Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Introduction

Human Immunodeficiency Virus (HIV) is a retrovirus with single-stranded RNA that leads to the challenging disease of acquired immunodeficiency syndrome (AIDS). Combination antiretroviral therapy (cART) can prevent the progression of the disease, but it is not capable of long-term HIV elimination. One of the significant obstacles to treating HIV-1-infected individuals is the creation of latent cell reservoirs early in the infection. Gene-based therapies that utilize RNA interference (RNAi) to silence host or viral gene expression are considered promising therapeutic approaches. It has been demonstrated that RUNX1, a T-cell-specific transcription factor, may significantly affect HIV replication and infection. According to accumulating evidence on the role of interfering RNA techniques in inhibiting gene expression and considering the role of RUNX1 in the replication of HIV-1. In this study, we aim to design shRNAs against RUNX1 that can target the replication of HIV-1.

Methods

Several computational methods, including target alignment, similarity search, and secondary structure prediction, have been employed in the design of shRNA against RUNX1.

Results

Seven shRNA molecules with the highest efficiency were designed and validated using computational methods to silence the RUNX1 gene.

Conclusion

In the present study, we designed shRNA against RUNX1, which can target latent cells infected with HIV. Suppression of RUNX1 by shRNA reactivates HIV in the latent cells and subsequently potentiates the immune response toward identifying accurate virus-infected cells. This process may lead to an effective and efficient reduction of the volume of cell reservoirs infected with HIV.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638291312240415151051
2024-04-25
2025-09-04
Loading full text...

Full text loading...

