Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Unregulated cell division is one of the main causes of cancer. These cancerous cells negatively impact nearby healthy cells. Cancer can occur anywhere in the body. Normal cell division occurs when cells grow, reproduce, and divide as the body needs. As a normal cascade of cell growth and division, when the cells get damaged, they undergo death, and normal cells develop. However, sometimes, this process is not followed, and abnormal or damaged cells start to grow and multiply several times more than normal. This particular process may form the basis of cancer. There is a research gap in terms of identifying personalized synthetic anticancer therapy, which may be based on individual patient characteristics with an aim to optimize treatment efficacy and minimize adverse effects. While searching for new bioactive compounds, it has been observed that organic molecules with benzoic acid (BA) moiety possess significant anticancer potential. Several works of literature reported the use of BA from natural or synthetic sources to synthesize bioactive chemicals. It has been observed that several natural products also contain BA moiety, and the presence of this moiety is considered responsible for several important biological activities. Therefore, in order to chemically synthesize a wide variety of potent biologically active compounds, benzoic acid as a basic moiety in the form of a scaffold can be employed. Other synthetic compounds with BA scaffolds include furosemide, tetracaine, and bumetanide. The current article aims to focus on past and present work done on BA derivatives and to emphasize the molecular pathways involved in cancer treatment. The future prospects for research in this area are encouraging as researchers are striving to advance synthetic BA derivatives. This could possibly contribute to more efficient treatments and better results for cancer patients.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638311865240904054111
2024-10-07
2025-09-25
Loading full text...

Full text loading...

References

  1. HurmathU.S. ReddyG.K. AravazhiT. Synthesis and in vitro anti-tumor activity of some novel 2, 3-disubstituted quinazolin 4(3H)-one derivatives.J. Appl. Pharm. Sci.20133136140
    [Google Scholar]
  2. LeeC.W. HongD.H. HanS.B. A novel stereo-selective sulfonylurea, 1-[1-(4-aminobenzoyl)-2,3-dihydro-1H-indol-6-sulfonyl]-4-phenyl-imidazolidin-2-one, has antitumor efficacy in in vitro and in vivo tumor models.Biochem. Pharmacol.200264347348010.1016/S0006‑2952(02)01105‑X 12147299
    [Google Scholar]
  3. Sandor EckhardtB.S.P. Recent progress in the development of anticancer agents.Curr. Med. Chem. Anticancer Agents20022341943910.2174/1568011024606389 12678741
    [Google Scholar]
  4. ChowrasiaD. KarthikeyanC. ChoureL. Synthesis, characterization and anti cancer activity of some fluorinated 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles.Arab. J. Chem.2017102S2424S242810.1016/j.arabjc.2013.08.026
    [Google Scholar]
  5. RojoF. AlbanellJ. RoviraA. CorominasJ.M. ManzarbeitiaF. Targeted therapies in breast cancer.Semin. Diagn. Pathol.200825424526110.1053/j.semdp.2008.08.001 19013891
    [Google Scholar]
  6. MaJ. LiJ. TianY.S. Synthesis and bioactivity evaluation of 2,3-diaryl acrylonitrile derivatives as potential anticancer agents.Bioorg. Med. Chem. Lett.2017271818510.1016/j.bmcl.2016.11.025 27887843
    [Google Scholar]
  7. HuangX.C. JinL. WangM. Design, synthesis and in vitro evaluation of novel dehydroabietic acid derivatives containing a dipeptide moiety as potential anticancer agents.Eur. J. Med. Chem.20158937038510.1016/j.ejmech.2014.10.060 25462253
