Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

One lucrative method for overcoming challenges in drug discovery or for enhancing undesirable properties of already-approved medications is prodrug design. The goal of this review is to present researchers with a profile of naturally occurring Phytophenols as carriers that would be used for prodrug synthesis as well as their advantages. Phytophenols offer several advantages when used as promoieties as they also possess antioxidant and analgesic properties, they are obtained naturally and their safety profile is well established. Several phytophenols like menthol, thymol, eugenol, guaiacol, sesamol, vanillin, and umbelliferone are some of the phytophenols having several beneficial properties and are extensively employed in the field of food processing and medicine. In the current review, we have listed all types of promoieties that are used for prodrug synthesis and phytophenols are reviewed, which may help researchers to select phytophenols based on their need and suitability for drug candidates.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638282895240523091552
2024-05-30
2025-09-04
Loading full text...

Full text loading...

References

  1. DuggalS. RathoreP. KanwarK. Prodrug novel approaches for antiinflammatory action of NAIDs.Int. J. Pharm. Technol.20124118891908
    [Google Scholar]
  2. LeeH.J. CooperwoodJ.S. YouZ. KoD.H. Prodrug and antedrug: Two diametrical approaches in designing safer drugs.Arch. Pharm. Res.200225211113610.1007/BF0297655212009024
    [Google Scholar]
  3. SinkulaA.A. YalkowskyS.H. Rationale for design of biologically reversible drug derivatives: Prodrugs.J. Pharm. Sci.197564218121010.1002/jps.26006402031127579
    [Google Scholar]
  4. BundgaardH. Novel chemical approaches in prodrug design.Drugs Future199116443458
    [Google Scholar]
  5. HalenP.K. MurumkarP.R. YadavM.R. Prodrug designing of NSAIDs.J. Med. Chem.20099124139
    [Google Scholar]
  6. BundgaardH. Design of Prodrugs BundgaardH. ElsevierNew York, Plenum Press19864968
    [Google Scholar]
  7. DubeyS. ValechaV. Prodrugs: A review.World J. Pharm. Res.201437277297
    [Google Scholar]
  8. JarkkoR. KristaL. MikkoG. SavolainenJ. Prodrugs: Design and clinical applications.AAPS200810192102
    [Google Scholar]
  9. RautioJ. KumpulainenH. HeimbachT. OliyaiR. OhD. JärvinenT. SavolainenJ. Prodrugs: Design and clinical applications.Nat. Rev. Drug Discov.20087325527010.1038/nrd246818219308
    [Google Scholar]
  10. HsiehP.W. HungC.F. FangJ.Y. Current prodrug design for drug discovery.Curr. Pharm. Des.200915192236225010.2174/13816120978868252319601825
    [Google Scholar]
  11. WallaceJ.L. Nonsteroidal anti-inflammatory drugs and gastroenteropathy: The second hundred years.Gastroenterol.199711231000101610.1053/gast.1997.v112.pm90412649041264
    [Google Scholar]
  12. SchoenR.T. VenderR.J. Mechanisms of nonsteroidal anti-inflammatory drug-induced gastric damage.Am. J. Med.198986444945810.1016/0002‑9343(89)90344‑62648824
    [Google Scholar]
  13. PriceA.H. FletcherM. Mechanisms of NSAID-induced gastroenteropathy.Drugs199040S511110.2165/00003495‑199000405‑00003
    [Google Scholar]
  14. RedasaniV.K. Prodrug Design: Perspectives, Approaches and Applications in Medicinal Chemistry1st editionAcademic Press PublicationsUK201632131
    [Google Scholar]
  15. OhlanS. NandaS. PathakD.P. JagiaM. Mutual prodrugs- A Swot analysis.IJPSR201124719729
    [Google Scholar]
  16. BhosleD. BharambeS. GairolaN. DhaneshwarS.S. Mutual prodrug concept: Fundamentals and applications.IJPSR2006683286294
    [Google Scholar]
  17. ManonB. SharmaP.D. Design, synthesis and evaluation of diclofenac-antioxidant mutual prodrugs as safer NSAIDs.Indian J. Chem.200948B12791287
