Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

AI's rise has affected many aspects of civilization. Pharmaceutical businesses have been hit hard. This review paper highlights AI's benefits for disease detection, clinical trials, medicine development, and productivity in the pharmaceutical industry. Pharmaceutical companies have built specialized systems to help doctors diagnose and monitor medication remediation. Pharmaceutical businesses are utilizing AI for machine learning to imitate human analytical processes for more accurate and insightful data. AI has many benefits for the pharmaceutical business. Data analysis can address previously insoluble problems due to improved precision. AI boosts productivity, lowers expenses, and enhances tasks. AI insights enhance understanding of user behavior, market performance, and clinical trial success. AI helps identify patients during clinical trials and improves antiviral detection to ensure efficacy, safety, cost-effectiveness, and seamless pharmaceutical procedures. The pharmaceutical industry emphasizes AI in R&D, drug discovery, diagnostics, sickness prevention, epidemic forecasting, remote access, manufacturing, and marketing. Artificial intelligence has transformed medication development and discovery by analyzing vast datasets, discovering complicated patterns, and forecasting efficacy. Pharmaceutical companies like Novartis, AstraZeneca, and Verge Genomics are utilizing AI for drug feature prediction, neurological evaluation, therapy development, pulmonary and hypertension recognition, low-cost medication production, and disease diagnosis.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638313233240830132804
2024-09-05
2025-09-25
Loading full text...

Full text loading...

References

  1. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.01033099022
    [Google Scholar]
  2. AhnJ.S. EbrahimianS. McDermottS. LeeS. NaccaratoL. Di CapuaJ.F. WuM.Y. ZhangE.W. MuseV. MillerB. SabzalipourF. BizzoB.C. DreyerK.J. KavianiP. DigumarthyS.R. KalraM.K. Association of artificial intelligence–aided chest radiograph interpretation with reader performance and efficiency.JAMA Netw. Open202258e2229289e222928910.1001/jamanetworkopen.2022.2928936044215
    [Google Scholar]
  3. DuchW. SetionoR. ZuradaJ.M. Computational intelligence methods for rule-based data understanding.Proc. IEEE200492577180510.1109/JPROC.2004.826605
    [Google Scholar]
  4. DasS. DeyR. NayakA.K. Artificial intelligence in pharmacy. Indian J Pharm Educ Res202155230431810.5530/ijper.55.2.68
    [Google Scholar]
  5. KrishnaveniC ArvapalliS SharmaJVC Divya K. Artificial intelligence in pharma industry- A review. IJIPSR20197103750
    [Google Scholar]
  6. NishantR. SchneckenbergD. RavishankarM.N. The formal rationality of artificial intelligence-based algorithms and the problem of bias.J. Inf. Technol.20233910268396223117684210.1177/02683962231176842
    [Google Scholar]
  7. DwivediY.K. HughesL. IsmagilovaE. AartsG. CoombsC. CrickT. DuanY. DwivediR. EdwardsJ. EirugA. GalanosV. IlavarasanP.V. JanssenM. JonesP. KarA.K. KizginH. KronemannB. LalB. LuciniB. MedagliaR. Le Meunier-FitzHughK. Le Meunier-FitzHughL.C. MisraS. MogajiE. SharmaS.K. SinghJ.B. RaghavanV. RamanR. RanaN.P. SamothrakisS. SpencerJ. TamilmaniK. TubadjiA. WaltonP. WilliamsM.D. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy.Int. J. Inf. Manage.20215710199410.1016/j.ijinfomgt.2019.08.002
