Skip to content
2000
Volume 28, Issue 11
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

In the realm of environmentally conscious materials science, the integration of silver nanoparticles (AgNPs) with biodegradable polymers to form innovative nanocomposites has sparked notable discourse and research. This review delves comprehensively into the synthesis, properties, and environmental implications of said AgNPs/biodegradable polymer nanocomposites. Leveraging the unique physicochemical attributes of silver nanoparticles, these nanocomposites are portrayed as promising platforms for delivery, sensing, and antimicrobial applications. The nanocomposites made of AgNPs with biodegradable polymers, however, extend beyond utility, demonstrating a commitment to minimizing ecological impact. Contrary to traditional non-degradable polymers that litter our environments and oceans, these green alternatives yield lesser waste, reduce energy use, and limit the emission of volatile organic compounds, thereby aligning with global efforts towards sustainability. Our review strives to substantiate the environmental viability of these nanocomposites, whilst elaborating on their diverse commercial potential.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073312524240524064528
2024-06-12
2025-10-15
Loading full text...

Full text loading...

References

  1. ChausaliN. SaxenaJ. PrasadR. Nanotechnology as a sustainable approach for combating the environmental effects of climate change.J. Agric. Food Res.20231210054110.1016/j.jafr.2023.100541
    [Google Scholar]
  2. YadavS. KhanA. HamdaniS.S. RabnawazM. Degradable polymeric waxes for paper coating applications.ACS Appl. Polym. Mater.2024663263327210.1021/acsapm.3c03072
    [Google Scholar]
  3. AnwerA.H. AhteshamA. ShoebM. MashkoorF. AnsariM.Z. ZhuS. JeongC. State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review.Adv. Colloid Interface Sci.202331810295510.1016/j.cis.2023.102955 37467558
    [Google Scholar]
  4. BrunaT. Maldonado-BravoF. JaraP. CaroN. Silver nanoparticles and their antibacterial applications.Int. J. Mol. Sci.20212213720210.3390/ijms22137202 34281254
    [Google Scholar]
  5. HussainN.S. HarunN.A. Mohd RadziM.N.F. IdrisI. Wan IsmailW.I. Biosynthesis of silver nanoparticles from marine polychaete diopatra claparedii grube, 1878.J. Teknol.201880618118710.11113/jt.v80.11720
    [Google Scholar]
  6. GonzálezA.L. NoguezC. BeránekJ. BarnardA.S. Size, shape, stability, and color of plasmonic silver nanoparticles.J. Phys. Chem. C2014118179128913610.1021/jp5018168
    [Google Scholar]
  7. DeshmukhS.P. PatilS.M. MullaniS.B. DelekarS.D. Silver nanoparticles as an effective disinfectant: A review.Mater. Sci. Eng. C20199795496510.1016/j.msec.2018.12.102 30678983
    [Google Scholar]
  8. TamayoL. PalzaH. BejaranoJ. ZapataP.A. Polymer composites with metal nanoparticles: Synthesis, Properties, and applications. Polymer Composites with Functionalized Nanoparticles Synthesis, Properties, and Applications.AmsterdamElsevier201910.1016/B978‑0‑12‑814064‑2.00008‑1
    [Google Scholar]
  9. SadeghiB. One-pot synthesis of Ag/Fe3O4 nanocomposite: Preparation, characterization and efficient catalyst.J. Adv. Mater. Process.2017538292
    [Google Scholar]
  10. Front matter SharmaS.K. MudhooA. SharmaS.K. MudhooA. A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and ApplicationsThe Royal Society of Chemistry: London, United Kingdom2011
    [Google Scholar]
