Skip to content
2000
Volume 28, Issue 11
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

(HA) has been traditionally used for treating leprosy and is known for its antioxidant and anti-inflammatory activities. The aim of this study was to investigate the active compounds and targets of HA extracts, involved in oxidative stress and skin aging. The active compounds and targets of HA extracts were identified using network pharmacology.

Method

The pathway study was conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. HA semen was measured for its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and anti-aging activities using collagenase, elastase, and tyrosinase assays. A total of 21 intersecting core targets were identified from 8 compounds, 51 action targets, and 1810 skin aging and oxidative stress-associated target genes.

Result

A compound-target network was constructed, and 3 compounds (luteolin, beta-carotene and genkwanin), and 4 hub genes (, and ) were identified. The KEGG pathway study revealed that the compounds were correlated with PI3K-Akt, p53, HIF-1, and MAPK signaling.

Conclusion

The results of experiments showed the effect of HA extract on oxidative stress reduction and collagenase inhibition. We discovered two main active compounds, luteolin and β-carotene, that may be involved in p53 and MAPK signaling, and showed HA extract activity against oxidative stress and collagenase.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/1386207326666230901092247
2024-04-15
2025-10-15
Loading full text...

Full text loading...

References

  1. PetrukG. Del GiudiceR. RiganoM.M. MontiD.M. Antioxidants from Plants Protect against Skin Photoaging.Oxid. Med. Cell. Longev.2018201811110.1155/2018/1454936 30174780
    [Google Scholar]
  2. FisherG.J. KangS. VaraniJ. Bata-CsorgoZ. WanY. DattaS. VoorheesJ.J. Mechanisms of photoaging and chronological skin aging.Arch. Dermatol.2002138111462147010.1001/archderm.138.11.1462 12437452
    [Google Scholar]
  3. GuY. HanJ. JiangC. ZhangY. Biomarkers, oxidative stress and autophagy in skin aging.Ageing Res. Rev.20205910103610103610.1016/j.arr.2020.101036 32105850
    [Google Scholar]
  4. KammeyerA. LuitenR.M. Oxidation events and skin aging.Ageing Res. Rev.201521162910.1016/j.arr.2015.01.001 25653189
    [Google Scholar]
  5. PittayapruekP. MeephansanJ. PrapapanO. KomineM. OhtsukiM. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis.Int. J. Mol. Sci.201617686810.3390/ijms17060868 27271600
    [Google Scholar]
  6. BakrimS. AboulaghrasS. El MenyiyN. El OmariN. AssaggafH. LeeL.H. MontesanoD. GalloM. ZenginG. AlDhaheriY. BouyahyaA. Phytochemical Compounds and Nanoparticles as Phytochemical Delivery Systems for Alzheimer’s Disease Management.Molecules20222724904310.3390/molecules27249043 36558176
    [Google Scholar]
  7. SalemM.A. RadwanR.A. MostafaE.S. AlseekhS. FernieA.R. EzzatS.M. Using an UPLC/MS-based untargeted metabolomics approach for assessing the antioxidant capacity and anti-aging potential of selected herbs.RSC Adv.20201052315113152410.1039/D0RA06047J 35520633
    [Google Scholar]
  8. MasakiH. Role of antioxidants in the skin: Anti-aging effects.J. Dermatol. Sci.2010582859010.1016/j.jdermsci.2010.03.003 20399614
    [Google Scholar]
  9. LeeG.S. YimD. CheongJ.H. KangT.J. The n -Hexane, ethylacetate, and butanol fractions from Hydnocarpi Semen enhanced wound healing in a mice ulcer model.Immunopharmacol. Immunotoxicol.201234696897410.3109/08923973.2012.681328 22537169
    [Google Scholar]
