Current Drug Discovery Technologies - Volume 17, Issue 4, 2020
Volume 17, Issue 4, 2020
-
-
Harnessing Metal Homeostasis Offers Novel and Promising Targets Against Candida albicans
Authors: Saif Hameed, Sandeep Hans, Shweta Singh and Zeeshan FatimaFungal infections, particularly of Candida species, which are the commensal organisms of human, are one of the major debilitating diseases in immunocompromised patients. The limited number of antifungal drugs available to treat Candida infections, with the concomitant increasing incidence of multidrug-resistant (MDR) strains, further worsens the therapeutic options. Thus, there is an urgent need for the better understanding of MDR mechanisms, and their reversal, by employing new strategies to increase the efficacy and safety profiles of currently used therapies against the most prevalent human fungal pathogen, Candida albicans. Micronutrient availability during C. albicans infection is regarded as a critical factor that influences the progression and magnitude of the disease. Intracellular pathogens colonize a variety of anatomical locations that are likely to be scarce in micronutrients, as a defense strategy adopted by the host, known as nutritional immunity. Indispensable critical micronutrients are required both by the host and by C. albicans, especially as a cofactor in important metabolic functions. Since these micronutrients are not freely available, C. albicans need to exploit host reservoirs to adapt within the host for survival. The ability of pathogenic organisms, including C. albicans, to sense and adapt to limited micronutrients in the hostile environment is essential for survival and confers the basis of its success as a pathogen. This review describes that micronutrients availability to C. albicans is a key attribute that may be exploited when one considers designing strategies aimed at disrupting MDR in this pathogenic fungi. Here, we discuss recent advances that have been made in our understanding of fungal micronutrient acquisition and explore the probable pathways that may be utilized as targets.
-
-
-
Mechanisms of Antimicrobial Resistance (AMR) and Alternative Approaches to Overcome AMR
Antimicrobials are useful compounds intended to eradicate or stop the growth of harmful microorganisms. The sustained increase in the rates of antimicrobial resistance (AMR) worldwide is worrying and poses a major public health threat. The development of new antimicrobial agents is one of the critical approaches to overcome AMR. However, in the race towards developing alternative approaches to combat AMR, it appears that the scientific community is falling behind when pitched against the evolutionary capacity of multi-drug resistant (MDR) bacteria. Although the “pioneering strategy” of discovering completely new drugs is a rational approach, the time and effort taken are considerable, the process of drug development could instead be expedited if efforts were concentrated on enhancing the efficacy of existing antimicrobials through: combination therapies; bacteriophage therapy; antimicrobial adjuvants therapy or the application of nanotechnology. This review will briefly detail the causes and mechanisms of AMR as background, and then provide insights into a novel, future emerging or evolving strategies that are currently being evaluated and which may be developed in the future to tackle the progression of AMR.
-
-
-
Nanoparticles and Its Implications in HIV/AIDS Therapy
More LessThe use of Antiretroviral drugs in treating HIV/ AIDS patients has enormously increased their life spans with serious disadvantages. The virus infection still remains a public health problem worldwide with no cure and vaccine for the viral agent until now. The use of nanoparticles (NPs) for the treatment and prevention of HIV/AIDS is an emerging technology of the 21st century. NPs are solid and colloid particles with 10 nm to <1000 nm size range; although, less than 200 nm is the recommended size for nanomedical usage. There are NPs with therapeutic capabilities such as liposomes, micelles, dendrimers and nanocapsules. The particle enters the body mainly via oral intake, direct injection and inhalation. It has been proven to have potentials of advancing the prevention and treatment of the viral agent. Certain NPs have been shown to have selftherapeutic activity for the virus in vitro. Strategies that are novel are emerging which can be used to improve nanotechnology, such as genetic treatment and immunotherapy. In this review, nanoparticles, the types and its characteristics in drug delivery were discussed. The light was furthermore shed on its implications in the prevention and treatment of HIV/AIDS.