    [Google Scholar]
  8. Al-ObaidA.M. Abdel-HamideS.G. El-KashefH.A. Substituted quinazolines, part 3. Synthesis, in vitro antitumor activity and molecular modeling study of certain 2-thieno-4(3H)-quinazolinone analogs.Eur. J. Med. Chem.20094462379239110.1016/j.ejmech.2008.09.015 18950904
    [Google Scholar]
  9. CraggG.M. NewmanD.J. Nature: A vital source of leads for anticancer drug development.Phytochem. Rev.20098231333110.1007/s11101‑009‑9123‑y
    [Google Scholar]
  10. AbuelizzH.A. MarzoukM. GhabbourH. Al-SalahiR. Synthesis and anticancer activity of new quinazoline derivatives.Saudi Pharm. J.20172571047105410.1016/j.jsps.2017.04.022 29158714
    [Google Scholar]
  11. del OlmoA. CalzadaJ. NuñezM. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy.Crit. Rev. Food Sci. Nutr.201757143084310310.1080/10408398.2015.1087964 26587821
    [Google Scholar]
  12. LaneH.Y. LinC.H. GreenM.F. Add-on treatment of benzoate for schizophrenia: A randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor.JAMA Psychiatry201370121267127510.1001/jamapsychiatry.2013.2159 24089054
    [Google Scholar]
  13. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety and efficacy of benzoic acid as a feed additive for pigs for fattening when used as acidity regulator and all animal species when used as flavouring.EFSA J.20161414353
    [Google Scholar]
  14. MakiT. TakedaK. Benzoic Acid and Derivatives.Ullmann's Encyclopedia of Industrial Chemistry200010.1002/14356007.a03_555
    [Google Scholar]
  15. SungC.R. KimK.B. LeeJ.Y. LeeB.M. KwackS.J. Risk assessment of ethylhexyl dimethyl paba in cosmetics.Toxicol. Res.201935213113610.5487/TR.2019.35.2.131 31015895
    [Google Scholar]
  16. SinhaA.K. SharmaU.K. SharmaN. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents.Int. J. Food Sci. Nutr.200859429932610.1080/09687630701539350 17886091
    [Google Scholar]
  17. SinghM.P. GuptaA. SisodiaS.S. Gallic acid: Pharmacogical promising lead molecule: A review.Int. J. Pharmacogn. Phytochem. Res.2018104132138
    [Google Scholar]
  18. ChongK.P. In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against ganodermaboninense.J. Agric. Sci.200911520
    [Google Scholar]
  19. NaveedS. QamarF. ZainabS. Simple UV spectrophotometric assay of Furosemide.J. Innov. Pharm. Biol. Sci.20141397101
    [Google Scholar]
  20. MurchisonL.E. BewsherP.D. Lack of effect of bumetanide on body potassium content in hypertension.Br. J. Clin. Pharmacol.197521879110.1111/j.1365‑2125.1975.tb01691.x 1234492
    [Google Scholar]
  21. MitchellJ.A. SaundersM. BarnesP.J. NewtonR. BelvisiM.G. Sodium salicylate inhibits cyclo-oxygenase-2 activity independently of transcription factor (nuclear factor kappaB) activation: Role of arachidonic acid.Mol. Pharmacol.199751690791210.1124/mol.51.6.907 9187256
    [Google Scholar]
  22. SimonsF.E. LuciukG.H. BeckerA.B. GillespieC.A. Ketotifen: A new drug for prophylaxis of asthma in children.Ann. Allergy1982483145150 6121527
    [Google Scholar]
  23. HartogE. MenasheO. KlerE. YaronS. Salicylate reduces the antimicrobial activity of ciprofloxacin against extracellular Salmonella enterica serovar Typhimurium, but not against Salmonella in macrophages.J. Antimicrob. Chemother.201065588889610.1093/jac/dkq077 20237076
    [Google Scholar]
  24. Garcia-AlbenizX. ChanA.T. Aspirin for the prevention of colorectal cancer.Best Pract. Res. Clin. Gastroenterol.2011254-546147210.1016/j.bpg.2011.10.015 22122763
    [Google Scholar]
  25. GrayR.T. ColemanH.G. HughesC. MurrayL.J. CardwellC.R. Low-dose aspirin use and survival in colorectal cancer: Results from a population-based cohort study.BMC Cancer201818122810.1186/s12885‑018‑4142‑y 29486728