  11. SharmaR. JafariS.M. SharmaS. Antimicrobial bio-nanocomposites and their potential applications in food packaging.Food Control202011210708610.1016/j.foodcont.2020.107086
    [Google Scholar]
  12. ThirugnanasambandanT. Bio-nanocomposites.Biomedical Application BT - Polymer Based Bio-nanocomposites: Properties, Durability and Applications MuthukumarC. ThiagamaniS.M.K. KrishnasamyS. NagarajanR. SiengchinS. Springer Singapore: Singapore202227529110.1007/978‑981‑16‑8578‑1_15
    [Google Scholar]
  13. RanjaniB. PandianK. KumarG.A. GopinathS.C.B. D-glucosamine chitosan base molecule-assisted synthesis of different shape and sized silver nanoparticles by a single pot method: A greener approach for sensor and microbial applications.Int. J. Biol. Macromol.20191331280128710.1016/j.ijbiomac.2019.04.196 31051204
    [Google Scholar]
  14. GuzmánK. KumarB. VallejoM.J. GrijalvaM. DebutA. CumbalL. Ultrasound-assisted synthesis and antibacterial activity of gallic acid-chitosan modified silver nanoparticles.Prog. Org. Coat.201912922923510.1016/j.porgcoat.2019.01.009
    [Google Scholar]
  15. IbrahimH.M. El-ZairyE.M.R. Chitosan as a Biomaterial — Structure, Properties, and Electrospun NanofibersInTechOpen Ltd.: London, United Kingdom201510.5772/61300
    [Google Scholar]
  16. Al-SherbiniA.S.A. GhannamH.E.A. El-GhanamG.M.A. El-EllaA.A. YoussefA.M. Utilization of chitosan/Ag bionanocomposites as eco-friendly photocatalytic reactor for Bactericidal effect and heavy metals removal.Heliyon201956e0198010.1016/j.heliyon.2019.e01980 31304414
    [Google Scholar]
  17. AzmanaM. MahmoodS. HillesA.R. RahmanA. ArifinM.A.B. AhmedS. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications.Int. J. Biol. Macromol.202118583284810.1016/j.ijbiomac.2021.07.023 34237361
    [Google Scholar]
  18. AhmedM.K. MenazeaA.A. AbdelghanyA.M. Blend biopolymeric nanofibrous scaffolds of cellulose acetate/ε-polycaprolactone containing metallic nanoparticles prepared by laser ablation for wound disinfection applications.Int. J. Biol. Macromol.202015563664410.1016/j.ijbiomac.2020.03.257 32251752
    [Google Scholar]
  19. HuH. WuX. WangH. WangH. ZhouJ. Photo-reduction of Ag nanoparticles by using cellulose-based micelles as soft templates: Catalytic and antimicrobial activities.Carbohydr. Polym.201921341942710.1016/j.carbpol.2019.02.062 30879687
    [Google Scholar]
  20. PalemR.R. GaneshS.D. KronekovaZ. SlávikováM. SahaN. SahaP. Green synthesis of silver nanoparticles and biopolymer nanocomposites: A comparative study on physico-chemical, antimicrobial and anticancer activity.Bull. Mater. Sci.20184125510.1007/s12034‑018‑1567‑5
    [Google Scholar]
  21. AdelA.M. Al-ShemyM.T. DiabM.A. El-SakhawyM. ToroR.G. MontanariR. de CaroT. CascheraD. Fabrication of packaging paper sheets decorated with alginate/oxidized nanocellulose silver nanoparticles bio-nanocomposite.Int. J. Biol. Macromol.202118161262010.1016/j.ijbiomac.2021.03.182 33798578
    [Google Scholar]
  22. JungJ. KasiG. SeoJ. Development of functional antimicrobial papers using chitosan/starch-silver nanoparticles.Int. J. Biol. Macromol.201811253053610.1016/j.ijbiomac.2018.01.155 29391228
    [Google Scholar]
  23. HuangH. Multifunctional polypyrrole-silver coated layered double hydroxides embedded into a biodegradable polymer matrix for enhanced antibacterial and gas barrier properties.J. Bioresour. Bioprod.201944231241
    [Google Scholar]
  24. PandeyS. GoswamiG.K. NandaK.K. Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection.Int. J. Biol. Macromol.201251458358910.1016/j.ijbiomac.2012.06.033 22750580
    [Google Scholar]