  10. SahooM.R. DhanabalS.P. JadhavA.N. ReddyV. MuguliG. BabuU.V. RangeshP. Hydnocarpus: An ethnopharmacological, phytochemical and pharmacological review.J. Ethnopharmacol.20141541172510.1016/j.jep.2014.03.029 24732111
    [Google Scholar]
  11. LeeG.S. ShimH. LeeK.M. KimS.H. YimD. CheongJ.H. KangT.J. The role of the ethylacetate fraction from hydnocarpi semen in acute inflammation in vitro model.Immune Netw.201212629129510.4110/in.2012.12.6.291 23396990
    [Google Scholar]
  12. TangJ. AittokallioT. Network pharmacology strategies toward multi-target anticancer therapies: From computational models to experimental design principles.Curr. Pharm. Des.2014201233610.2174/13816128113199990470 23530504
    [Google Scholar]
  13. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  14. XieL. XieL. KinningsS.L. BourneP.E. Novel computational approaches to polypharmacology as a means to define responses to individual drugs.Annu. Rev. Pharmacol. Toxicol.201252136137910.1146/annurev‑pharmtox‑010611‑134630 22017683
    [Google Scholar]
  15. CarneN.A. BellS. BrownA.P. MäättäA. FlaglerM.J. BenhamA.M. Reductive stress selectively disrupts collagen homeostasis and modifies growth factor-independent signaling through the MAPK/Akt pathway in human dermal fibroblasts.Mol. Cell. Proteomics20191861123113710.1074/mcp.RA118.001140 30890563
    [Google Scholar]
  16. QuanT. FisherG.J. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: A Mini-Review.Gerontology201561542743410.1159/000371708 25660807
    [Google Scholar]
  17. MunekataP.E.S. GullónB. PateiroM. TomasevicI. DomínguezR. LorenzoJ.M. Natural antioxidants from seeds and their application in meat products.Antioxidants20209981510.3390/antiox9090815 32883005
    [Google Scholar]
  18. OngA.L.C. RamasamyT.S. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming.Ageing Res. Rev.201843648010.1016/j.arr.2018.02.004 29476819
    [Google Scholar]
  19. KimJ. NakasakiM. TodorovaD. LakeB. YuanC-Y. JamoraC. XuY. p53 induces skin aging by depleting Blimp1+ sebaceous gland cells.Cell Death Dis.201453e114110.1038/cddis.2014.87 24675459
    [Google Scholar]
  20. LeeH. HongY. KimM. Structural and Functional Changes and Possible Molecular Mechanisms in Aged Skin.Int. J. Mol. Sci.202122221248910.3390/ijms222212489 34830368
    [Google Scholar]
  21. RinnerthalerM. BischofJ. StreubelM. TrostA. RichterK. Oxidative stress in aging human skin.Biomolecules20155254558910.3390/biom5020545 25906193
    [Google Scholar]
  22. NelsonA.R. FingletonB. RothenbergM.L. MatrisianL.M. Matrix metalloproteinases: Biologic activity and clinical implications.J. Clin. Oncol.20001851135114910.1200/JCO.2000.18.5.1135 10694567
    [Google Scholar]
  23. FisherG.J. TalwarH.S. LinJ. LinP. McPhillipsF. WangZ. LiX. WanY. KangS. VoorheesJ.J. Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo.J. Clin. Invest.199810161432144010.1172/JCI2153 9502786
    [Google Scholar]
  24. FisherG.J. QuanT. PurohitT. ShaoY. ChoM.K. HeT. VaraniJ. KangS. VoorheesJ.J. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin.Am. J. Pathol.2009174110111410.2353/ajpath.2009.080599 19116368
    [Google Scholar]
  25. GendrischF. EsserP.R. SchemppC.M. WölfleU. Luteolin as a modulator of skin aging and inflammation.Biofactors202147217018010.1002/biof.1699 33368702
    [Google Scholar]
  26. BiesalskiH.K. Obermueller-JevicU.C. UV light, beta-carotene and human skin--beneficial and potentially harmful effects.Arch. Biochem. Biophys.200138911610.1006/abbi.2001.2313 11370660
    [Google Scholar]
/content/journals/cchts/10.2174/1386207326666230901092247
Loading
/content/journals/cchts/10.2174/1386207326666230901092247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test