    [Google Scholar]
  8. RivareA. Artificial intelligence and digitalization in pharmaceutical regulatory affairs. Doctoral Dissertation, Dissertation, University of Helsenki,2023
    [Google Scholar]
  9. TownsendB.A. SihlahlaI. NaidooM. NaidooS. DonnellyD.L. ThaldarD.W. Mapping the regulatory landscape of AI in healthcare in Africa.Front. Pharmacol.202314121442210.3389/fphar.2023.121442237693916
    [Google Scholar]
  10. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  11. AldoseriA. Al-KhalifaK.N. HamoudaA.M. Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges.Appl. Sci20231312708210.3390/app13127082
    [Google Scholar]
  12. ChuiM HazanE RobertsR SinglaA SmajeK 2023Available at: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier#introduction
  13. GerkeS. Health AI for good rather than evil? The need for a new regulatory framework for AI-based medical devices.Yale J Heal Pol’y L Ethics.202120432
    [Google Scholar]
  14. RendaA. Artificial Intelligence. Ethics, governance and policy challenges.CEPS Centre for European Policy Studies2019
    [Google Scholar]
  15. Peña-GuerreroJ. NguewaP.A. García-SosaA.T. Machine learning, artificial intelligence, and data science breaking into drug design and neglected diseases.Wiley Interdiscip. Rev. Comput. Mol. Sci.2021115e151310.1002/wcms.1513
    [Google Scholar]
  16. SchwalbeN. WahlB. Artificial intelligence and the future of global health.Lancet2020395102361579158610.1016/S0140‑6736(20)30226‑932416782
    [Google Scholar]
  17. Gonzalez-FierroA. Dueñas-GonzálezA. Drug repurposing for cancer therapy, easier said than done.Seminars in cancer biology.Elsevier202112313110.1016/j.semcancer.2019.12.012
    [Google Scholar]
  18. CucinoV. FerrignoG. AI technologies and hospital blood delivery in peripheral regions.Impact of Artificial Intelligence in Business and Society1st edTaylor & Francis Group 2023231249
    [Google Scholar]
  19. MuellerC. StollfussB. RoitenbergA. HarderJ. RichterM.J. Evaluation of clinical outcomes and simultaneous digital tracking of daily physical activity, heart rate, and inhalation behavior in patients with pulmonary arterial hypertension treated with inhaled iloprost: protocol for the observational VENTASTEP stud.JMIR Res. Protoc.201984e1214410.2196/1214430985279
    [Google Scholar]
  20. Cruz RiveraS. LiuX. ChanA.W. DennistonA.K. CalvertM.J. AshrafianH. BeamA.L. CollinsG.S. DarziA. DeeksJ.J. ElZarradM.K. EspinozaC. EstevaA. FaesL. Ferrante di RuffanoL. FletcherJ. GolubR. HarveyH. HaugC. HolmesC. JonasA. KeaneP.A. KellyC.J. LeeA.Y. LeeC.S. MannaE. MatchamJ. McCraddenM. MoherD. MonteiroJ. MulrowC. Oakden-RaynerL. PaltooD. PanicoM.B. PriceG. RowleyS. SavageR. SarkarR. VollmerS.J. YauC. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension.Lancet Digit. Health2020210e549e56010.1016/S2589‑7500(20)30219‑333328049
    [Google Scholar]
  21. BhattacharyaS. A Note on Robotics and Artificial Intelligence in Pharmacy.Applied Drug Research, Clinical Trials and Regulatory Affairs20218212513410.2174/2667337108666211206151551
    [Google Scholar]
  22. SavageN. Tapping into the drug discovery potential of AI.Nature com202110.1038/d43747‑021‑00045‑7
    [Google Scholar]
  23. MullardA. The drug-maker’s guide to the galaxy.Nature2017549767344544710.1038/549445a28959982
    [Google Scholar]
