenA. McNicholA. PaveseN. PilkingtonH. PriceM. WalkerK. ChaudhuriR. PodlewskaA. ReddyP. TrivediD. BandmannO. CleggR. ColeG. EmeryA. DostalV. GrahamJ. Keshet-PriceJ. MamutseG. Miller-FikA. WiltshireA. WrightC. DixonK. AbdelhafizA. RoseJ. PD STAT Study Group Evaluation of simvastatin as a disease-modifying treatment for patients with Parkinson disease: a randomized clinical trial.JAMA Neurol.202279121232124110.1001/jamaneurol.2022.371836315128
    [Google Scholar]
  60. TousiB. The emerging role of bexarotene in the treatment of Alzheimer’s disease: current evidence.Neuropsychiatr. Dis. Treat.20151131131510.2147/NDT.S6130925709453
    [Google Scholar]
  61. BermejoP.E. AncionesB. Review: A review of the use of zonisamide in Parkinson’s disease.Ther. Adv. Neurol. Disord.20092531331710.1177/175628560933850121180621
    [Google Scholar]
  62. ZouH. ZhuX.X. DingY.H. JinQ.Y. QianL.Y. HuangD.S. CenX.J. Trimetazidine in conditions other than coronary disease, old drug, new tricks?Int. J. Cardiol.20172341610.1016/j.ijcard.2017.02.08328256321
    [Google Scholar]
  63. CulmanJ. BlumeA. GohlkeP. UngerT. The renin-angiotensin system in the brain: possible therapeutic implications for AT1-receptor blockers.J. Hum. Hypertens.200216S3S64S7010.1038/sj.jhh.100144212140731
    [Google Scholar]
  64. Di MecoA. LaurettiE. VagnozziA.N. PraticòD. Zileuton restores memory impairments and reverses amyloid and tau pathology in aged Alzheimer’s disease mice.Neurobiol. Aging201435112458246410.1016/j.neurobiolaging.2014.05.01624973121
    [Google Scholar]
  65. DuffK. BeglingerL.J. O’RourkeM.E. NopoulosP. PaulsonH.L. PaulsenJ.S. Risperidone and the treatment of psychiatric, motor, and cognitive symptoms in Huntington’s disease.Ann. Clin. Psychiatry20082011310.1080/1040123070184480218297579
    [Google Scholar]
  66. DevosD. MoreauC. DelvalA. DujardinK. DefebvreL. BordetR. Methylphenidate.CNS Drugs201327111410.1007/s40263‑012‑0017‑y23160937
    [Google Scholar]
  67. SmithA.M. GibbonsH.M. DragunowM. Valproic acid enhances microglial phagocytosis of amyloid-β1–42.Neuroscience2010169150551510.1016/j.neuroscience.2010.04.04120423723
    [Google Scholar]
  68. JacobsB.M. AmmoscatoF. GiovannoniG. BakerD. SchmiererK. Cladribine: mechanisms and mysteries in multiple sclerosis.J. Neurol. Neurosurg. Psychiatry201889121266127110.1136/jnnp‑2017‑31741129991490
    [Google Scholar]
  69. SandersO. Sildenafil for the treatment of Alzheimer’s disease: A systematic review.J. Alzheimers Dis. Rep.2020419110610.3233/ADR‑20016632467879
    [Google Scholar]
  70. DevanandD.P. Viral hypothesis and antiviral treatment in Alzheimer’s disease.Curr. Neurol. Neurosci. Rep.20181895510.1007/s11910‑018‑0863‑130008124
    [Google Scholar]
  71. ButterworthR.F. Amantadine for the treatment of Parkinson’s disease and its associated dyskinesias.J. Parkinsons Dis. Alzheimers Dis.2020717
    [Google Scholar]
  72. HebronM.L. LonskayaI. MoussaC.E.H. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of -synuclein in Parkinson’s disease models.Hum. Mol. Genet.201322163315332810.1093/hmg/ddt19223666528
    [Google Scholar]
  73. ChiaS. HabchiJ. MichaelsT.C.T. CohenS.I.A. LinseS. DobsonC.M. KnowlesT.P.J. VendruscoloM. SAR by kinetics for drug discovery in protein misfolding diseases.Proc. Natl. Acad. Sci. USA201811541102451025010.1073/pnas.180788411530257937
    [Google Scholar]
  74. DyA.M.B. LimjocoL.L.G. JamoraR.D.G. Trimetazidine-induced parkinsonism: a systematic review.Front. Neurol.2020114410.3389/fneur.2020.0004432158422