-
-
-
Novel Nanotherapeutics as Next-generation Anti-infective Agents: Current Trends and Future Prospectives
Authors: Pattnaik Subhaswaraj, Asad Syed and Busi SiddhardhaWith the ever-increasing population and improvement in the healthcare system in the 21st century, the incidence of chronic microbial infections and associated health disorders has also increased at a striking pace. The ability of pathogenic microorganisms to form biofilm matrix aggravates the situation due to antibiotic resistance phenomenon resulting in resistance against conventional antibiotic therapy which has become a public health concern. The canonical Quorum Sensing (QS) signaling system hierarchically regulates the expression of an array of virulence phenotypes and controls the development of biofilm dynamics. It is imperative to develop an alternative, yet effective and non-conventional therapeutic approach, popularly known as “anti-infective therapy” which seems to be interesting. In this regard, targeting microbial QS associated virulence and biofilm development proves to be a quite astonishing approach in counteracting the paucity of traditional antibiotics. A number of synthetic and natural compounds are exploited for their efficacy in combating QS associated microbial infections but the bioavailability and biocompatibility limit their widespread applications. In this context, the nanotechnological intervention offers a new paradigm for widespread biomedical applications starting from targeted drug delivery to diagnostics for the diagnosis and treatment of infectious diseases, particularly to fight against microbial infections and antibiotics resistance in biofilms. A wide range of nanomaterials ranging from metallic nanoparticles to polymeric nanoparticles and recent advances in the development of carbon-based nanomaterials such as Carbon Nanotubes (CNTs), Graphene Oxide (GO) also immensely exhibited intrinsic antiinfective properties when targeted towards microbial infections and associated MDR phenomenon. In addition, the use of nano-based platforms as carriers emphatically increases the efficacy of targeted and sitespecific delivery of potential drug candidates for preventing microbial infections.
-
-
-
Effective Antiviral Medicinal Plants and Biological Compounds Against Central Nervous System Infections: A Mechanistic Review
More LessBackground and Objective: Infectious diseases are amongst the leading causes of death in the world and central nervous system infections produced by viruses may either be fatal or generate a wide range of symptoms that affect global human health. Most antiviral plants contain active phytoconstituents such as alkaloids, flavonoids, and polyphenols, some of which play an important antiviral role. Herein, we present a background to viral central nervous system (CNS) infections, followed by a review of medicinal plants and bioactive compounds that are effective against viral pathogens in CNS infections. Methods: A comprehensive literature search was conducted on scientific databases including: PubMed, Scopus, Google Scholar, and Web of Science. The relevant keywords used as search terms were: “myelitis”, “encephalitis”, “meningitis”, “meningoencephalitis”, “encephalomyelitis”, “central nervous system”, “brain”, “spinal cord”, “infection”, “virus”, “medicinal plants”, and “biological compounds”. Results: The most significant viruses involved in central nervous system infections are: Herpes Simplex Virus (HSV), Varicella Zoster Virus (VZV), West Nile Virus (WNV), Enterovirus 71 (EV71), Japanese Encephalitis Virus (JEV), and Dengue Virus (DENV). The inhibitory activity of medicinal plants against CNS viruses is mostly active through prevention of viral binding to cell membranes, blocking viral genome replication, prevention of viral protein expression, scavenging reactive Oxygen Species (ROS), and reduction of plaque formation. Conclusion: Due to the increased resistance of microorganisms (bacteria, viruses, and parasites) to antimicrobial therapies, alternative treatments, especially using plant sources and their bioactive constituents, appear to be more fruitful.
-
-
-
Review of Phytochemical Compounds as Antiviral Agents Against Arboviruses from the Genera Flavivirus and Alphavirus
More LessArboviruses are a diverse group of viruses that are among the major causes of emerging infectious diseases. Arboviruses from the genera flavivirus and alphavirus are the most important human arboviruses from a public health perspective. During recent decades, these viruses have been responsible for millions of infections and deaths around the world. Over the past few years, several investigations have been carried out to identify antiviral agents to treat these arbovirus infections. The use of synthetic antiviral compounds is often unsatisfactory since they may raise the risk of viral mutation; they are costly and possess either side effects or toxicity. One attractive strategy is the use of plants as promising sources of novel antiviral compounds that present significant inhibitory effects on these viruses. In this review, we describe advances in the exploitation of compounds and extracts from natural sources that target the vital proteins and enzymes involved in arbovirus replication.