    [Google Scholar]
  18. KokilG.R. RewatkarP.V. Bioprecursor prodrugs: Molecular modification of the active principle.Mini Rev. Med. Chem.201010141316133010.2174/13895571079356417920937026
    [Google Scholar]
  19. BanerjeeS.S. AherN. PatilR. Poly(ethylene glycol)-prodrug conjugates: Concept, design, and applications.J. Drug Deliv.20122012103973
    [Google Scholar]
  20. KhandareJ. MinkoT. Polymer–drug conjugates: Progress in polymeric prodrugs.Prog. Polym. Sci.200631435939710.1016/j.progpolymsci.2005.09.004
    [Google Scholar]
  21. WuK.M. A new classification of prodrugs: Regulatory perspectives.Pharm. J.200927781
    [Google Scholar]
  22. WuK.M. JamesG. Farrelly. Regulatory perspectives of type II Prodrug development and time-dependent toxicity management: Nonclinical pharm/tox analysis and the role of comparative toxicology.Toxicol.Elsevier Sci.200723616
    [Google Scholar]
  23. HajnalK. GabrielH. AuraR. ErzsébetV. BlankaS.S. Prodrug strategy in drug development.Acta Med. Marisiensis201662335636210.1515/amma‑2016‑0032
    [Google Scholar]
  24. RedasaniV.K. BariS.B. Prodrug design: perspectives, approaches and applications in medicinal chemistry1st editionUKAcademic Press Publications201655162
    [Google Scholar]
  25. ParajuliR.R. PokhrelP. LamichaneS. ShresthaS. Prodrug as a novel approach of drug delivery.J. Drug Deliv. Ther.2015535910.22270/jddt.v5i3.1140
    [Google Scholar]
  26. DhokchawleB.V. GawadJ.B. KambleM.D. TauroS.J. BhandariA.B. Promoieties used in prodrug design.Indian J. Pharm. Educ. Res.2014482354010.5530/ijper.48.2.5
    [Google Scholar]
  27. RedasaniV.K. Prodrug design: perspectives, approaches and applications in medicinal chemistry1st editionUKAcademic Press Publications201643348
    [Google Scholar]
  28. VigB.S HuttunenK. M LaineK RautioJ. Amino acids as promoieties in prodrug design and development.Advan. Drug Deliv. ReviewsElsevier Sci2013651013708510.1016/j.addr.2012.10.001
    [Google Scholar]
  29. NakataniN. Phenolic antioxidants from herbs and spices.Biofactors2000131-414114610.1002/biof.552013012311237173
    [Google Scholar]
  30. OgataM. HoshiM. ShimotohnoK. UranoS. EndoT. Antioxidant activity of magnolol, honokiol, and related phenolic compounds.J. Am. Oil Chem. Soc.199774555756210.1007/s11746‑997‑0180‑3
    [Google Scholar]
  31. PriyadarsiniK. GuhaS.N. RaoM.N. Physico-chemical properties and antioxidant activities of methoxy phenols.Free Radic. Biol. Med.199824693394110.1016/S0891‑5849(97)00382‑19607603
    [Google Scholar]
  32. GuyP.P. Menthol: A simple monoterpene with remarkable biological properties.Phytochemistry201396152510.1016/j.phytochem.2013.08.005
    [Google Scholar]
  33. ShotiprukA. KaufmanP.B. WangH.Y. Feasibility study of repeated harvesting of menthol from biologically viable Mentha x piperata using ultrasonic extraction.Biotechnol. Prog.200117592492810.1021/bp010074u11587585
    [Google Scholar]
  34. KennedyD.O. WightmanE.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function.Adv. Nutr.201121325010.3945/an.110.00011722211188
    [Google Scholar]
  35. FarcoJ.A. GrundmannO. Menthol-pharmacology of an important naturally medicinal “cool”.Mini Rev. Med. Chem.201313112413110.2174/13895571380448468623061635
    [Google Scholar]
  36. GaleottiN. MannelliC.L. MazzantiG. BartoliniA. GhelardiniC. Menthol: A natural analgesic compound.Neurosci. Lett.2002322314514810.1016/S0304‑3940(01)02527‑711897159
    [Google Scholar]
  37. BashirF. AkhtarJ AnjumN AlamS KhanA.A ParveenN. Phyto-chemical and pharmacological investigations of Pudena (Mentha arvensis L).Hippocratic J Unani Med.20181335772