    [Google Scholar]
  75. LanterJ.C. SuiZ. MacielagM.J. FiordelisoJ.J. JiangW. QiuY. BhattacharjeeS. KraftP. JohnT.M. Haynes-JohnsonD. CraigE. ClancyJ. Structure-activity relationships of N-acyl pyrroloquinolone PDE-5 inhibitors.J. Med. Chem.200447365666210.1021/jm020521s14736245
    [Google Scholar]
  76. AhmedA. SaeedA. AliO.M. El-BahyZ.M. ChannarP.A. KhurshidA. TehzeebA. AshrafZ. RazaH. Ul-HamidA. HassanM. Exploring amantadine derivatives as urease inhibitors: Molecular docking and structure–activity relationship (SAR) studies.Molecules20212623715010.3390/molecules2623715034885728
    [Google Scholar]
  77. UmumararunguT. NkurangaJ.B. HabaruremaG. NyandwiJ.B. MukazayireM.J. MukizaJ. MugangaR. HahirwaI. MpendaM. KatembeziA.N. OlawodeE.O. KayitareE. KayumbaP.C. Recent developments in antimalarial drug discovery.Bioorg. Med. Chem.202388-8911733910.1016/j.bmc.2023.11733937236020
    [Google Scholar]
  78. DurãesF. PintoM. SousaE. Old drugs as new treatments for neurodegenerative diseases.Pharmaceuticals (Basel)20181124410.3390/ph1102004429751602
    [Google Scholar]
  79. KakotiB.B. BezbaruahR. AhmedN. Therapeutic drug repositioning with special emphasis on neurodegenerative diseases: Threats and issues.Front. Pharmacol.20221313100731510.3389/fphar.2022.100731536263141
    [Google Scholar]
  80. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. DoigA. GuilliamsT. LatimerJ. McNameeC. NorrisA. SanseauP. CavallaD. PirmohamedM. Drug repurposing: progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.16830310233
    [Google Scholar]
  81. HwangT.J. CarpenterD. LauffenburgerJ.C. WangB. FranklinJ.M. KesselheimA.S. Failure of investigational drugs in late-stage clinical development and publication of trial results.JAMA Intern. Med.2016176121826183310.1001/jamainternmed.2016.600827723879
    [Google Scholar]
  82. FogelD.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review.Contemp. Clin. Trials Commun.20181115616410.1016/j.conctc.2018.08.00130112460
    [Google Scholar]
  83. HenonC. LissaD. PaolettiX. ThibaultC. TourneauC.L. LanoyE. HollebecqueA. MassardC. SoriaJ.C. Postel-VinayS. Patient-reported tolerability of adverse events in phase 1 trials.ESMO Open20172214810.1136/esmoopen‑2016‑00014828761740
    [Google Scholar]
  84. ShanleyA. Preventing phase III failures.Pharm. Technol.201612427
    [Google Scholar]
  85. HalabiS.F. The drug repurposing ecosystem: intellectual property incentives, market exclusivity, and the future of new medicines.Yale JL & Tech.2018201
    [Google Scholar]
  86. VerbaanderdC. RoomanI. HuysI. Exploring new uses for existing drugs: innovative mechanisms to fund independent clinical research.Trials202122132210.1186/s13063‑021‑05273‑x33947441
    [Google Scholar]
  87. MurteiraS. MillierA. GhezaielZ. LamureM. Drug reformulations and repositioning in the pharmaceutical industry and their impact on market access: regulatory implications.J. Mark. Access Health Policy2014212281310.3402/jmahp.v2.2281327226839
    [Google Scholar]
  88. PrasannanjaneyuluV. NeneS. JainH. NooreenR. OtaviS. ChitlangyaP. SrivastavaS. Old drugs, new tricks: Emerging role of drug repurposing in the management of atopic dermatitis.Cytokine Growth Factor Rev.202265122610.1016/j.cytogfr.2022.04.00735550114
    [Google Scholar]
  89. BhattacharyaS. SahaC.N. Intellectual property rights: An overview and implications in pharmaceutical industry.J. Adv. Pharm. Technol. Res.201122889310.4103/2231‑4040.8295222171299