-
-
-
Modulation of Gut Microbiota through Dietary Phytochemicals as a Novel Anti-infective Strategy
Authors: Pavan K. Mujawdiya and Suman KapurQuorum Sensing (QS) is a phenomenon in which bacterial cells communicate with each other with the help of several low molecular weight compounds. QS is largely dependent on population density, and it triggers when the concentration of quorum sensing molecules accumulate in the environment and crosses a particular threshold. Once a certain population density is achieved and the concentration of molecules crosses a threshold, the bacterial cells show a collective behavior in response to various chemical stimuli referred to as “auto-inducers”. The QS signaling is crucial for several phenotypic characteristics responsible for bacterial survival such as motility, virulence, and biofilm formation. Biofilm formation is also responsible for making bacterial cells resistant to antibiotics. The human gut is home to trillions of bacterial cells collectively called “gut microbiota” or “gut microbes”. Gut microbes are a consortium of more than 15,000 bacterial species and play a very crucial role in several body functions such as metabolism, development and maturation of the immune system, and the synthesis of several essential vitamins. Due to its critical role in shaping human survival and its modulating impact on body metabolisms, the gut microbial community has been referred to as “the forgotten organ” by O`Hara et al. (2006) [1]. Several studies have demonstrated that chemical interaction between the members of bacterial cells in the gut is responsible for shaping the overall microbial community. Recent advances in phytochemical research have generated a lot of interest in finding new, effective, and safer alternatives to modern chemical-based medicines. In the context of antimicrobial research various plant extracts have been identified with Quorum Sensing Inhibitory (QSI) activities among bacterial cells. This review focuses on the mechanism of quorum sensing and quorum sensing inhibitors isolated from natural sources.
-
-
-
Exploring Antimicrobials from the Flora and Fauna of Marine: Opportunities and Limitations
About 95% of earth living space lies deep below the ocean’s surface and it harbors extraordinary diversity of marine organisms. Marine biodiversity is an exceptional reservoir of natural products, bioactive compounds, nutraceuticals and other potential compounds of commercial value. Timeline for the development of the drug from a plant, synthetic and other alternative sources is too lengthy. Exploration of the marine environment for potential bioactive compounds has gained focus and huge opportunity lies ahead for the exploration of such vast resources in the ocean. Further, the evolution of superbugs with increasing resistance to the currently available drugs is alarming and it needs coordinated efforts to resolve them. World Health Organization recommends the need and necessity to develop effective bioactive compounds to combat problems associated with antimicrobial resistance. Based on these factors, it is imperative to shift the focus towards the marine environment for potential bioactive compounds that could be utilized to tackle antimicrobial resistance. Current research trends also indicate the huge strides in research involving marine environment for drug discovery. The objective of this review article is to provide an overview of marine resources, recently reported research from marine resources, challenges, future research prospects in the marine environment.
-
-
-
Stopping the Unstoppable: Unconventional Methods to Prevent the Biofilm Growth
Authors: Neha Jain and Abdulkhalik MansuriBiofilms are consortia of microorganisms encased in extracellular matrix that protect cells from adverse conditions. A biofilm matrix is typically composed of extracellular DNA, cellulose and proteinaceous amyloid fibers. The matrix aids in adhesion to abiotic and biotic surface including medical devices and host tissues. The presence of biofilm makes bacteria more resilient and non-responsive to most current treatment regimes at disposal. Therefore, biofilm-associated infections are serious threat in hospital settings and pose a huge burden on economy. Inhibition of matrix components (cellulose and/or amyloid formation) has emerged as a lucrative alternative strategy to cure biofilm-related infections and combat antibiotic resistance. Here we review the current and emerging therapeutic interventions to mitigate persistent infections due to biofilms. The successful implementation of these interventions will have a huge impact on alleviating the current financial burden on healthcare services.