  24. SantemaB.T. AritaV.A. SamaI.E. KloostermanM. van den BergM.P. NienhuisH.L.A. Van GelderI.C. van der MeerP. ZannadF. MetraM. Ter MaatenJ.M. ClelandJ.G. NgL.L. AnkerS.D. LangC.C. SamaniN.J. DicksteinK. FilippatosG. van VeldhuisenD.J. LamC.S.P. RienstraM. VoorsA.A. Pathophysiological pathways in patients with heart failure and atrial fibrillation.Cardiovasc. Res.2022118112478248710.1093/cvr/cvab33134687289
    [Google Scholar]
  25. FaganAM XiongC JasielecMS Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease.Sci Transl Med20146226226ra3010.1126/scitranslmed.3007901
    [Google Scholar]
  26. SahuA. MishraJ. KushwahaN. Artificial intelligence (AI) in drugs and pharmaceuticals.Comb. Chem. High Throughput Screen.202225111818183710.2174/138620732566621120715394334875986
    [Google Scholar]
  27. FriedmanSL SheppardD DuffieldJS VioletteS Therapy for fibrotic diseases: nearing the starting line.Sci Transl Med.20135167167sr110.1126/scitranslmed.3004700
    [Google Scholar]
  28. CopelandK.C. ZeitlerP. GeffnerM. GuandaliniC. HigginsJ. HirstK. KaufmanF.R. LinderB. MarcovinaS. McGuiganP. PyleL. TamborlaneW. WilliS. Characteristics of adolescents and youth with recent-onset type 2 diabetes: the TODAY cohort at baseline.J. Clin. Endocrinol. Metab.201196115916710.1210/jc.2010‑164220962021
    [Google Scholar]
  29. Tamanna Sharma Abhinav Mankoo Vivek Sood Artificial intelligence in advanced pharmacy.International Journal of Science and Research Archive20212104705410.30574/ijsra.2021.2.1.0301
    [Google Scholar]
  30. ZhavoronkovA. Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry.Molecular PharmaceuticsACS Publications2018154311431310.1021/acs.molpharmaceut.8b00930
    [Google Scholar]
  31. DellermannD CalmaA LipuschN WeberT WeigelS EbelP. The future of human-AI collaboration: A taxonomy of design knowledge for hybrid intelligence systems.arXiv 210503354, 2021
    [Google Scholar]
  32. BhattamisraS.K. BanerjeeP. GuptaP. MayurenJ. PatraS. CandasamyM. Artificial Intelligence in Pharmaceutical and Healthcare Research.Big Data and Cognitive Computing2023711010.3390/bdcc7010010
    [Google Scholar]
  33. PauwelsE. VidyarthiA. Who will own the secrets in our genes?: A US-China race in artificial intelligence and genomics.DCWoodrow Wilson International Center for Scholars Washington2017
    [Google Scholar]
  34. GauravD. RodriguezF.O. TiwariS. JabbarM.A. Review of machine learning approach for drug development process.Deep Learning in Biomedical and Health Informatics.CRC Press2021537710.1201/9781003161233‑3
    [Google Scholar]
  35. MakK.K. PichikaM.R. Artificial intelligence in drug development: present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.01430472429
    [Google Scholar]
  36. DashS.P. The impact of IoT in healthcare: global technological change & the roadmap to a networked architecture in India.J. Indian Inst. Sci.2020100477378510.1007/s41745‑020‑00208‑y33162693
    [Google Scholar]
  37. NowrozyR. AhmedK. WangH. McintoshT. Towards a universal privacy model for electronic health record systems: an ontology and machine learning approach.Informatics. MDPI202360
    [Google Scholar]
  38. SharmilanS. FarookC. Blockchain & machine learning based secure personal medical record storage and sharing platform-DataBlock.4th International Conference on Information Technology Research (ICITR)Moratuwa, Sri Lanka, 2019, pp. 1-610.1109/ICITR49409.2019.9407796