References

  1. RamirezP.W. PantojaC. BethellB.N. An evaluation on the role of non-coding RNA in HIV transcription and latency: A review.HIV AIDS20231511513410.2147/HIV.S38334736942082
    [Google Scholar]
  2. ProkofjevaM.M. KochetkovS.N. PrassolovV.S. Therapy of HIV infection: Current approaches and prospects.Acta Nat.201684233210.32607/20758251‑2016‑8‑4‑23‑3228050264
    [Google Scholar]
  3. VansantG.A.B. Block-and-lock strategies to cure HIV infection.Viruses202012184
    [Google Scholar]
  4. BobbinM.L. BurnettJ.C. RossiJ.J. RNA interference approaches for treatment of HIV-1 infection.Genome Med.2015715010.1186/s13073‑015‑0174‑y26019725
    [Google Scholar]
  5. ScarboroughR. GatignolA. RNA interference therapies for an HIV-1 functional cure.Viruses2017101810.3390/v1001000829280961
    [Google Scholar]
  6. MohamedH. GurrolaT. BermanR. CollinsM. SariyerI.K. NonnemacherM.R. WigdahlB. Targeting CCR5 as a component of an HIV-1 therapeutic strategy.Front. Immunol.20221281651510.3389/fimmu.2021.81651535126374
    [Google Scholar]
  7. JeongE-M. Targeting RUNX1 as a novel treatment modality for pulmonary arterial hypertension.Cardiovasc Res20221181632113224
    [Google Scholar]
  8. JacqueJ.M. TriquesK. StevensonM. Modulation of HIV-1 replication by RNA interference.Nature2002418689643543810.1038/nature0089612087358
    [Google Scholar]
  9. JaiJ. ShirleenD. HanbaliC. WijayaP. AnginanT.B. HusadaW. PratamaM.Y. Multiplexed shRNA-miRs as a candidate for anti HIV-1 therapy: strategies, challenges, and future potential.J. Genet. Eng. Biotechnol.202220117210.1186/s43141‑022‑00451‑z36576612
    [Google Scholar]
  10. AmbesajirA.A.K. RNA interference: A futuristic tool and its therapeutic applications.Saudi J. Biol. Sci.20121939540310.1016/j.sjbs.2012.08.00123961202
    [Google Scholar]
  11. EbbesenM.T.G.J. Ethical perspectives on RNA interference therapeutics.Int. J. Med. Sci.200853159168
    [Google Scholar]
  12. MevelR. DraperJ.E. Lie-a-LingM. KouskoffV. LacaudG. RUNX transcription factors: Orchestrators of development.Development201914617dev14829610.1242/dev.14829631488508
    [Google Scholar]
  13. OtáloraO.B.A. HenríquezB. KleineL.L. RojasA. RUNX family: Oncogenes or tumor suppressors (Review).Oncol. Rep.201942131931059069
    [Google Scholar]
  14. DurstK.L. HiebertS.W. Role of RUNX family members in transcriptional repression and gene silencing.Oncogene200423244220422410.1038/sj.onc.120712215156176
    [Google Scholar]
  15. MoritaK. SuzukiK. MaedaS. MatsuoA. MitsudaY. TokushigeC. KashiwazakiG. TaniguchiJ. MaedaR. NouraM. HirataM. KataokaT. YanoA. YamadaY. KiyoseH. TokumasuM. MatsuoH. TanakaS. OkunoY. MutoM. NakaK. ItoK. KitamuraT. KanedaY. LiuP.P. BandoT. AdachiS. SugiyamaH. KamikuboY. Genetic regulation of the RUNX transcription factor family has antitumor effects.J. Clin. Invest.201712772815282810.1172/JCI9178828530640
    [Google Scholar]
  16. HuY. PanQ. ZhouK. LingY. WangH. LiY. RUNX1 inhibits the antiviral immune response against influenza A virus through attenuating type I interferon signaling.Virol. J.20221913910.1186/s12985‑022‑01764‑835248104
    [Google Scholar]
  17. ThakuriB.K.C. ZhangJ. ZhaoJ. NguyenL.N. NguyenL.N.T. SchankM. KhanalS. DangX. CaoD. LuZ. WuX.Y. JiangY. El GazzarM. NingS. WangL. MoormanJ.P. YaoZ.Q. HCV-associated exosomes upregulate RUNXOR and RUNX1 expressions to promote MDSC expansion and suppressive functions through STAT3–miR124 Axis.Cells2020912271510.3390/cells912271533353065
    [Google Scholar]
  18. ZhangW. DuJ. EvansS.L. YuY. YuX.F. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction.Nature2012481738137637910.1038/nature1071822190036
    [Google Scholar]
  19. PaddisonP.J. CaudyA.A. BernsteinE. HannonG.J. ConklinD.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells.Genes Dev.200216894895810.1101/gad.98100211959843
    [Google Scholar]
  20. SamaniA.L. SaffarB. MokhtariA. ArefianE. In silico design of short hairpin RNA (shRNA)Molecules for DNA pol gene of Contagious Ecthyma virus (ORFV).J. Hell. Vet. Med. Soc.2022724330710.12681/jhvms.29365
    [Google Scholar]
  21. LaganÃA. ShashaD. CroceC.M. Synthetic RNAs for gene regulation: Design principles and computational tools.Front. Bioeng. Biotechnol.201426510.3389/fbioe.2014.0006525566532
    [Google Scholar]
  22. McintyreG.J. YuY.H. LomasM. FanningG.C. The effects of stem length and core placement on shRNA activity.BMC Mol. Biol.20111213410.1186/1471‑2199‑12‑3421819628
    [Google Scholar]
  23. Ui-TeiK. NaitoY. TakahashiF. HaraguchiT. Ohki-HamazakiH. JuniA. UedaR. SaigoK. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference.Nucleic Acids Res.200432393694810.1093/nar/gkh24714769950
