Skip to content
2000
Volume 28, Issue 11
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

To date, disease-modifying antirheumatic drugs (DMARDs) are widely used as the primary first-line treatment option for patients with rheumatoid arthritis (RA), and the curative effect of methotrexate (MTX) and leflunomide (LEF; MTX + LEF) is greater than that of single-agent MTX therapy, but the synergistic mechanism of MTX + LEF is unclear.

Methods

First, we explored the mechanism of action of MTX + LEF in RA through network pharmacology and molecular docking. Venn diagram analysis revealed 97 overlapping gene targets of MTX + LEF-RA and STRING, along with Cytoscape plug-in MOCDE and cytoHubba; and GO enrichment analysis revealed that the functions of 97 synergistic targets were related to 123 molecular functions (MF), 63 cell components (CC), and 1,068 biological processes (BP). The Cytoscape plug-in ClueGO demonstrated that these targets were enriched in KEGG pathways of 52 terms, whereas 9 pivotal genes were mainly involved in the signaling pathways of estrogen, Ras, Rap1, PI3K-Akt, relaxin, TNF, AMPK, FoxO, prolactin, IL-17, and adherens junction. Finally, CETSA and DARTS validated the direct binding of MTX or LEF to the selected target proteins EGFR, PPARG, MMP9, and SRC in RAW264.7 cells.

Results

We identified 292 MTX targets and 247 LEF targets from 7 databases. Furthermore, 2,814 potential targets of RA were identified by merging 1,925 targets from 7 databases and 999 differentially expressed genes (DEGs) between normal controls and patients with RA extracted from 5 GEO databases. Nine pivotal genes, ESR1, ALB, CASP3, EGFR, HSP90AA1, SRC, MMP9, PPARG, and IGF1, were identified. Molecular docking verified that both MTX and LEF strongly bind to most of the 9 pivotal proteins except ESR1 and IGF1.

Conclusion

These results contribute to our understanding of the enhancement mechanism of MTX combined with LEF and provide a targeted basis for the clinical treatment of RA.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073285626240604093210
2024-06-20
2025-10-15
Loading full text...

Full text loading...