  25. ShahA. HussainI. MurtazaG. Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity.Int. J. Biol. Macromol.201811652052910.1016/j.ijbiomac.2018.05.057 29758310
    [Google Scholar]
  26. ZhangX. SunH. TanS. GaoJ. FuY. LiuZ. Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study.Inorg. Chem. Commun.2019100445010.1016/j.inoche.2018.12.012
    [Google Scholar]
  27. KhanA. AlamryK.A. OvesM. AlthomaliR.H. A facile and green approach for the fabrication of nano-biocomposites by reducing silver salt solution into silver nanoparticles using modified carboxymethyl cellulose for antimicrobial potential.J. Polym. Res.20212839510.1007/s10965‑021‑02437‑w
    [Google Scholar]
  28. Gizdavic-NikolaidisM.R. PupeJ.M. JoseA. SilvaL.P. StanisavljevD.R. SvirskisD. SwiftS. Eco-friendly enhanced microwave synthesis of polyaniline/chitosan-AgNP composites, their physical characterisation and antibacterial properties.Synth. Met.202329311727310.1016/j.synthmet.2022.117273
    [Google Scholar]
  29. AktürkA. Erol TaygunM. Karbancıoğlu GülerF. GollerG. KüçükbayrakS. Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles.Colloids Surf. A Physicochem. Eng. Asp.201956225526210.1016/j.colsurfa.2018.11.034
    [Google Scholar]
  30. KhawajaH. ZahirE. AsgharM.A. AsgharM.A. Graphene oxide, chitosan and silver nanocomposite as a highly effective antibacterial agent against pathogenic strains.Colloids Surf. A Physicochem. Eng. Asp.201855524625510.1016/j.colsurfa.2018.06.052
    [Google Scholar]
  31. RhimJ.W. WangL.F. LeeY. HongS.I. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: Laser ablation method.Carbohydr. Polym.201410345646510.1016/j.carbpol.2013.12.075 24528754
    [Google Scholar]
  32. SethiS. Saruchi; Medha; Thakur, S.; Kaith, B.S.; Sharma, N.; Ansar, S.; Pandey, S.; Kuma, V. Biopolymer starch-gelatin embedded with silver nanoparticle–based hydrogel composites for antibacterial application.Biomass Convers. Biorefin.202212115363538410.1007/s13399‑022‑02437‑w
    [Google Scholar]
  33. NoralianZ. GashtiM.P. MoghaddamM.R. TayyebH. ErfanianI. Ultrasonically developed silver/iota-carrageenan/cotton bionanocomposite as an efficient material for biomedical applications.Int. J. Biol. Macromol.202118043945710.1016/j.ijbiomac.2021.02.204 33705835
    [Google Scholar]
  34. YangJ. ChenY. ZhaoL. FengZ. PengK. WeiA. WangY. TongZ. ChengB. Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing.Compos., Part B Eng.202019710813910.1016/j.compositesb.2020.108139
    [Google Scholar]
  35. SrikhaoN. KasemsiriP. OunkaewA. LorwanishpaisarnN. OkhawilaiM. PongsaU. HizirogluS. ChindaprasirtP. Bioactive nanocomposite film based on cassava starch/polyvinyl alcohol containing green synthesized silver nanoparticles.J. Polym. Environ.202129267268410.1007/s10924‑020‑01909‑2
    [Google Scholar]
  36. MaruthupandyM. RajivgandhiG. MuneeswaranT. VennilaT. QueroF. SongJ.M. Chitosan/silver nanocomposites for colorimetric detection of glucose molecules.Int. J. Biol. Macromol.201912182282810.1016/j.ijbiomac.2018.10.063 30342135
    [Google Scholar]
  37. SallehA. NaomiR. UtamiN.D. MohammadA.W. MahmoudiE. MustafaN. FauziM.B. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action.Nanomaterials (Basel)2020108156610.3390/nano10081566 32784939
    [Google Scholar]
  38. ZhanF. WangR. YinJ. HanZ. ZhangL. JiaoT. ZhouJ. ZhangL. PengQ. Facile solvothermal preparation of Fe 3 O 4 –Ag nanocomposite with excellent catalytic performance.RSC Advances20199287888310.1039/C8RA08516A 35517594
    [Google Scholar]