-
-
-
Phytoextracts as Antibacterials: A Review
Botanicals have been cultured to flavour food, to treat health disorders and to put a stop to diseases caused by various microorganisms. The awareness of curative features of different medicinal plants has been spread among human communities. The application of herbal products as antimicrobial agents may be a better choice for the extensive and imprudent use of synthetic antibiotics. World Health Organization recommended traditional medicines as the safest remedies for the treatment of diseases of microbial origin. The plant extracts are generally nonhazardous, available in plenty at reasonable prices, biodegradable, eco-friendly and sometimes show broad-spectrum activities against different microorganisms. The current knowledge on plant extracts, phytochemicals and their antibacterial activity, target specific mechanism of action, solvents deployed during extraction, properties of an active ingredient isolated may help in biological control of bacteria. Antimicrobial properties of different plant parts, which act in a low dose, have been organised separately for easy understanding.
-
-
-
Current Development on Chitosan-based Antimicrobial Drug Formulations for the Wound Healing
Authors: Harekrishna Roy, Shaik A. Rahaman, Theendra V. Kumar and Sisir NandiBackground: Derived from polyose, chitosan is an outstanding natural linear polysaccharide comprised of random arrangement of β-(1-4)-linked D-Glucosamine and N-acetyl-DGlucosamine units. Objective: Researchers have been using chitosan as a network forming or gelling agent with economically available, present polyose, low immunogenicity, biocompatibility, non-toxicity, biodegradability, protects against secretion from irritation and don’t suffer the danger of transmission animal infective agent. Methods: Furthermore, recent studies gear up the chitosan used in the development of various biopharmaceutical formulations, including nanoparticles, hydrogels, implants, films, fibers, etc. Results: These formulations produce potential activities as antimicrobials, cancer treatment, medical aid, and wound healing, controlled unleash device or drug trigger retarding device and 3DBiomedical sponge, etc. Conclusion: The present article discusses the development of various drug formulations utilizing chitosan as biopolymers for the repairing of broken tissues and healing in case of wound infection.
-
-
-
Antimicrobial Peptides: An Approach to Combat Resilient Infections
Authors: Debaprasad Parai, Pia Dey and Samir K. MukherjeeBackground: It was apparent by the end of 1980s that the success against the threats of bacterial pathogens on public health was an illusion, with the rapid development of resistant strains more than the discovery of new drugs. As a consequence, the remedial services were in the backfoot position of being on the losing side of this never-ending evolutionary war. The quest for new antibiotics to overcome resistance problems has long been a top research priority for the researchers and the pharmaceutical industry. However, the resistance problems remain unresolved due to the abrupt misuse of antibiotics by common people, which has immensely worsened the scenario by disseminating antibiotic-resistant bacterial strains around the world. Objective: Thus, immediate action is needed to measure emerging and re-emerging microbial diseases having new resistance mechanisms and to manage their rapid spread among the common public by means of novel alternative metabolites. Conclusion: Antimicrobial Peptides (AMPs) are short, cationic peptides evolved in a wide range of living organisms and serve as the essential part of the host innate immunity. For humans, these effector molecules either can directly kill the foreign microbes or modulate the host immune systems so that the human body could develop some resistance against the microbial infections. In this review, we discuss their history, structural classifications, modes of action, and explain their biological roles as anti-infective agents. We also scrutinize their clinical potentiality, current limitations in various developmental stages and strategies to overcome for their successful clinical applications.
-
-
-
Discovery and Development of Novel Anti-fungal Peptides Against Foodspoiling Fungi
Background: Despite the extensive research carried out to develop natural antifungal preservatives for food applications, there are very limited antifungal agents available to inhibit the growth of spoilage fungi in processed foods. Scope and Approach: Therefore, this review summarizes the discovery and development of antifungal peptides using lactic acid bacteria fermentation to prevent food spoilage by fungi. The focus of this review will be on the identification of antifungal peptides, potential sources, the possible modes of action and properties of peptides considered to inhibit the growth of spoilage fungi. Key Findings and Conclusions: Antifungal peptides generated by certain lactic acid bacteria strains have a high potential for applications in a broad range of foods. The mechanism of peptides antifungal activity is related to their properties such as low molecular weight, concentration and secondary structure. The antifungal peptides were proposed to be used as bio-preservatives to reduce and/or replace chemical preservatives.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month