    [Google Scholar]
  24. KohnehrouzB.B. NayeriS. Design, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes.Mol. Biol. Res. Commun.201651314327844018
    [Google Scholar]
  25. ZhangJ. CrumpackerC. Hematopoietic stem and immune cells in chronic HIV infection.Stem Cells Int.201520151710.1155/2015/14806426300920
    [Google Scholar]
  26. AggarwalD. RNA interference-based therapy for HIV: The unabating conundrum!Available from: https://blogs.brandeis.edu/dnamechanisms/rna-mechanisms/disha-aggarwal/
  27. TaT.M. MalikS. AndersonE.M. JonesA.D. PerchikJ. FreylikhM. SardoL. KlaseZ.A. IzumiT. Insights into persistent HIV-1 infection and functional cure: Novel capabilities and strategies.Front. Microbiol.20221386227010.3389/fmicb.2022.86227035572626
    [Google Scholar]
  28. BoeseQ. LeakeD. ReynoldsA. ReadS. ScaringeS.A. MarshallW.S. KhvorovaA. Mechanistic insights aid computational short interfering RNA design.Methods Enzymol.2005392739610.1016/S0076‑6879(04)92005‑815644176
    [Google Scholar]
  29. MooreC.B. GuthrieE.H. HuangM.T. TaxmanD.J. Short hairpin RNA (shRNA): Design, delivery, and assessment of gene knockdown.Methods Mol. Biol.201062914115820387148
    [Google Scholar]
  30. SmithL.S.L.C.A. Short hairpin RNA-mediated gene silencing.Methods Mol Biol2013942205232
    [Google Scholar]
  31. DiGiustoD.L. KrishnanA. LiL. LiH. LiS. RaoA. MiS. YamP. StinsonS. KalosM. AlvarnasJ. LaceyS.F. YeeJ.K. LiM. CoutureL. HsuD. FormanS.J. RossiJ.J. ZaiaJ.A. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma.Sci. Transl. Med.201023636ra4310.1126/scitranslmed.300093120555022
    [Google Scholar]
  32. KnoepfelS.A. CentlivreM. LiuY.P. BoutimahF. BerkhoutB. Selection of RNAi-based inhibitors for anti-HIV gene therapy.World J. Virol.201213799010.5501/wjv.v1.i3.7924175213
    [Google Scholar]
  33. CarrilloH.E. BerkhoutB. Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas.Biochem. Soc. Trans.20164451355136510.1042/BST2016006027911718
    [Google Scholar]
  34. TangX. SunL. WangG. ChenB. LuoF. RUNX1: A regulator of NF-kB signaling in pulmonary diseases.Curr. Protein Pept. Sci.201819217217828990531
    [Google Scholar]
  35. KimD.J. HanoldK.W. JainP.C. KleinJ. KongY. PopeS.D. GeW. MedzhitovR. IwasakiA. RUNX binding sites are enriched in herpesvirus genomes, and RUNX1 overexpression leads to herpes simplex virus 1 suppression.J. Virol.20209422e00943-2010.1128/JVI.00943‑2032878886
    [Google Scholar]
  36. XiaoK. RUNX1-mediated alphaherpesvirus-host trans-species chromatin interaction promotes viral transcription.Sci. Adv.2021726eabf8962
    [Google Scholar]
  37. KlaseZ. YedavalliV.S.R.K. HouzetL. PerkinsM. MaldarelliF. BrenchleyJ. StrebelK. LiuP. JeangK.T. Activation of HIV-1 from latent infection via synergy of RUNX1 inhibitor Ro5-3335 and SAHA.PLoS Pathog.2014103e100399710.1371/journal.ppat.100399724651404
    [Google Scholar]
  38. LinA. ElbezantiW.O. SchirlingA. AhmedA. Van DuyneR. CocklinS. KlaseZ. Alprazolam prompts HIV-1 transcriptional reactivation and enhances CTL response through RUNX1 inhibition and STAT5 activation.Front. Neurol.20211266379310.3389/fneur.2021.66379334367046
    [Google Scholar]
  39. ElbezantiW. LinA. SchirlingA. JacksonA. MarshallM. DuyneR.V. MaldarelliF. SardoL. KlaseZ. Benzodiazepines drive alteration of chromatin at the integrated HIV-1 LTR.Viruses202012219110.3390/v1202019132050449
    [Google Scholar]
  40. MedeirosI.G. KhayatA.S. StranskyB. SantosS. AssumpçãoP. de SouzaJ.E.S. A small interfering RNA (siRNA) database for SARS- CoV-2.Sci. Rep.2021111884910.1038/s41598‑021‑88310‑833893357
    [Google Scholar]
  41. MatveevaO.V. KangY. SpiridonovA.N. SætromP. NemtsovV.A. OgurtsovA.Y. NechipurenkoY.D. ShabalinaS.A. Optimization of duplex stability and terminal asymmetry for shRNA design.PLoS One201054e1018010.1371/journal.pone.001018020422034
    [Google Scholar]
  42. BoudreauR.L. SpenglerR.M. DavidsonB.L. Rational design of therapeutic siRNAs: Minimizing off-targeting potential to improve the safety of RNAi therapy for Huntington’s disease.Mol. Ther.201119122169217710.1038/mt.2011.18521952166
    [Google Scholar]
  43. SunG. YehS.Y. YuanC.W.Y. ChiuM.J.Y. YungB.S.H. YenY. Molecular properties, functional mechanisms, and applications of sliced siRNA.Mol. Ther. Nucleic Acids201541e22110.1038/mtna.2014.7325602583
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638291312240415151051
Loading
/content/journals/cddt/10.2174/0115701638291312240415151051
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CD4+ cells; HIV; In silico; RNAi; RUNX1; ShRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test