    [Google Scholar]
  39. Saumya D, Ashish G, Ayushi C, Devashish S, Anamul H, Kumar DM. Artificial Intelligence Transforming Pharma Industry-Improving Healthcare.Int J Pharm Res.2021133603
    [Google Scholar]
  40. AlexanderG.C. GallagherS.A. MascolaA. MoloneyR.M. StaffordR.S. Increasing off‐label use of antipsychotic medications in the United States, 1995–2008.Pharmacoepidemiol. Drug Saf.201120217718410.1002/pds.208221254289
    [Google Scholar]
  41. DowningN.S. AminawungJ.A. ShahN.D. KrumholzH.M. RossJ.S. Clinical trial evidence supporting FDA approval of novel therapeutic agents, 2005-2012.JAMA2014311436837710.1001/jama.2013.28203424449315
    [Google Scholar]
  42. GuoJ LiB The application of medical artificial intelligence technology in rural areas of developing countries.Heal equity2018211748110.1089/heq.2018.0037
    [Google Scholar]
  43. KarpatneA. Ebert-UphoffI. RavelaS. BabaieH.A. KumarV. Machine learning for the geosciences: Challenges and opportunities.IEEE Trans. Knowl. Data Eng.20193181544155410.1109/TKDE.2018.2861006
    [Google Scholar]
  44. ChoY.S. HongP.C. Applying machine learning to healthcare operations management: CNN-Based model for malaria diagnosis.Healthcare20231112177910.3390/healthcare11121779
    [Google Scholar]
  45. NkirukaO. PrasadR. ClementO. Prediction of malaria incidence using climate variability and machine learning.Informatics in Medicine Unlocked20212210050810.1016/j.imu.2020.100508
    [Google Scholar]
  46. PasluostaCF GassnerH WinklerJ KluckenJ EskofierBM An emerging era in the management of Parkinson’s disease: wearable technologies and the internet of things.IEEE J Biomed Heal informatics20151961873188110.1109/JBHI.2015.2461555
    [Google Scholar]
  47. CabestanyJ. LópezC.P. SamaA. MorenoJ.M. BayesA. Rodriguez-MolineroA. REMPARK: When AI and technology meet Parkinson Disease assessment.Proceedings of the 20th international conference mixed design of integrated circuits and systems-MIXDES 2013Gdynia, Poland, 20-22 June 2013, pp. 562-567
    [Google Scholar]
  48. Luis-MartínezR. MonjeM.H.G. AntoniniA. Sánchez-FerroÁ. MestreT.A. Technology-enabled care: integrating multidisciplinary care in Parkinson’s disease through digital technology.Front. Neurol.20201157597510.3389/fneur.2020.57597533250846
    [Google Scholar]
  49. BelićM. BobićV. BadžaM. ŠolajaN. Đurić-JovičićM. KostićV.S. Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease—A review.Clin. Neurol. Neurosurg.201918410544210.1016/j.clineuro.2019.10544231351213
    [Google Scholar]
  50. JavaidM. HaleemA. SinghR.P. SumanR. Artificial intelligence applications for industry 4.0: A literature-based study.Journal of Industrial Integration and Management2022718311110.1142/S2424862221300040
    [Google Scholar]
  51. ChuiM. Artificial intelligence the next digital frontier.McKinsey Co Glob Inst2017473.6
    [Google Scholar]
  52. KorshunovaM. GinsburgB. TropshaA. IsayevO. OpenChem: a deep learning toolkit for computational chemistry and drug design.J. Chem. Inf. Model.202161171310.1021/acs.jcim.0c0097133393291
    [Google Scholar]
  53. BornJ. ManicaM. Trends in deep learning for property-driven drug design.Curr. Med. Chem.202128387862788610.2174/092986732866621072911572834325627
    [Google Scholar]
  54. WaltersW.P. BarzilayR. Applications of deep learning in molecule generation and molecular property prediction.Acc. Chem. Res.202154226327010.1021/acs.accounts.0c0069933370107