    [Google Scholar]
  26. KadriH. LambourneO.A. MehellouY. Niclosamide, a drug with many (Re)purposes.ChemMedChem201813111088109110.1002/cmdc.201800100 29603892
    [Google Scholar]
  27. KumarM. ChawlaR. GoyalM. Topical anesthesia.J. Anaesthesiol. Clin. Pharmacol.201531445045610.4103/0970‑9185.169049 26702198
    [Google Scholar]
  28. GeddesI.C. Chemical structure of local anaesthetics.Br. J. Anaesth.196234422923910.1093/bja/34.4.229 13897453
    [Google Scholar]
  29. HurstR.E. Bexarotene ligand pharmaceuticals.Curr. Opin. Investig. Drugs200014514523 11249708
    [Google Scholar]
  30. ShenD. YuX. WuY. Emerging roles of bexarotene in the prevention, treatment and anti-drug resistance of cancers.Expert Rev. Anticancer Ther.201818548749910.1080/14737140.2018.1449648 29521139
    [Google Scholar]
  31. PuntC.J.A. HumbletY. RocaE. Tallimustine in advanced previously untreated colorectal cancer, a phase II study.Br. J. Cancer199673680380410.1038/bjc.1996.140 8611384
    [Google Scholar]
  32. BeranM. JehaS. O’BrienS. Tallimustine, an effective antileukemic agent in a severe combined immunodeficient mouse model of adult myelogenous leukemia, induces remissions in a phase I study.Clin. Cancer Res.1997312 Pt 123772384 9815637
    [Google Scholar]
  33. DurãesF. PintoM. SousaE. Old drugs as new treatments for neurodegenerative diseases.Pharmaceuticals20181124410.3390/ph11020044 29751602
    [Google Scholar]
  34. FuJ. ZhangJ.Y. WangF.S. Tamibarotene: A new hope for therapeutic efficacy in hepatocellular carcinoma patients.Hepatol. Int.2014811310.1007/s12072‑013‑9493‑5 26202399
    [Google Scholar]
  35. SarnoS. PapinuttoE. FranchinC. ATP site-directed inhibitors of protein kinase CK2: An update.Curr. Top. Med. Chem.201111111340135110.2174/156802611795589638 21513497
    [Google Scholar]
  36. MasłykM. JaneczkoM. MartynaA. KubińskiK. CX-4945: The protein kinase CK2 inhibitor and anti-cancer drug shows anti-fungal activity.Mol. Cell. Biochem.20174351-219319610.1007/s11010‑017‑3068‑z 28501934
    [Google Scholar]
  37. MenterA. ThrashB. CherianC. Intestinal transport of aminopterin enantiomers in dogs and humans with psoriasis is stereoselective: Evidence for a mechanism involving the proton-coupled folate transporter.J. Pharmacol. Exp. Ther.2012342369670810.1124/jpet.112.195479 22653877
    [Google Scholar]
  38. GoldinA. VendittiJ.M. HumphreysS.R. DennisD. MantelN. GreenhouseS.W. A quantitative comparison of the antileukemic effectiveness of two folic acid antagonists in mice.J. Natl. Cancer Inst.195515616571664 14381889
    [Google Scholar]
  39. FalzoneL. SalomoneS. LibraM. Evolution of cancer pharmacological treatments at the turn of the third millennium.Front. Pharmacol.201891300132610.3389/fphar.2018.01300 30483135
    [Google Scholar]
  40. BleyerW.A. The clinical pharmacology of methotrexate. New applications of an old drug.Cancer1978411365110.1002/1097‑0142(197801)41:1<36:AID‑CNCR2820410108>3.0.CO;2‑I 342086
    [Google Scholar]
  41. ConservaM.R. AnelliL. ZagariaA. SpecchiaG. AlbanoF. The pleiotropic role of retinoic acid/retinoic acid receptors signaling: From vitamin a metabolism to gene rearrangements in acute promyelocytic leukemia.Int. J. Mol. Sci.20192012292110.3390/ijms20122921 31207999
    [Google Scholar]
  42. BoschA. BertranS.P. LuY. Reversal by RARα agonist Am580 of c-Myc-induced imbalance in RARα/RARγ expression during MMTV-Myc tumorigenesis.Breast Cancer Res.2012144R121R122910.1186/bcr3247 22920668
    [Google Scholar]
  43. DevmurariV.P. ShivanP. GoyaniM.B. JivaniN.P. Synthesis and anticancer activity of some novel 2-substituted benzothiazole.Int. J. Chem. Sci.201081663675