References

  1. SmolenJ.S. LandewéR. BijlsmaJ. BurmesterG. ChatzidionysiouK. DougadosM. NamJ. RamiroS. VoshaarM. van VollenhovenR. AletahaD. AringerM. BoersM. BuckleyC.D. ButtgereitF. BykerkV. CardielM. CombeB. CutoloM. van Eijk-HustingsY. EmeryP. FinckhA. GabayC. Gomez-ReinoJ. GossecL. GottenbergJ.E. HazesJ.M.W. HuizingaT. JaniM. KarateevD. KouloumasM. KvienT. LiZ. MarietteX. McInnesI. MyslerE. NashP. PavelkaK. PoórG. RichezC. van RielP. Rubbert-RothA. SaagK. da SilvaJ. StammT. TakeuchiT. WesthovensR. de WitM. van der HeijdeD. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update.Ann. Rheum. Dis.201776696097710.1136/annrheumdis‑2016‑210715 28264816
    [Google Scholar]
  2. YuM.B. FirekA. LangridgeW.H.R. Predicting methotrexate resistance in rheumatoid arthritis patients.Inflammopharmacology201826369970810.1007/s10787‑018‑0459‑z 29532212
    [Google Scholar]
  3. ChatzidionysiouK. SfikakisP.P. Low rates of remission with methotrexate monotherapy in rheumatoid arthritis: review of randomised controlled trials could point towards a paradigm shift.RMD Open201952e00099310.1136/rmdopen‑2019‑000993 31413870
    [Google Scholar]
  4. AletahaD. SmolenJ.S. Joint damage in rheumatoid arthritis progresses in remission according to the Disease Activity Score in 28 joints and is driven by residual swollen joints.Arthritis Rheum.201163123702371110.1002/art.30634 21953215
    [Google Scholar]
  5. GandjbakhchF. ConaghanP.G. EjbjergB. HaavardsholmE.A. FoltzV. BrownA.K. Møller DøhnU. LassereM. FreestonJ. BøyesenP. BirdP. FautrelB. HetlandM.L. EmeryP. BourgeoisP. Hørslev-PetersenK. KvienT.K. McQUEEN, F.I.O.N.A.; Østergaard, M. Synovitis and osteitis are very frequent in rheumatoid arthritis clinical remission: results from an MRI study of 294 patients in clinical remission or low disease activity state.J. Rheumatol.20113892039204410.3899/jrheum.110421 21885514
    [Google Scholar]
  6. TugwellP. PincusT. YocumD. SteinM. GluckO. KraagG. McKendryR. TesserJ. BakerP. WellsG. Combination therapy with cyclosporine and methotrexate in severe rheumatoid arthritis.N. Engl. J. Med.1995333313714210.1056/NEJM199507203330301 7791814
    [Google Scholar]
  7. O’DellJ.R. HaireC.E. EriksonN. DrymalskiW. PalmerW. EckhoffP.J. GarwoodV. MaloleyP. KlassenL.W. WeesS. KleinH. MooreG.F. Treatment of rheumatoid arthritis with methotrexate alone, sulfasalazine and hydroxychloroquine, or a combination of all three medications.N. Engl. J. Med.1996334201287129110.1056/NEJM199605163342002 8609945
    [Google Scholar]
  8. WeinblattM.E. KremerJ.M. BankhurstA.D. BulpittK.J. FleischmannR.M. FoxR.I. JacksonC.G. LangeM. BurgeD.J. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate.N. Engl. J. Med.1999340425325910.1056/NEJM199901283400401 9920948
    [Google Scholar]
  9. BathonJ.M. MartinR.W. FleischmannR.M. TesserJ.R. SchiffM.H. KeystoneE.C. GenoveseM.C. WaskoM.C. MorelandL.W. WeaverA.L. MarkensonJ. FinckB.K. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis.N. Engl. J. Med.2000343221586159310.1056/NEJM200011303432201 11096165
    [Google Scholar]
  10. KremerJ.M. GenoveseM.C. CannonG.W. CaldwellJ.R. CushJ.J. FurstD.E. LuggenM.E. KeystoneE. WeismanM.H. BensenW.M. KaineJ.L. RudermanE.M. ColemanP. CurtisD.L. KoppE.J. KantorS.M. WaltuckJ. LindsleyH.B. MarkensonJ.A. StrandV. CrawfordB. FernandoI. SimpsonK. BathonJ.M. Concomitant leflunomide therapy in patients with active rheumatoid arthritis despite stable doses of methotrexate. A randomized, double-blind, placebo-controlled trial.Ann. Intern. Med.2002137972673310.7326/0003‑4819‑137‑9‑200211050‑00007 12416946
    [Google Scholar]
  11. WijesingheH. GalappatthyP. de SilvaR. SeneviratneS.L. SaravanamuttuU. UdagamaP. HartM. KelleherP. SenerathU. FernandopulleR. WeerasekeraL.P. WijayaratneL.S. Leflunomide is equally efficacious and safe compared to low dose rituximab in refractory rheumatoid arthritis given in combination with methotrexate: Results from a randomized double blind controlled clinical trial.BMC Musculoskelet. Disord.201718131031510.1186/s12891‑017‑1673‑3 28724365
    [Google Scholar]
  12. ScottD.L. IbrahimF. FarewellV. O’KeeffeA.G. WalkerD. KellyC. BirrellF. ChakravartyK. MaddisonP. HeslinM. PatelA. KingsleyG.H. Tumour necrosis factor inhibitors versus combination intensive therapy with conventional disease modifying anti-rheumatic drugs in established rheumatoid arthritis: TACIT non-inferiority randomised controlled trial.BMJ2015350mar13 19h104610.1136/bmj.h1046 25769495
    [Google Scholar]
  13. CannonG.W. HoldenW.L. JuhaeriJ. DaiW. ScarazziniL. StangP. Adverse events with disease modifying antirheumatic drugs (DMARD): A cohort study of leflunomide compared with other DMARD.J. Rheumatol.2004311019061911[J]. 15468352
    [Google Scholar]
  14. BredemeierM. RanzaR. KakehasiA.M. RanzolinA. da SilveiraI.G. RibeiroA.C.M. TittonD.C. HayataA.L.S. CarvalhoH.M.S. KahlowB.S. FernandesV. LouzadaP.Jr BértoloM.B. DuarteÂ.L.B.P. MacieiraJ.C. MirandaJ.R.S. PinheiroG.R.C. TeodoroR.B. PinheiroM.M. ValimV. PereiraI.A. SaumaM.F.L.C. de CastroG.R.W. da RochaL.F.Jr StudartS.A.S. GazzetaM.O. da SilveiraL.G. LupoC.M. LaurindoI.M.M. Safety of the Methotrexate–leflunomide Combination in Rheumatoid Arthritis: Results of a Multicentric, Registry-based, Cohort Study (BiobadaBrasil).J. Rheumatol.202148101519152710.3899/jrheum.201248 33934077