    [Google Scholar]
  55. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑530976107
    [Google Scholar]
  56. LovrićM. MoleroJ.M. KernR. PySpark and RDKit: moving towards big data in cheminformatics.Mol. Inform.2019386180008210.1002/minf.20180008230844132
    [Google Scholar]
  57. WójcikowskiM. ZielenkiewiczP. SiedleckiP. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field.J. Cheminform.2015712610.1186/s13321‑015‑0078‑226101548
    [Google Scholar]
  58. StorkC. ChenY. ŠíchoM. KirchmairJ. Hit Dexter 2.0: machine-learning models for the prediction of frequent hitters.J. Chem. Inf. Model.20195931030104310.1021/acs.jcim.8b0067730624935
    [Google Scholar]
  59. KarS. LeszczynskiJ. Open access in silico tools to predict the ADMET profiling of drug candidates.Expert Opin. Drug Discov.202015121473148710.1080/17460441.2020.179892632735147
    [Google Scholar]
  60. BalajiS MagarR JadhavY. GPT-MolBERTa: GPT Molecular Features Language Model for molecular property prediction.arXiv:2310.03030, 2023
    [Google Scholar]
  61. LimS. LeeS. PiaoY. ChoiM. BangD. GuJ. KimS. On modeling and utilizing chemical compound information with deep learning technologies: A task-oriented approach.Comput. Struct. Biotechnol. J.2022204288430410.1016/j.csbj.2022.07.04936051875
    [Google Scholar]
  62. ZhengL. FanJ. MuY. Onionnet: a multiple-layer intermolecular-contact-based convolutional neural network for protein–ligand binding affinity prediction.ACS Omega2019414159561596510.1021/acsomega.9b0199731592466
    [Google Scholar]
  63. Hassan-HarrirouH. ZhangC. LemminT. RosENet: improving binding affinity prediction by leveraging molecular mechanics energies with an ensemble of 3D convolutional neural networks.J. Chem. Inf. Model.20206062791280210.1021/acs.jcim.0c0007532392050
    [Google Scholar]
  64. WeberJ.K. MorroneJ.A. BagchiS. PabonJ.D.E. KangS. ZhangL. CornellW.D. Simplified, interpretable graph convolutional neural networks for small molecule activity prediction.J. Comput. Aided Mol. Des.202236539140410.1007/s10822‑021‑00421‑634817762
    [Google Scholar]
  65. RoneyJ.P. OvchinnikovS. State-of-the-art estimation of protein model accuracy using AlphaFold.Phys. Rev. Lett.20221292323810110.1103/PhysRevLett.129.23810136563190
    [Google Scholar]
  66. VaradiM. AnyangoS. DeshpandeM. NairS. NatassiaC. YordanovaG. YuanD. StroeO. WoodG. LaydonA. ŽídekA. GreenT. TunyasuvunakoolK. PetersenS. JumperJ. ClancyE. GreenR. VoraA. LutfiM. FigurnovM. CowieA. HobbsN. KohliP. KleywegtG. BirneyE. HassabisD. VelankarS. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models.Nucleic Acids Res.202250D1D439D44410.1093/nar/gkab106134791371
    [Google Scholar]
  67. MuhammedM.T. Aki-YalcinE. Molecular docking: principles, advances, and its applications in drug discovery.Lett. Drug Des. Discov.202421348049510.2174/1570180819666220922103109
    [Google Scholar]
  68. SaikiaS. BordoloiM. Molecular docking: challenges, advances and its use in drug discovery perspective.Curr. Drug Targets201920550152110.2174/138945011966618102215301630360733
    [Google Scholar]
  69. MaJ. SheridanR.P. LiawA. DahlG.E. SvetnikV. Deep neural nets as a method for quantitative structure-activity relationships.J. Chem. Inf. Model.201555226327410.1021/ci500747n25635324
    [Google Scholar]
