Skip to content
2000
Volume 8, Issue 4
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Self-spreading lipid bilayers at the solid/liquid interface can be used as a molecular transport medium in targeting nano-devices such as drug delivery and micro-total analytical systems. To gain physico-chemical insight in the selfspreading lipid bilayer, we have characterized the distribution of dye-labeled lipids in the upper and lower monolayers of a self-spreading lipid bilayer on a hydrophobic substrate by fluorescence quenching experiments using KI as a quencher. TR-DHPE, a molecule with a dye moiety at the head group, was found to be distributed primarily in the upper layer and accumulated especially at the spreading edge because of high steric repulsion. This resulted in an asymmetric distribution of TR-DHPE in the self-spreading bilayer in both the vertical and lateral directions. By contrast, NBD-PC, bearing a dye moiety at the alkyl chain, was distributed almost symmetrically both vertically and laterally. The observed difference is attributed to the difference in interactions between these molecules in the lower layer and the substrate surface. We have also found that the self-spreading velocity was decreased by the addition of KI. Since the spreading dynamics are determined by the interaction energy between the bilayer and solid substrate, a part of the observed velocity decrease could be explained by the change in the lipid density resulting from the adsorption of the I- anion on the lipid head group, thereby reducing the van der Waals interaction energy.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/157016311798109353
2011-12-01
2025-09-08
Loading full text...

Full text loading...

/content/journals/cddt/10.2174/157016311798109353
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test