Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Aim

The aim of this study is to evaluate radioprotective effects of Cerebrolysin (CBL) in rats' brain tissues after local irradiation.

Background

CBL has demonstrated antioxidant, anti-inflammatory, and tissue repair properties. In this study, the radioprotective effects of CBL in the brain tissues of rats after Irradiation (IR) (50 mg/ kg) were evaluated.

Objective

The levels of different oxidative stress markers, including malondialdehyde (MDA), nitric oxide (NO), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were examined after treatment with radiation and CBL.

Methods

First, 20 male adult Wistar rats weighing 180-200 g were used. The animals were exposed to a single fraction of 15Gy using a linear accelerator unit at a dose rate of 200 cGy/mine. In this study, to check the amount of oxidative stress following the IR, the level of four markers MDA, NO, GPx, CAT, and SOD were examined and measured using the spectrophotometric method and purchased kits.

Results

The results showed that compared to the IR group, the administration of CBL increases the levels of GPX and SOD significantly ( < 0.05).

Conclusion

Our finding suggests that CBL has radioprotective effects on the brain by enhancing antioxidant defense mechanisms.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775291111240409053824
2024-04-25
2025-09-26
Loading full text...

Full text loading...

References

  1. GirardiF. AllemaniC. ColemanM.P. Worldwide trends in survival from common childhood brain tumors: A systematic review.J. Glob. Oncol.20195512510.1200/JGO.19.0014031682549
    [Google Scholar]
  2. PollackI.F. AgnihotriS. BroniscerA. Childhood brain tumors: Current management, biological insights, and future directions.J. Neurosurg. Pediatr.201923326127310.3171/2018.10.PEDS1837730835699
    [Google Scholar]
  3. TohidinezhadF. Di PerriD. ZegersC.M.L. DijkstraJ. AntenM. DekkerA. Van ElmptW. EekersD.B.P. TraversoA. Prediction models for radiation-induced neurocognitive decline in adult patients with primary or secondary brain tumors: A systematic review.Front. Psychol.20221385347210.3389/fpsyg.2022.85347235432113
    [Google Scholar]
  4. RodaE. BottoneM.G. Brain cancers: New perspectives and therapies.Front. Neurosci.20221685740810.3389/fnins.2022.85740835237126
    [Google Scholar]
  5. MakaleM.T. McDonaldC.R. Hattangadi-GluthJ.A. KesariS. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours.Nat. Rev. Neurol.2017131526410.1038/nrneurol.2016.18527982041
    [Google Scholar]
  6. KepkaL. Tyc-SzczepaniakD. OsowieckaK. SprawkaA. Trąbska-KluchB. CzeremszynskaB. Quality of life after whole brain radiotherapy compared with radiosurgery of the tumor bed: Results from a randomized trial.Clin. Transl. Oncol.201820215015910.1007/s12094‑017‑1703‑528616720
    [Google Scholar]
  7. WirschingH.G. TabatabaiG. RoelckeU. HottingerA.F. JörgerF. SchmidA. PlasswilmL. SchrimpfD. MancaoC. CapperD. ConenK. HundsbergerT. CaparrottiF. von MoosR. RiklinC. FelsbergJ. RothP. JonesD.T.W. PfisterS. RushingE.J. AbreyL. ReifenbergerG. HeldL. von DeimlingA. OchsenbeinA. WellerM. Bevacizumab plus hypofractionated radiotherapy versus radiotherapy alone in elderly patients with glioblastoma: The randomized, open-label, phase II ARTE trial.Ann. Oncol.20182961423143010.1093/annonc/mdy12029648580
    [Google Scholar]
  8. WeichselbaumR.R. LiangH. DengL. FuY.X. Radiotherapy and immunotherapy: A beneficial liaison?Nat. Rev. Clin. Oncol.201714636537910.1038/nrclinonc.2016.21128094262
    [Google Scholar]
  9. MohanG. TPA.H. AJJ. KMS.D. NarayanasamyA. VellingiriB. Recent advances in radiotherapy and its associated side effects in cancer—a review.J. Basic Appl. Zool.2019801110
    [Google Scholar]
  10. BarazzuolL. CoppesR.P. van LuijkP. Prevention and treatment of radiotherapy-induced side effects.Mol. Oncol.20201471538155410.1002/1878‑0261.1275032521079
    [Google Scholar]
  11. YazbeckV. AlesiE. MyersJ. HackneyM.H. CuttinoL. GewirtzD.A. An overview of chemotoxicity and radiation toxicity in cancer therapy.Adv. Cancer Res.202215512710.1016/bs.acr.2022.03.00735779872
    [Google Scholar]
  12. MadanR. Radiosensitizers and radioprotectors.Pract. Radiat. Oncol.2020179183
    [Google Scholar]
  13. ZhangQ.Y. WangF.X. JiaK.K. KongL.D. Natural product interventions for chemotherapy and radiotherapy-induced side effects.Front. Pharmacol.20189125310.3389/fphar.2018.0125330459615
    [Google Scholar]