    [Google Scholar]
  38. MubarakA.K.H. libegA.A.A. Design and synthesis of new derivatives of ketoprofen linked to natural antioxidants (thymol, menthol & guaiacol) as possible mutual prodrugs.World J. Pharm. Res.201441310319
    [Google Scholar]
  39. DhokchawleB.V. TauroS.J. BhandariA.B. Ester prodrugs of ketoprofen: synthesis, hydrolysis kinetics and pharmacological evaluation.Drug Res.20166614650
    [Google Scholar]
  40. ShahK. ShrivastavaS.K. MishraP. Evaluation of mefenamic acid mutual prodrug.Med. Chem. Res.201322707710.1007/s00044‑012‑0016‑z
    [Google Scholar]
  41. SharmaN. Design, synthesis, and biological evaluation of mutual prodrugs of some selected NSAIDs.Indian J. Chem.20172314
    [Google Scholar]
  42. DhokchawleB.V. Synthesis, spectral studies, hydrolysis kinetics and pharmacodynamic profile of mefenamic acid prodrugs.Pharma Chem.201463347353
    [Google Scholar]
  43. ChandiranS. VyasS. SharmaN. SharmaM. Synthesis and evaluation of antioxidant-s-(+)-Ibuprofen hybrids as gastro sparing NSAIDs.Med. Chem.2013971006101610.2174/157340641130907001523061566
    [Google Scholar]
  44. RedasaniV.K. BariS.B. Synthesis and evaluation of mutual prodrugs of ibuprofen with menthol, thymol and eugenol.Eur. J. Med. Chem.20125613413810.1016/j.ejmech.2012.08.03022982120
    [Google Scholar]
  45. TalibA.B. Design, synthesis, and hydrolysis study of mutual prodrugs of NSIADs with different antioxidants via glycolic acid spacer.Indian J. Chem.201021213
    [Google Scholar]
  46. DhokchawleB.V. AsirvathamS. TauroS.J. BhandariB.A. BabuS.S. ShettyR.R. Synthesis and evaluation of naproxen ester prodrugs.Indian Drugs2019561253110.53879/id.56.01.11614
    [Google Scholar]
  47. DhokchawleB. BhandariA. Synthesis, hydrolysis kinetics and pharmacological evaluation of aceclofenac prodrugs.Antiinflamm. Antiallergy Agents Med. Chem.201513318819410.2174/187152301366614111420310525403255
    [Google Scholar]
  48. AshrafZ. Alamgeer RasoolR. HassanM. AhsanH. AfzalS. AfzalK. ChoH. KimS. Synthesis, bioevaluation and molecular dynamic simulation studies of dexibuprofen–antioxidant mutual prodrugs.Int. J. Mol. Sci.20161712215110.3390/ijms1712215128009827
    [Google Scholar]
  49. KumarG. KaranatakM. ChandraS. VermaV.P. ShankarR. Thymol chemistry: a medicinal toolbox.Curr. Bioact. Comp.2019155454474
    [Google Scholar]
  50. MeeranN.M.F. JavedH. Al TaeeH. AzimullahS. OjhaS.K. Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development.Front. Pharmacol.2017838038010.3389/fphar.2017.0038028694777
    [Google Scholar]
  51. SalehiB. MishraA.P. ShuklaI. RadS.M. ContrerasM.M. CarreteroS.A. FathiH. NasrabadiN.N. KobarfardF. RadS.J. Thymol, thyme, and other plant sources: Health and potential uses.Phytother. Res.20183291688170610.1002/ptr.610929785774
    [Google Scholar]
  52. BaschE. UlbrichtC. HammernessP. BevinsA. SollarsD. Thyme (Thymus vulgaris L.), thymol.J. Herb. Pharmacother.200441496710.1080/J157v04n01_0715273078
    [Google Scholar]
  53. HuangS. ChiuC. Antioxidant and anti-inflammatory activities of aqueous extract of Centipedaminima.J. Ethnopharmacol.2013147239540510.1016/j.jep.2013.03.02523506988
    [Google Scholar]
  54. NijaB. Development, characterization, and pharmacological investigation of sesamol and thymol conjugates of mefenamic acid.Med Dent Sci.202095239093915
    [Google Scholar]
  55. HassibS.T. HassanG.S. El-ZaherA.A. FouadM.A. El-GhafarA.O.A. TahaE.A. Synthesis and biological evaluation of new prodrugs of etodolac and tolfenamic acid with reduced ulcerogenic potential.Eur. J. Pharm. Sci.201914010510110.1016/j.ejps.2019.10510131639436
    [Google Scholar]