  39. ZhangH. ZouG. LiuL. LiY. TongH. SunZ. ZhouY.N. A comparative study of silver nanoparticles synthesized by arc discharge and femtosecond laser ablation in aqueous solution.Appl. Phys., A Mater. Sci. Process.20161221089610.1007/s00339‑016‑0424‑x
    [Google Scholar]
  40. MohammadiZ. EntezariM.H. Sono-synthesis approach in uniform loading of ultrafine Ag nanoparticles on reduced graphene oxide nanosheets: An efficient catalyst for the reduction of 4-Nitrophenol.Ultrason. Sonochem.20184411310.1016/j.ultsonch.2018.01.020 29680590
    [Google Scholar]
  41. SadeghiB. GarmaroudiF.S. HashemiM. NezhadH.R. NasrollahiA. ArdalanS. ArdalanS. Comparison of the anti-bacterial activity on the nanosilver shapes: Nanoparticles, nanorods and nanoplates.Adv. Powder Technol.2012231222610.1016/j.apt.2010.11.011
    [Google Scholar]
  42. SadeghiB. Preparation of ZnO/Ag nanocomposite and coating on polymers for anti-infection biomaterial application.Spectrochim. Acta A Mol. Biomol. Spectrosc.201411878779210.1016/j.saa.2013.09.022 24148529
    [Google Scholar]
  43. WichterleO. LímD. Hydrophilic Gels for Biological Use.Nature1960185470611711810.1038/185117a0
    [Google Scholar]
  44. MituraS. SionkowskaA. JaiswalA. Biopolymers for hydrogels in cosmetics: Review.J. Mater. Sci. Mater. Med.20203165010.1007/s10856‑020‑06390‑w 32451785
    [Google Scholar]
  45. KleinM. PoverenovE. Natural biopolymer‐based hydrogels for use in food and agriculture.J. Sci. Food Agric.202010062337234710.1002/jsfa.10274 31960453
    [Google Scholar]
  46. Salomé VeigaA. SchneiderJ.P. Antimicrobial hydrogels for the treatment of infection.Biopolymers2013100663764410.1002/bip.22412 24122459
    [Google Scholar]
  47. López-AlemanyA. CompañV. RefojoM.F. Porous structure of Purevision™ versus Focus® Night&Day™ and conventional hydrogel contact lenses.J. Biomed. Mater. Res.200263331932510.1002/jbm.10186 12115764
    [Google Scholar]
  48. LinS. YukH. ZhangT. ParadaG.A. KooH. YuC. ZhaoX. Stretchable hydrogel electronics and devices.Adv. Mater.201628224497450510.1002/adma.201504152 26639322
    [Google Scholar]
  49. YangJ. ShenM. LuoY. WuT. ChenX. WangY. XieJ. Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system.Trends Food Sci. Technol.202111082283210.1016/j.tifs.2021.02.032
    [Google Scholar]
  50. LeeJ.H. JeongD. KanmaniP. Study on physical and mechanical properties of the biopolymer/silver based active nanocomposite films with antimicrobial activity.Carbohydr. Polym.201922411515910.1016/j.carbpol.2019.115159 31472865
    [Google Scholar]
  51. WangT. ZhangF. ZhaoR. WangC. HuK. SunY. PolitisC. ShavandiA. NieL. Polyvinyl alcohol/sodium alginate hydrogels incorporated with silver nanoclusters via green tea extract for antibacterial applications.Des. Monomers Polym.202023111813310.1080/15685551.2020.1804183 33029080
    [Google Scholar]
  52. DainelliD. GontardN. SpyropoulosD. Zondervan-van den BeukenE. TobbackP. Active and intelligent food packaging: Legal aspects and safety concerns.Trends Food Sci. Technol.200819S103S11210.1016/j.tifs.2008.09.011
    [Google Scholar]
  53. Castro-MayorgaJ.L. FreitasF. ReisM.A.M. PrietoM.A. LagaronJ.M. Biosynthesis of silver nanoparticles and polyhydroxybutyrate nanocomposites of interest in antimicrobial applications.Int. J. Biol. Macromol.201810842643510.1016/j.ijbiomac.2017.12.007 29217186
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073312524240524064528
Loading
/content/journals/cchts/10.2174/0113862073312524240524064528
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test