    [Google Scholar]
  90. BergerA.C. OlsonS. JohnsonS.G. BeachyS.H. Drug repurposing and repositioning: workshop summary.2014National Academies Press
    [Google Scholar]
  91. FrailD.E. BradyM. EscottK.J. HoltA. SanganeeH.J. PangalosM.N. WatkinsC. WegnerC.D. Pioneering government-sponsored drug repositioning collaborations: progress and learning.Nat. Rev. Drug Discov.2015141283384110.1038/nrd470726585533
    [Google Scholar]
  92. AustinB.A. GadhiaA.D. New therapeutic uses for existing drugs.Adv. Exp. Med. Biol.20171031233247
    [Google Scholar]
  93. GnsH.S. GrS. MurahariM. KrishnamurthyM. An update on Drug Repurposing: Re-written saga of the drug’s fate.Biomed. Pharmacother.201911070071610.1016/j.biopha.2018.11.12730553197
    [Google Scholar]
  94. NovacN. Challenges and opportunities of drug repositioning.Trends Pharmacol. Sci.201334526727210.1016/j.tips.2013.03.00423582281
    [Google Scholar]
  95. AllarakhiaM. Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases.Drug Des. Devel. Ther.2013775376610.2147/DDDT.S4628923966771
    [Google Scholar]
  96. VaroR. CrowleyV.M. SitoeA. MadridL. SerghidesL. BilaR. MucaveleH. MayorA. BassatQ. KainK.C. Safety and tolerability of adjunctive rosiglitazone treatment for children with uncomplicated malaria.Malar. J.201716121510.1186/s12936‑017‑1858‑028535809
    [Google Scholar]
  97. Evaluation of fosmidomycin and clindamycin in the treatment of acute uncomplicated p.falciparum malaria in children.2011https://clinicaltrials.gov/study/NCT01361269?tab=results
  98. CooperD.J. PlewesK. GriggM.J. RajahramG.S. PieraK.A. WilliamT. ChatfieldM.D. YeoT.W. DondorpA.M. AnsteyN.M. BarberB.E. The effect of regularly dosed paracetamol versus no paracetamol on renal function in Plasmodium knowlesi malaria (PACKNOW): study protocol for a randomised controlled trial.Trials201819125010.1186/s13063‑018‑2600‑029690924
    [Google Scholar]
  99. Imatinib’s Effect on the Suppression of Malaria Parasites in Patients With Uncomplicated Plasmodium Falciparum Malaria.2018https://clinicaltrials.gov/ct2/show/
  100. Chlorproguanil-Dapsone-Artesunate (CDA) Versus Chlorproguanil-Dapsone (LAPDAP) For Uncomplicated Malaria,2016https:// clinicaltrials.gov/ct2/show/NCT00371735?term=NCT00371735&rank=1
  101. MacareoL. LwinK.M. CheahP.Y. YuentrakulP. MillerR.S. NostenF. Triangular test design to evaluate tinidazole in the prevention of Plasmodium vivax relapse.Malar. J.201312117310.1186/1475‑2875‑12‑17323718705
    [Google Scholar]
  102. Pharmacokinetic and Therapeutic Adaptation of Linezolid in the Treatment of Multi-resistant Tuberculosis.2017https://clinicaltrials.gov/ct2/show/
  103. Potential Efficacy and Safety of Using Adjunctive Ibuprofen for XDR-TB Tuberculosis.2018https://clinicaltrials.gov/ct2/show/NCT02781909?term=
  104. Azithromycin As Host-directed Therapy for Pulmonary Tuberculosis.2018
  105. Doxycycline in Human Pulmonary Tuberculosis.2017https://clinicaltrials.gov/ ct2/show/NCT02774993?term=NCT02774993&rank=1
  106. A Phase 2 Open Label Partially Randomized Trial to Evaluate the Efficacy, Safety and Tolerability of Combinations of Bedaquiline, Moxifloxacin, PA-824 and Pyrazinamide in Adult Subjects With Drug-Sensitive or Multi DrugResistant Pulmonary Tuberculosis.2018https:// clinicaltrials.gov/ct2/show/NCT02193776?term=NCT02193776&rank=1
  107. Metronidazole for Pulmonary Tuberculosis (South Korea)2013https:// clinicaltrials.gov/ct2/show/NCT00425113?term=NCT00425113&rank=1