  56. KimS.J. Alamgeer KanwalM. HassanM. AbdullahS. WaheedM. AhsanH. AshrafZ. Flurbiprofen–antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: Synthesis, pharmacological investigation, and computational molecular modeling.Drug Des. Devel. Ther.2016102401241910.2147/DDDT.S10931827555750
    [Google Scholar]
  57. ChaiebK. HajlaouiH. ZmantarT. NakbiK.A.B. RouabhiaM. MahdouaniK. BakhroufA. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata ( Syzigium aromaticum L. Myrtaceae): A short review.Phytother. Res.200721650150610.1002/ptr.212417380552
    [Google Scholar]
  58. MamillaR.C.R. Versatile and synergistic potential of eugenol.Pharm. Anal. Acta20155616
    [Google Scholar]
  59. NejadM.S. ÖzgüneşH. BaşaranN. Pharmacological and toxicological properties of eugenol.Turk. J. Pharm. Sci.201714220120610.4274/tjps.6220732454614
    [Google Scholar]
  60. LeemH.H. KimE-O. SeoM-J. ChoiS-W. Antioxidant and anti-inflammatory activities of eugenol and its derivatives from clove (Eugenia caryophyllata thunb.).Hanguk Sikpum Yongyang Kwahakhoe Chi201140101361137010.3746/jkfn.2011.40.10.1361
    [Google Scholar]
  61. GrespanR. Anti-arthritic effect of eugenol on collageninduced arthritis experimental model.Biol. Pharm. Bull.2012351818182010.1248/bpb.b12‑0012823037170
    [Google Scholar]
  62. FengJ. LiptonJ.M. Eugenol: Antipyretic activity in rabbits.Neuropharmacol.198726121775177810.1016/0028‑3908(87)90131‑63501843
    [Google Scholar]
  63. OyedemiS.O. The proposed mechanism of bactericidal action of eugenol, a-terpineol and terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr. J. Biotechnol.2009812801286
    [Google Scholar]
  64. BudowskiP. The chemical and physiological properties of sesame oil.Chem. Rev.195148112551
    [Google Scholar]
  65. GuptaA. Phytochemical and pharmacological insight on sesamol.Curr. Bioact.202016118
    [Google Scholar]
  66. ElleuchM. BesbesS. RoiseuxO. BleckerC. AttiaH. Quality characteristics of sesame seeds and by-products.Food Chem.2007103264165010.1016/j.foodchem.2006.09.008
    [Google Scholar]
  67. Abou-GharbiaH.A. Effect of processing on oxidative stability and lipid classes of sesame oil.Food Res. Int.200333331340
    [Google Scholar]
  68. NamikiM. Nutraceutical functions of sesame: A review.Crit. Rev. Food Sci. Nutr.200747765167310.1080/1040839060091911417943496
    [Google Scholar]
  69. AlencarJ.S. Interactions and antioxidant stability of sesamol in dry-emulsions.JTAC200998133143
    [Google Scholar]
  70. WangB.S. ChangL-W. YenW-J. DuhP-D. Antioxidative effect of sesame coat on LDL oxidation and oxidative stress in macrophages.Food Chem.2007102135136010.1016/j.foodchem.2006.05.026
    [Google Scholar]
  71. GeethaT. RohitB. PalK. Sesamol: An efficient antioxidant with potential therapeutic benefits.Med. Chem.20095436737110.2174/15734060978868147619689394
    [Google Scholar]
  72. YashaswiniP.S. Inhibition of lipoxygenase by sesamol corroborates its potential anti-inflammatory activity.Int. J. Biol. Macromol.201794Pt B781787
    [Google Scholar]
  73. JoshiR. KumarM.S. SatyamoorthyK. UnnikrisnanM.K. MukherjeeT. Free radical reactions and antioxidant activities of sesamol: Pulse radiolytic and biochemical studies.J. Agric. Food Chem.20055372696270310.1021/jf048976915796613
    [Google Scholar]
  74. AnandA. KhuranaR. WahalN. Vanillin: A comprehensive review of pharmacological activities.Plant Arch.201919210001004
    [Google Scholar]
  75. Vanillin.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/vanillin 2017
  76. The Merch Index Online.Available from: www.rsc.org/MerckIndex/monograph/m11390/vanillin?q=unauthorize 2013
  77. SagarS.A. Vanillin: A review on the therapeutic prospects of a popular favouring molecule.Adv. Tradit. Med.202121415431