  14. TengH. LiC. ZhangY. LuM. ChoppM. ZhangZ.G. Melcher-MourgasM. FleckensteinB. Therapeutic effect of Cerebrolysin on reducing impaired cerebral endothelial cell permeability.Neuroreport202132535936610.1097/WNR.000000000000159833661804
    [Google Scholar]
  15. Abdel-SalamO. MohammedN. YounessE. KhadrawyY. OmaraE. SleemA. Cerebrolysin protects against rotenone-induced oxidative stress and neurodegeneration.J. Neurorestoratology.201421476310.2147/JN.S50114
    [Google Scholar]
  16. BarkerP.A. MantyhP. Arendt-NielsenL. ViktrupL. TiveL. Nerve growth factor signaling and its contribution to pain.J. Pain Res.2020131223124110.2147/JPR.S24747232547184
    [Google Scholar]
  17. SharmaH.S. FengL. ChenL. HuangH. Ryan TianZ. NozariA. MuresanuD.F. LafuenteJ.V. CastellaniR.J. WiklundL. SharmaA. Cerebrolysin attenuates exacerbation of neuropathic pain, blood-spinal cord barrier breakdown and cord pathology following chronic intoxication of engineered Ag, Cu or Al (50–60 nm) nanoparticles.Neurochem. Res.20234861864188810.1007/s11064‑023‑03861‑836719560
    [Google Scholar]
  18. AbolhasanpourN. SadeghiP. GholizadehM. Salehi-PourmehrH. HosseiniL. Cerebrolysin use in stroke and spinal cord injury: Review of the literature and outcomes.Int. J. Drug Res. Clin.20231e2210.34172/ijdrc.2023.e22
    [Google Scholar]
  19. SezenO. ErtekinM.V. DemircanB. Karslıoğluİ. ErdoğanF. Koçerİ. Çalıkİ. GepdiremenA. Vitamin E and l-carnitine, separately or in combination, in the prevention of radiation-induced brain and retinal damages.Neurosurg. Rev.200831220521310.1007/s10143‑007‑0118‑018259790
    [Google Scholar]
  20. FormichiP. RadiE. BattistiC. Di MaioG. MuresanuD. FedericoA. Cerebrolysin administration reduces oxidative stress-induced apoptosis in limphocytes from healthy individuals.J. Cell. Mol. Med.201216112840284310.1111/j.1582‑4934.2012.01615.x22882711
    [Google Scholar]
  21. ZhangC. ChoppM. CuiY. WangL. ZhangR. ZhangL. LuM. SzaladA. DopplerE. HitzlM. ZhangZ.G. Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke.J. Neurosci. Res.201088153275328110.1002/jnr.2249520857512
    [Google Scholar]
  22. Abdel-SalamO. OmaraE.A. MohammedN.A. YounessE.R. KhadrawyY.A. SleemA.A. Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats.Drug Discov. Ther.20137626127110.5582/ddt.2013.v7.6.26124423658
    [Google Scholar]
  23. JuárezI. GonzálezD.J. MenaR. FloresG. The chronic administration of cerebrolysin induces plastic changes in the prefrontal cortex and dentate gyrus in aged mice.Synapse201165111128113510.1002/syn.2095021544867
    [Google Scholar]
  24. Amiri-NikpourM.R. NazarbaghiS. Ahmadi-SalmasiB. MokariT. TahamtanU. RezaeiY. Cerebrolysin effects on neurological outcomes and cerebral blood flow in acute ischemic stroke.Neuropsychiatr. Dis. Treat.2014102299230625516711
    [Google Scholar]
  25. JiaF. DongH. JiangX. NiuC. DuL. FengJ. Cerebrolysin improves sciatic nerve dysfunction in a mouse model of diabetic peripheral neuropathy.Neural Regen. Res.201611115616210.4103/1673‑5374.17506326981106
    [Google Scholar]
  26. BoshraV. AtwaA. Effect of cerebrolysin on oxidative stress-induced apoptosis in an experimental rat model of myocardial ischemia.Physiol. Int.2016103331032010.1556/2060.103.2016.3.228229640
    [Google Scholar]
  27. VaghefL. FarajdokhtF. ErfaniM. MajdiA. Sadigh-EteghadS. KarimiP. Sandoghchian ShotorbaniS. Seyedi VafaeeM. MahmoudiJ. Cerebrolysin attenuates ethanol-induced spatial memory impairments through inhibition of hippocampal oxidative stress and apoptotic cell death in rats.Alcohol20197912713510.1016/j.alcohol.2019.03.00530981808
    [Google Scholar]
  28. AvciS. GunaydinS. AriN.S. Karaca SulukogluE. PolatO.E. GeciliI. YeniY. YilmazA. GencS. HacimuftuogluA. YildirimS. MokreshM.Y. FindikD.G. TsatsakisA. MarginaD. TsarouhasK. WallaceD.R. TaghizadehghalehjoughiA. Cerebrolysin alleviating effect on glutamate-mediated neuroinflammation via glutamate transporters and oxidative stress.J. Mol. Neurosci.202272112292230210.1007/s12031‑022‑02078‑836333611
    [Google Scholar]
  29. MarghaniB.H. RezkS. AteyaA.I. AlotaibiB.S. OthmanB.H. SayedS.M. AlshehriM.A. ShukryM. MansourM.M. The effect of cerebrolysin in an animal model of forebrain ischemic-reperfusion injury: New insights into the activation of the Keap1/Nrf2/Antioxidant signaling pathway.Int. J. Mol. Sci.202324151208010.3390/ijms24151208037569457
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775291111240409053824
Loading
/content/journals/cdrr/10.2174/0125899775291111240409053824
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test