  108. MayosiB.M. NtsekheM. BoschJ. PandieS. JungH. GumedzeF. PogueJ. ThabaneL. SmiejaM. FrancisV. JoldersmaL. ThomasK.M. ThomasB. AwoteduA.A. MagulaN.P. NaidooD.P. DamascenoA. Chitsa BandaA. BrownB. MangaP. KirengaB. MondoC. MntlaP. TsitsiJ.M. PetersF. EssopM.R. RussellJ.B.W. HakimJ. MatengaJ. BarasaA.F. SaniM.U. OlunugaT. OgahO. AnsaV. AjeA. DanbauchiS. OjjiD. YusufS. Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis.N. Engl. J. Med.2014371121121113010.1056/NEJMoa140738025178809
    [Google Scholar]
  109. Immediate-Release Oxycodone Capsules Study in Cancer pain.2018https://clinicaltrials.gov/ct2/show/NCT01675622?term=NCT01675622&rank=1
  110. Plus Enzalutamide in ER+/Her2- Advanced Breast Cancer.2018https://clinicaltrials.gov/ct2/show/NCT02953860?term=NCT02953860&
  111. Radiation, Cetuximab and Pemetrexed With or Without Bevacizumab in Locally Advanced Head and Neck Cancer.2017https://clinicaltrials.gov/ct2/ show/NCT00703976?term=NCT00703976&rank=1
  112. Nelfinavir Mesylate in Treating Patients With Kaposi Sarcoma.2018https:// clinicaltrials.gov/ct2/show/NCT03077451?term=NCT03077451&rank=1
  113. Phase II Trial of Disulfiram With Copper in Metastatic Breast Cancer (DISC).2017https://clinicaltrials.gov/ct2/show/NCT03323346?term=NCT03323346
  114. Digoxin for Recurrent Prostate Cancer.2016https://clinicaltrials.gov/ct2/ show/NCT01162135?term=NCT01162135&rank=1
  115. MarquardJ. StirbanA. SchliessF. SieversF. WeltersA. OtterS. FischerA. WnendtS. MeissnerT. HeiseT. LammertE. Effects of dextromethorphan as add‐on to sitagliptin on blood glucose and serum insulin concentrations in individuals with type 2 diabetes mellitus: a randomized, placebo‐controlled, double‐blinded, multiple crossover, single‐dose clinical trial.Diabetes Obes. Metab.201618110010310.1111/dom.1257626362564
    [Google Scholar]
  116. EckelR.H. HenryR.R. YueP. DhallaA. WongP. JochelsonP. BelardinelliL. SkylerJ.S. Effect of ranolazine monotherapy on glycemic control in subjects with type 2 diabetes.Diabetes Care20153871189119610.2337/dc14‑262926049552
    [Google Scholar]
  117. Rilonacept in Diabetes Mellitus Type 1: Safety Study.2014https://clinicaltrials. gov/ct2/show/NCT00962026?term=NCT00962026&rank=1
  118. Alzheimer`s Disease Acitretin Medication.2018https://clinicaltrials.gov/ct2/ show/NCT01078168?term=NCT01078168&rank=1
  119. CummingsJ.L. ZhongK. KinneyJ.W. HeaneyC. Moll-TudlaJ. JoshiA. PontecorvoM. DevousM. TangA. BenaJ. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer’s disease.Alzheimers Res. Ther.201681410.1186/s13195‑016‑0173‑226822146
    [Google Scholar]
  120. Riluzole in mild alzheimer’s disease.2017https://clinicaltrials.gov/ct2/show/NCT01703117?term=NCT01703117&rank=1
  121. Maher-EdwardsG. De’AthJ. BarnettC. LavrovA. LockhartA. A 24‐week study to evaluate the effect of rilapladib on cognition and cerebrospinal fluid biomarkers of Alzheimer’s disease.Alzheimers Dement. (N. Y.)20151213114010.1016/j.trci.2015.06.00329854933
    [Google Scholar]
  122. Trial of Carvedilol in Alzheimer’s Disease.2018https://clinicaltrials.gov/ct2/ show/NCT01354444?term=NCT01354444&rank=1
  123. Efficacy of isradipine in early parkinson disease.2018https://clinicaltrials.gov/ ct2/show/NCT02168842?cond=parkinsons+disease
  124. Nilotinib in Parkinson’s Disease2018https://clinicaltrials.gov/ct2/ show/NCT03205488?recrs=adef&cond=parkinsons+disease