    [Google Scholar]
  44. AbouzidK.A.M. KhalilN.A. AhmedE.M. MohamedK.O. 3-[(6-Arylamino)pyridazinylamino]benzoic acids: Design, synthesis and in vitro evaluation of anticancer activity.Arch. Pharm. Res.2013361415010.1007/s12272‑013‑0007‑8 23307426
    [Google Scholar]
  45. LeeK.H. HoW.Y. WuS.J. Behavior-selective apoptotic capacity of 4-(3,4,5-Trimethoxyphenoxy) benzoic acid and its methyl derivatives on two breast cancer cell lines.Anticancer Res.201434418011809 24692713
    [Google Scholar]
  46. MaruthamuthuA. Synthesis, docking study and anticancer activity of benzoic acid substituted derivatives of quinazolinones.Pharma Chem201578130136
    [Google Scholar]
  47. BharathiDileepan B. Synthesis, characterization, and anticancer activity of benzoxazole derivatives.J. Chem. Pharm. Res.201579380387
    [Google Scholar]
  48. JebastinJ.N.S. KumarT.R. EvangelinD. Molecular docking study, synthesis and invitro evaluation of antitumor activity of novel naphthylidene base of benzoic acid derivatives.Int. J. Life Sci. Pharma Res.201661L-36L-44
    [Google Scholar]
  49. SouzaG. FranchiG.Jr NowillA. Synthesis, characterization and in vitro anticancer activity of novel 8,4′-oxyneolignan analogues.J. Braz. Chem. Soc.201728112229224310.21577/0103‑5053.20170075
    [Google Scholar]
  50. TahlanS. RamasamyK. LimS.M. AliS.A. Design, synthesis and therapeutic potential of 3-(2-(1H-benzo [d]imidazol-2-ylthio) acetamido)-N-(substituted phenyl)benzamide analogues.Chem. Cent. J.201812139112
    [Google Scholar]
  51. RajagopalanR. JainS.K. TrivediP. Synergistic anti-cancer activity of combined 5-fuorouracil and gallic acid-stearylamine conjugate in A431 human squamous carcinoma cell line.Trop. J. Pharm. Res.202118347147710.4314/tjpr.v18i3.4
    [Google Scholar]
  52. AbuelizzH.A. AwadH.M. MarzoukM. Synthesis and biological evaluation of 4-(1 H -1,2,4-triazol-1-yl)benzoic acid hybrids as anticancer agents.RSC Advances2019933190651907410.1039/C9RA03151K 35516906
    [Google Scholar]
  53. BaharlouiM. MirshokraeeS.A. MonfaredA. Houshdar TehraniM.H. Design and synthesis of novel triazole-based peptide analogues as anticancer agents.Iran. J. Pharm. Res.201918312991308 32641940
    [Google Scholar]
  54. SardroudS.J. Hosseini-YazdiS.A. MahdaviM. PouponM. SkorepovaE. Synthesis, characterization and in vitro evaluation of anticancer activity of a new water-soluble thiosemicarbazone ligand and its complexes.Polyhedron202017511421810.1016/j.poly.2019.114218
    [Google Scholar]
  55. AlSalhiM.S. ElangovanK. RanjitsinghA.J.A. MuraliP. DevanesanS. Synthesis of silver nanoparticles using plant derived 4-N-methyl benzoic acid and evaluation of antimicrobial, antioxidant and antitumor activity.Saudi J. Biol. Sci.201926597097810.1016/j.sjbs.2019.04.001 31303827
    [Google Scholar]
  56. KoshiishiC. KanazawaT. VangrevelingheE. HondaT. HatakeyamaS. Identification and characterization of a phenyl-thiazolyl-benzoic acid derivative as a novel RAR/RXR agonist.Heliyon2019511e0284910.1016/j.heliyon.2019.e02849 31768440
    [Google Scholar]
  57. AsatoA.E. PengA. HossainM.Z. MirzadeganT. BertramJ.S. Azulenic retinoids: Novel nonbenzenoid aromatic retinoids with anticancer activity.J. Med. Chem.199336213137314710.1021/jm00073a013 8230100
    [Google Scholar]
  58. LuW. CheP. ZhangY. HL005—A new selective PPARγ antagonist specifically inhibits the proliferation of MCF-7.J. Steroid Biochem. Mol. Biol.20111243-511212010.1016/j.jsbmb.2011.01.019 21296151
    [Google Scholar]
  59. BestgenB. KufarevaI. SeetohW. 2-aminothiazole derivatives as selective allosteric modulators of the protein kinase CK2. 2. Structure-based optimization and investigation of effects specific to the allosteric mode of action.J. Med. Chem.20196241817183610.1021/acs.jmedchem.8b01765 30689946