  70. GrechishnikovaD. Transformer neural network for protein-specific de novo drug generation as a machine translation problem.Sci. Rep.202111132133432013
    [Google Scholar]
  71. LiZ. JiangM. WangS. ZhangS. Deep learning methods for molecular representation and property prediction.Drug Discov. Today2022271210337310.1016/j.drudis.2022.10337336167282
    [Google Scholar]
  72. TongX. LiuX. TanX. LiX. JiangJ. XiongZ. XuT. JiangH. QiaoN. ZhengM. Generative models for de novo drug design.J. Med. Chem.20216419140111402710.1021/acs.jmedchem.1c0092734533311
    [Google Scholar]
  73. IsikgorF.H. BecerC.R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers.Polym. Chem.20156254497455910.1039/C5PY00263J
    [Google Scholar]
  74. PatelV.L. ShortliffeE.H. StefanelliM. SzolovitsP. BertholdM.R. BellazziR. Abu-HannaA. The coming of age of artificial intelligence in medicine.Artif. Intell. Med.200946151710.1016/j.artmed.2008.07.01718790621
    [Google Scholar]
  75. ZhangH. ZhaoY. YuM. ZhaoZ. LiuP. ChengH. JiY. JinY. SunB. ZhouJ. DingY. Reassembly of native components with donepezil to execute dual-missions in Alzheimer’s disease therapy.J. Control. Release2019296142810.1016/j.jconrel.2019.01.00830639387
    [Google Scholar]
  76. KožuškoJ. Zareravasan A. Artificial intelligence and solutions to the COVID-19 pandemic. Dissertation. Masaryk University, Faculty of Economics and Administration2022173
    [Google Scholar]
  77. AlharbiH.F. BhupathyraajM. MohandossK. ChackoL. RaniK.R.V. An Overview of Artificial Intelligence-driven Pharmaceutical Functionality.Artif Intell Pharm Sci20241836
    [Google Scholar]
  78. PatelJ. PatelD. MeshramD. Artificial Intelligence in Pharma Industry-A Rising Concept.J Adv Pharmacogn.202112
    [Google Scholar]
  79. BainE.E. ShafnerL. WallingD.P. OthmanA.A. Chuang-SteinC. HinkleJ. HaninaA. Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia.JMIR Mhealth Uhealth201752e1810.2196/mhealth.703028223265
    [Google Scholar]
  80. RazaM.A. AzizS. NoreenM. SaeedA. AnjumI. AhmedM. RazaS.M. Artificial Intelligence (AI) in Pharmacy: An Overview of Innovations.Innov. Pharm.20221321310.24926/iip.v13i2.483936654703
    [Google Scholar]
  81. ShahP. KendallF. KhozinS. GoosenR. HuJ. LaramieJ. RingelM. SchorkN. Artificial intelligence and machine learning in clinical development: a translational perspective.NPJ Digit. Med.2019216910.1038/s41746‑019‑0148‑331372505
    [Google Scholar]
  82. AskinS. BurkhalterD. CaladoG. El DakrouniS. Artificial Intelligence Applied to clinical trials: opportunities and challenges.Health Technol202313220321310.1007/s12553‑023‑00738‑236923325
    [Google Scholar]
  83. PantuckA.J. LeeD.K. KeeT. WangP. LakhotiaS. SilvermanM.H. MathisC. DrakakiA. BelldegrunA.S. HoC-M. HoD. Modulating BET bromodomain inhibitor ZEN‐3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE. AI, an artificial intelligence platform.Adv. Ther201816180010410.1002/adtp.201800104
    [Google Scholar]
  84. KeeT. WeiyanC. BlasiakA. WangP. ChongJ.K. ChenJ. YeoB.T.T. HoD. AsplundC.L. Harnessing CURATE. AI as a digital therapeutics platform by identifying N‐of‐1 learning trajectory profiles.Adv. Ther201929190002310.1002/adtp.201900023
    [Google Scholar]
  85. MukhopadhyayA. SumnerJ. LingL.H. QuekR.H.C. TanA.T.H. TengG.G. SeetharamanS.K. GollamudiS.P.K. HoD. MotaniM. Personalised Dosing Using the CURATE.AI Algorithm: Protocol for a Feasibility Study in Patients with Hypertension and Type II Diabetes Mellitus.Int. J. Environ. Res. Public Health20221915897910.3390/ijerph1915897935897349