    [Google Scholar]
  78. Al-BaqamiN.M. HamzaR.Z. Synergistic antioxidant capacities of vanillin and chitosan nanoparticles against reactive oxygen species, hepatotoxicity, and genotoxicity induced by aging in male Wistar rats.Hum. Exp. Toxicol.202140118320232857622
    [Google Scholar]
  79. FilhoB.C.S. Therapeutic potential of vanillin and its main metabolites to regulate the infammatory response and oxidative stress.Mini Rev. Med. Chem.201919201681169310.2174/138955751966619031216435530864521
    [Google Scholar]
  80. TaiA. SawanoT. YazamaF. ItoH. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays.Biochim. Biophys. Acta, Gen. Subj.20111810217017710.1016/j.bbagen.2010.11.004
    [Google Scholar]
  81. TaiA. Antioxidant properties of ethyl vanillin in vitro and in vivo.Biosci Biotechnol Biochem.201175a23462350
    [Google Scholar]
  82. RasheedA. LathikaG. RajuY.P. MansoorK.P. AzeemA.K. BalanN. Synthesis and pharmacological evaluation of mutual prodrugs of aceclofenac with quercetin, vanillin and l-tryptophan as gastrosparing NSAIDS.Med. Chem. Res.2016251708210.1007/s00044‑015‑1469‑7
    [Google Scholar]
  83. MazimbaO. Umbelliferone: sources, chemistry and bioactivities review.Bull. Fac. Pharm.201755223223
    [Google Scholar]
  84. WanJ. GongX. JiangR. ZhangZ. ZhangL. Antipyretic and anti-inflammatory effects of asiaticoside in lipopolysaccharide-treated rat through up-regulation of heme oxygenase-1.Phytother. Res.20132781136114210.1002/ptr.483822972613
    [Google Scholar]
  85. RaufA. KhanR. KhanH. PervezS. PirzadaA.S. In vivo antinociceptive and anti-inflammatory activities of umbelliferone isolated from Potentilla evestita.Nat. Prod. Res.201428171371137410.1080/14786419.2014.90131724673335
    [Google Scholar]
  86. Al-GhamdiM.S. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa.J. Ethnopharmacol.2001761454810.1016/S0378‑8741(01)00216‑111378280
    [Google Scholar]
  87. MendezJ. Coumarins of Angelica pachycarpa fruits.Planta Med.197329371372
    [Google Scholar]
  88. LealL.K.A.M. Antiinociceptive, anti-inflammatory and bronchodilator activities of Brazilian medicinal plants containing coumarin: A comparative study.J. Ethnopharmacol.20007015115910.1016/S0378‑8741(99)00165‑810771205
    [Google Scholar]
  89. TomczykM. LattéK.P. Potentilla-A review of its phytochemical and pharmacological profile.J. Ethnopharmacol.2009122218420410.1016/j.jep.2008.12.02219162156
    [Google Scholar]
  90. BN. RasheedA. KottaimuthuA. Development, characterization and pharmacological investigation of umbelliferone conjugates of NSAIDs.Iraqi J. Pharm Sci.202130124024810.31351/vol30iss1pp240‑248
    [Google Scholar]
  91. HeatleyR.V. Guaiacol a new compound in the treatment of gastro-oesophageal reflux?Gut1982231044104710.1136/gut.23.12.10447173715
    [Google Scholar]
  92. National Center for Biotechnology InformationGuaiacol.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Guaiacol (Accessed on: Sept. 17, 2022).
  93. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Guaiacol (Cited on: 2022 Sept. 17).2004
  94. AnouarE. CallisteC.A. KošinováP. Di MeoF. DurouxJ.L. ChampavierY. MarakchiK. TrouillasP. Free radical scavenging properties of guaiacol oligomers: A combined experimental and quantum study of the guaiacyl-moiety role.J. Phys. Chem. A200911350138811389110.1021/jp906285b19899743
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638282895240523091552
Loading
/content/journals/cddt/10.2174/0115701638282895240523091552
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-oxidant; gastric ulcer; phytophenols; Prodrugs; promoieties; therapeutic agents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test