    [Google Scholar]
  60. KumarP.S. PremnathD. ObadiahA. DurairajA. RamanathanS. VasanthkumarS. Synthesis, structure characterization, and biological evaluation of 3-amino-5-(5-oxo-5h-benzo[a]phenothiazin-6-ylamino) benzoic acid derivatives via molecular docking, cytotoxicity, and antioxidant studies.Curr. Pharmacol. Rep.20195644045910.1007/s40495‑019‑00199‑0
    [Google Scholar]
  61. DoungsoongnuenS. WorachartcheewanA. PingaewR. Investigation on biological activities of anthranilic acid sulfonamide analogs.EXCLI J.201110155161 27857672
    [Google Scholar]
  62. WasfyA.A.F. FathallaO.A. SalmanA.A. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential anticancer agent.Int. J. Res. Pharm. Chem.201443501508
    [Google Scholar]
  63. UnverH. CanturkZ. Synthesis and characterization of two new thiophene acetyl salicylic acid esters and their ortho- and para-effect on anticancer activity.Anticancer. Agents Med. Chem.2017171013831388 28270064
    [Google Scholar]
  64. SirajuddinM AliS TahirMN Organotin(IV) derivatives based on 2-((2-methoxyphenyl)carbamoyl)benzoic acid: Synthesis, spectroscopic characterization, assessment of antibacterial, DNA interaction, anticancer and antileishmanial potentials. J Mol Str 2020; 129600.
  65. AbuelizzH.A. AwadH.M. MarzoukM. Exploiting the 4-hydrazinobenzoic acid moiety for the development of anticancer agents: Synthesis and biological profile.Bioorg. Chem.202010210409810.1016/j.bioorg.2020.104098 32702510
    [Google Scholar]
  66. Abu-HashemA.A. HakamiO. AmriN. Synthesis, anticancer activity and molecular docking of new quinolines, quinazolines and 1,2,4-triazoles with pyrido[2,3-d] pyrimidines.Heliyon2024105e2673510.1016/j.heliyon.2024.e26735 38468950
    [Google Scholar]
  67. VasantakumarnaikN.K. KrishnamurthyG. PariM. Synthesis, characterization of 4-[(E)-2-hydroxy-3-[(Z)-1,3-thiazol-2-yldiazeneyl]napthalen-1-ylmethylidene]aminobenzoic acid and its transition metal complexes; Biopharmaceutical activities and electrochemical detection of ciplactin.J. Mol. Struct.20231294213640510.1016/j.molstruc.2023.136405
    [Google Scholar]
  68. NnabuikeG.G. MeenaS.N. PalakeA.R. Zn(II) complexes with mefenamic acid: Synthesis, characterization, and anticancer activity.J. Mol. Struct.20231294213643210.1016/j.molstruc.2023.136432
    [Google Scholar]
  69. AnantharajuP.G. ReddyB.D. PadukudruM.A. Kumari ChitturiC.M. VimalambikeM.G. MadhunapantulaS.V. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC).Cancer Biol. Ther.201718749250410.1080/15384047.2017.1324374 28506198
    [Google Scholar]
  70. ZhangH. ChenY. LiuQ. Design, synthesis, and anti-triple negative breast cancer activity of novel Toosendanin derivatives.Bioorg. Med. Chem. Lett.202383129187
    [Google Scholar]
  71. NguyenQ.N. LeeS.R. KimB. Estrogenic activity of 4-hydroxy-benzoic acid from Acer tegmentosumvia estrogen receptor α-dependent signaling pathways.Plants20221123338710.3390/plants11233387 36501426
    [Google Scholar]
  72. Orozco-MoralesM. Hernández-PedroN.Y. Barrios-BernalP. S-allylcysteine induces cytotoxic effects in two human lung cancer cell lines via induction of oxidative damage, downregulation of Nrf2 and NF-κB, and apoptosis.Anticancer Drugs202132211712610.1097/CAD.0000000000001015 33136700
    [Google Scholar]
  73. LeeH.L. LinC.S. KaoS.H. ChouM.C. Gallic acid induces G1 phase arrest and apoptosis of triple-negative breast cancer cell MDA-MB-231 via p38 mitogen-activated protein kinase/p21/p27 axis.Anticancer Drugs201728101150115610.1097/CAD.0000000000000565 28938245