    [Google Scholar]
  86. BlasiakA. KhongJ. KeeT. CURATE. AI: optimizing personalized medicine with artificial intelligence.SLAS Technol.20202529510510.1177/247263031989031631771394
    [Google Scholar]
  87. TanB.K.J. TeoC.B. TadeoX. PengS. SohH.P.L. DuS.D.X. LuoV.W.Y. BandlaA. SundarR. HoD. KeeT.W. BlasiakA. Personalised, rational, efficacy-driven cancer drug dosing via an artificial intelligence SystEm (PRECISE): a protocol for the PRECISE CURATE. AI pilot clinical trial.Frontiers in Digital Health2021363552410.3389/fdgth.2021.63552434713106
    [Google Scholar]
  88. ZhuX. China’s Technology Innovators.Springer201810.1007/978‑981‑10‑5388‑7
    [Google Scholar]
  89. HarrisonV.J. Leveraging Pharma, Digital Innovation, and Partnerships to Increase Healthcare Access in China: A COVID-19 Case Study.Harvard University2021
    [Google Scholar]
  90. PatelH. A A Review: Future Aspects of Artificial Intelligence Big Data And Robotics In Pharmaceutical Industry2021
    [Google Scholar]
  91. FletcherM.J. UptonJ. Taylor-FishwickJ. BuistS.A. JenkinsC. HuttonJ. BarnesN. Van Der MolenT. WalshJ.W. JonesP. WalkerS. COPD uncovered: an international survey on the impact of chronic obstructive pulmonary disease [COPD] on a working age population.BMC Public Health201111161210.1186/1471‑2458‑11‑61221806798
    [Google Scholar]
  92. CowieM.R. BlomsterJ.I. CurtisL.H. DuclauxS. FordI. FritzF. GoldmanS. JanmohamedS. KreuzerJ. LeenayM. MichelA. OngS. PellJ.P. SouthworthM.R. StoughW.G. ThoenesM. ZannadF. ZalewskiA. Electronic health records to facilitate clinical research.Clin. Res. Cardiol.201710611910.1007/s00392‑016‑1025‑627557678
    [Google Scholar]
  93. FleischmannR. DeckerA.M. KraftA. MaiK. SchmidtS. Mobile electronic versus paper case report forms in clinical trials: a randomized controlled trial.BMC Med. Res. Methodol.201717115310.1186/s12874‑017‑0429‑y29191176
    [Google Scholar]
  94. ClarkeA.E. ShimJ.K. MamoL. FosketJ.R. FishmanJ.R. Biomedicalization: Technoscientific transformations of health, illness, and US biomedicine.Am. Sociol. Rev.200368216119410.1177/000312240306800201
    [Google Scholar]
  95. Graham-BaileyM.A.L. Standpoint journalism: employing reflexivity and awareness in reporting on diverse communities.University of Georgia2010
    [Google Scholar]
  96. AhmedZ. MohamedK. ZeeshanS. DongX. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine.Database20202020baaa01010.1093/database/baaa01032185396
    [Google Scholar]
  97. LeeD. YoonS.N. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges.Int. J. Environ. Res. Public Health202118127110.3390/ijerph1801027133401373
    [Google Scholar]
  98. HamiltonJ.G. Genoff GarzonM. WestermanJ.S. ShukE. HayJ.L. WaltersC. ElkinE. BertelsenC. ChoJ. DalyB. GucalpA. SeidmanA.D. ZaudererM.G. EpsteinA.S. KrisM.G. “A tool, not a crutch”: patient perspectives about IBM Watson for oncology trained by Memorial Sloan Kettering.J. Oncol. Pract.2019154e277e28810.1200/JOP.18.0041730689492
    [Google Scholar]
  99. AggarwalM. MadhukarM. IBM’s Watson analytics for health care: A miracle made true.Cloud Computing Systems and Applications in Healthcare.IGI Global201711713410.4018/978‑1‑5225‑1002‑4.ch007
    [Google Scholar]