  125. Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial.Lancet Neurol.201514879580310.1016/S1474‑4422(15)00144‑126116315
    [Google Scholar]
  126. Pilot Study of Minocycline in Huntington’s Disease.2013https://clinicaltrials. gov/ct2/show/NCT00277355?cond=Huntington+Disease
  127. Safety and efficacy of fenofibrate as a treatment for huntington’s disease.2018https://clinicaltrials.gov/ct2/show/NCT03515213?cond=Huntington
  128. FriedmanB.W. CabralL. AdewunmiV. SolorzanoC. EssesD. BijurP.E. GallagherE.J. Diphenhydramine as adjuvant therapy for acute migraine: an emergency department–based randomized clinical trial.2015https://clinicaltrials.gov/ct2/show/NCT02350985?cond=Migraine&
  129. , Clinical Trial of Mifepristone for Bipolar Depression.2019https://clinicaltrials. gov/ct2/show/NCT00043654?cond=Bipolar+Depression&draw=2
  130. Ofatumumab Dose-finding in Relapsing Remitting Multiple Sclerosis (RRMS) Patients.2017https://clinicaltrials.gov/ct2/show/NCT00640328?recrs=adefl&
  131. Biological Therapy, Sargramostim, and Isotretinoin in Treating Patients With Relapsed or Refractory Neuroblastoma.2017https://clinicaltrials.gov/ct2/ show/NCT01334515?term=NCT01334515&rank=1
  132. Dose Response and Receptor Selectivity of Beta-blocker Effects on Bone Metabolism.2018https://clinicaltrials.gov/ct2/show/NCT02467400?term=
  133. Helicobacter Pylori Infection in Children With Chronic Idiopathic Thrombocytopenic Purpura.2013https://clinicaltrials.gov/ct2/show/NCT00467571? term=NCT00467571
  134. SchmidC. KuemmerleA. BlumJ. GhabriS. KandeV. MutomboW. IlungaM. LumpunguI. MutandaS. NganzoboP. TeteD. MubwaN. KisalaM. BlessonS. MordtO.V. In-hospital safety in field conditions of nifurtimox eflornithine combination therapy (NECT) for T. b. gambiense sleeping sickness.PLoS Negl. Trop. Dis.2012611192010.1371/journal.pntd.000192023209861
    [Google Scholar]
  135. GedamJ. KhiradkarK. MoreS. IngoleP. Drug Repurposing2020
    [Google Scholar]
  136. ReichmanM. SimpsonP.B. Open innovation in early drug discovery: roadmaps and roadblocks.Drug Discov. Today201621577978810.1016/j.drudis.2015.12.00826743597
    [Google Scholar]
  137. WilkinsonG.F. PritchardK. In vitro screening for drug repositioning.SLAS Discov.201520216717910.1177/108705711456302425527136
    [Google Scholar]
  138. BhagatS. YadavN. ShahJ. DaveH. SwarajS. TripathiS. SinghS. Novel corona virus (COVID-19) pandemic: current status and possible strategies for detection and treatment of the disease.Expert Rev. Anti Infect. Ther.202220101275129810.1080/14787210.2021.183546933043740
    [Google Scholar]
  139. NaqviA.A.T. FatimaK. MohammadT. FatimaU. SinghI.K. SinghA. AtifS.M. HariprasadG. HasanG.M. HassanM.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach.Biochim. Biophys. Acta Mol. Basis Dis.202018661016587810.1016/j.bbadis.2020.16587832544429
    [Google Scholar]
  140. KumarM. KulshresthaR. SinghN. JaggiA.S. Expanding spectrum of anticancer drug, imatinib, in the disorders affecting brain and spinal cord.Pharmacol. Res.2019143143869610.1016/j.phrs.2019.03.01430902661
    [Google Scholar]
  141. SharmaP. KumarM. BansalN. Ellagic acid prevents 3-nitropropionic acid induced symptoms of Huntington’s disease.Naunyn Schmiedebergs Arch. Pharmacol.202139491917192810.1007/s00210‑021‑02106‑134061228
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775327220240822111611
Loading
/content/journals/cdrr/10.2174/0125899775327220240822111611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test