    [Google Scholar]
  74. TaoL. WangS. ZhaoY. Phenolcarboxylic acids from medicinal herbs exert anticancer effects through disruption of COX-2 activity.Phytomedicine201421111473148210.1016/j.phymed.2014.05.001 24916702
    [Google Scholar]
  75. InoueY. NakayamaY. SakoT. 4-[3, 5-Bis (trimethylsilyl) benzamido] benzoic acid (TAC-101) induced Fas expression and activated caspase-3 and-8 in a DLD-1 colon cancer cell line.In Vivo2007212381387
    [Google Scholar]
  76. MurakamiK. WierzbaK. SanoM. TAC-101, a benzoic acid derivative, inhibits liver metastasis of human gastrointestinal cancer and prolongs the life-span.Clin. Exp. Metastasis199716432333110.1023/A:1006561329512 9626811
    [Google Scholar]
  77. KanadaR. SuzukiT. MurataT. 4-Pyridone-3-carboxylic acid as a benzoic acid bioisostere: Design, synthesis, and evaluation of EP300/CBP histone acetyltransferase inhibitors.Bioorg. Med. Chem. Lett.20215112835810.1016/j.bmcl.2021.128358 34534674
    [Google Scholar]
  78. SunM. ZhouY. ZhuoX. Design, synthesis and cytotoxicity evaluation of novel indole derivatives containing benzoic acid group as potential AKR1C3 inhibitors.Chem. Biodivers.20201712e200051910.1002/cbdv.202000519 33111427
    [Google Scholar]
  79. ZhangX. WangY. LiX. Dynamics-based discovery of novel, potent benzoic acid derivatives as orally bioavailable selective estrogen receptor degraders for ERα+ breast cancer.J. Med. Chem.202164117575759510.1021/acs.jmedchem.1c00280 34056898
    [Google Scholar]
  80. EldehnaW.M. NocentiniA. ElsayedZ.M. Benzofuran-based carboxylic acids as carbonic anhydrase inhibitors and antiproliferative agents against breast cancer.ACS Med. Chem. Lett.20201151022102710.1021/acsmedchemlett.0c00094 32435420
    [Google Scholar]
  81. TianY. XieZ. LiaoC. Design, synthesis and anticancer activities of novel dual poly(ADP-ribose) polymerase-1/histone deacetylase-1 inhibitors.Bioorg. Med. Chem. Lett.202030812703610.1016/j.bmcl.2020.127036 32088129
    [Google Scholar]
  82. PerveenS. TaweelA.A. Phenolic compounds from the natural sources and their cytotoxicity.Phenolic Compounds - Natural Sources.Importance and Applications. InTech201710.5772/66898
    [Google Scholar]
  83. MistryB. PatelR.V. KeumY.S. KimD.H. Evaluation of the biological potencies of newly synthesized berberine derivatives bearing benzothiazole moieties with substituted functionalities.J. Saudi Chem. Soc.201721221021910.1016/j.jscs.2015.11.002
    [Google Scholar]
  84. NguyenN.H. TaQ.T.H. PhamQ.T. Anticancer activity of novel plant extracts and compounds from adenosma bracteosum (bonati) in human lung and liver cancer cells.Molecules202025122912210.3390/molecules25122912 32599892
    [Google Scholar]
  85. LiL. WeiL. ShenA. ChuJ. LinJ. PengJ. Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth.Int. J. Oncol.20154762247225410.3892/ijo.2015.3198 26459864
    [Google Scholar]
  86. MokhtariR.B. HomayouniT.S. BaluchN. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.16723 28410237
    [Google Scholar]
  87. SaadatN. GuptaS.V. Potential role of garcinol as an anticancer agent.J. Oncol.201220121810.1155/2012/647206 22745638
    [Google Scholar]
  88. RadziejewskaI. SupruniukK. CzarnomysyR. BuzunK. BielawskaA. Anti-cancer potential of afzelin towards ags gastric cancer cells.Pharmaceuticals20211410973310.3390/ph14100973 34681197
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638311865240904054111
Loading
/content/journals/cddt/10.2174/0115701638311865240904054111
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-cancer activity; benzoic acid; Cancer; cascade; cell division; scaffold
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test