  100. MegerianJ.T. DeyS. MelmedR.D. CouryD.L. LernerM. NichollsC.J. SohlK. RouhbakhshR. NarasimhanA. RomainJ. GollaS. ShareefS. OstrovskyA. ShannonJ. KraftC. Liu-MayoS. AbbasH. Gal-SzaboD.E. WallD.P. TaramanS. Evaluation of an artificial intelligence-based medical device for diagnosis of autism spectrum disorder.NPJ Digit. Med.2022515710.1038/s41746‑022‑00598‑635513550
    [Google Scholar]
  101. ShahamiriS.R. ThabtahF. Autism AI: a new autism screening system based on artificial intelligence.Cognit. Comput.202012476677710.1007/s12559‑020‑09743‑3
    [Google Scholar]
  102. SayeedR. GottliebD. MandlK.D. SMART Markers: collecting patient-generated health data as a standardized property of health information technology.NPJ Digit. Med.202031910.1038/s41746‑020‑0218‑631993507
    [Google Scholar]
  103. D’EttorreC. MarianiA. StilliA. Rodriguez y BaenaF. ValdastriP. DeguetA. KazanzidesP. TaylorR.H. FischerG.S. DiMaioS.P. MenciassiA. StoyanovD. Accelerating surgical robotics research: A review of 10 years with the da vinci research kit.IEEE Robot. Autom. Mag.2021284567810.1109/MRA.2021.3101646
    [Google Scholar]
  104. RoweE.A. Regulating facial recognition technology in the private sector.Stan Tech L Rev.2020241
    [Google Scholar]
  105. LeslieD. Understanding bias in facial recognition technologies. arXiv PreprarXiv2010070232020
    [Google Scholar]
  106. VaughnJ. Summers-GoeckermanE. ShawR.J. ShahN. A protocol to assess feasibility, acceptability, and usability of mobile technology for symptom management in pediatric transplant patients.Nurs. Res.201968431732310.1097/NNR.000000000000034330720564
    [Google Scholar]
  107. KollaL. GruberF.K. KhalidO. HillC. ParikhR.B. The case for AI-driven cancer clinical trials–The efficacy arm in silico. Biochim Biophys Acta (BBA)-.Rev. Can.20211876118857234082064
    [Google Scholar]
  108. ShaheenM.Y. Applications of Artificial Intelligence (AI) in healthcare: A review.Sci Prepr2021
    [Google Scholar]
  109. AndersonJ.P. ParikhJ.R. ShenfeldD.K. IvanovV. MarksC. ChurchB.W. LaramieJ.M. MardekianJ. PiperB.A. WillkeR.J. RubleeD.A. Reverse engineering and evaluation of prediction models for progression to type 2 diabetes: an application of machine learning using electronic health records.J. Diabetes Sci. Technol.201610161810.1177/193229681562020026685993
    [Google Scholar]
  110. LambertiM.J. WilkinsonM. DonzantiB.A. WohlhieterG.E. ParikhS. WilkinsR.G. GetzK. A study on the application and use of artificial intelligence to support drug development.Clin. Ther.20194181414142610.1016/j.clinthera.2019.05.01831248680
    [Google Scholar]
  111. UrbinaF EkinsS. The commoditization of AI for molecule design.Artif Intell life Sci2022210003110.1016/j.ailsci.2022.100031
    [Google Scholar]
  112. MakK.K. WongY.H. PichikaM.R. Artificial intelligence in drug discovery and development.Drug Discovery and Evaluation: Safety and Pharmacokinetic AssaysSpringerCham202313810.1007/978‑3‑030‑73317‑9_92‑1
    [Google Scholar]
  113. BaumE. TandelM.D. RenC. Use of artificial intelligence for acquisition of limited echocardiograms: a randomized controlled trial for educational outcomes.medRxiv202310.1101/2023.04.12.23288497
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638313233240830132804
Loading
/content/journals/cddt/10.2174/0115701638313233240830132804
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test