    [Google Scholar]
  15. SalliotC. van der HeijdeD. Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: A systematic literature research.Ann. Rheum. Dis.20096871100110410.1136/ard.2008.093690 19060002
    [Google Scholar]
  16. CronsteinB.N. Molecular therapeutics. Methotrexate and its mechanism of action.Arthritis Rheum.199639121951196010.1002/art.1780391203 8961899
    [Google Scholar]
  17. BrownP.M. PrattA.G. IsaacsJ.D. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers.Nat. Rev. Rheumatol.2016121273174210.1038/nrrheum.2016.175 27784891
    [Google Scholar]
  18. WangZ. HuangJ. XieD. HeD. LuA. LiangC. Toward Overcoming Treatment Failure in Rheumatoid Arthritis.Front. Immunol.2021122175584410.3389/fimmu.2021.755844 35003068
    [Google Scholar]
  19. KremerJ.M. Possible mechanisms of action of methotrexate in patients with rheumatoid arthritis.Rheumatology (Oxford)1995XXXIV53Suppl. 2262910.1093/rheumatology/XXXIV.suppl_2.26 8535645
    [Google Scholar]
  20. KremerJ.M. Methotrexate and leflunomide: Biochemicalbasis for combination therapy in the treatment of rheumatoid arthritis.Semin. Arthritis Rheum.1999291142610.1016/S0049‑0172(99)80034‑1 10468411
    [Google Scholar]
  21. StrandV. CohenS. SchiffM. WeaverA. FleischmannR. CannonG. FoxR. MorelandL. OlsenN. FurstD. CaldwellJ. KaineJ. SharpJ. HurleyF. Loew-FriedrichI. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate.Arch. Intern. Med.1999159212542255010.1001/archinte.159.21.2542 10573044
    [Google Scholar]
  22. SmolenJ.S. KaldenJ.R. ScottD.L. RozmanB. KvienT.K. LarsenA. Loew-FriedrichI. OedC. RosenburgR. Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: A double-blind, randomised, multicentre trial.Lancet1999353914925926610.1016/S0140‑6736(98)09403‑3 9929017
    [Google Scholar]
  23. LiangC. LiJ. LuC. XieD. LiuJ. ZhongC. WuX. DaiR. ZhangH. GuanD. GuoB. HeB. LiF. HeX. ZhangW. ZhangB-T. ZhangG. LuA. HIF1α inhibition facilitates Leflunomide-AHR-CRP signaling to attenuate bone erosion in CRP-aberrant rheumatoid arthritis.Nat. Commun.2019101457910.1038/s41467‑019‑12163‑z 30604748
    [Google Scholar]
  24. DavisJ.P. CainG.A. PittsW.J. MagoldaR.L. CopelandR.A. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase.Biochemistry19963541270127310.1021/bi952168g 8573583
    [Google Scholar]
  25. BreedveldF.C. DayerJ-M. Leflunomide: mode of action in the treatment of rheumatoid arthritis.Ann. Rheum. Dis.2000591184184910.1136/ard.59.11.841 11053058
    [Google Scholar]
  26. KirschB.M. ZeydaM. StuhlmeierK. GrisarJ. SmolenJ.S. WatschingerB. StulnigT.M. HörlW.H. ZlabingerG.J. SäemannM.D. The active metabolite of leflunomide, A77 1726, interferes with dendritic cell function.Arthritis Res.200573R694R70310.1186/ar1727 15899055
    [Google Scholar]
  27. KremerJ.M. KayeG.I. KayeN.W. IshakK.G. AxiotisC.A. Light and electron microscopic analysis of sequential liver biopsy samples from rheumatoid arthritis patients receiving long‐term methotrexate therapy followup over long treatment intervals and correlation with clinical and laboratory variables.Arthritis Rheum.19953891194120310.1002/art.1780380904 7575712
    [Google Scholar]
  28. WeinblattM.E. KremerJ.M. CoblynJ.S. MaierA.L. HelfgottS.M. MorrellM. ByrneV.M. KaymakcianM.V. StrandV. Pharmacokinetics, safety, and efficacy of combination treatment with methotrexate and leflunomide in patients with active rheumatoid arthritis.Arthritis Rheum.19994271322132810.1002/1529‑0131(199907)42:7<1322:AID‑ANR4>3.0.CO;2‑P 10403258
    [Google Scholar]
  29. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  30. ZhangA. SunH. YangB. WangX. Predicting new molecular targets for rhein using network pharmacology.BMC Syst. Biol.201261202510.1186/1752‑0509‑6‑20 22433437
    [Google Scholar]
  31. OhK. AdnanM. ChoD. Uncovering Mechanisms of Zanthoxylum piperitum Fruits for the Alleviation of Rheumatoid Arthritis Based on Network Pharmacology.Biology (Basel)202110870371010.3390/biology10080703 34439936
    [Google Scholar]
  32. ChenW. LinT. HeQ. YangP. ZhangG. HuangF. WangZ. PengH. LiB. LiangD. WangH. Study on the potential active components and molecular mechanism of Xiao Huoluo Pills in the treatment of cartilage degeneration of knee osteoarthritis based on bioinformatics analysis and molecular docking technology.J. Orthop. Surg. Res.202116146046510.1186/s13018‑021‑02552‑w 34273999
    [Google Scholar]
  33. SidhuH. CapalashN. Synergistic anti-cancer action of salicylic acid and cisplatin on HeLa cells elucidated by network pharmacology and in vitro analysis.Life Sci.202128214711980210.1016/j.lfs.2021.119802 34237314
    [Google Scholar]
  34. ZhuJ. YiX. ZhangY. PanZ. ZhongL. HuangP. Systems Pharmacology-Based Approach to Comparatively Study the Independent and Synergistic Mechanisms of Danhong Injection and Naoxintong Capsule in Ischemic Stroke Treatment.Evid. Based Complement. Alternat. Med.2019201924611710.1155/2019/1056708 30863452
    [Google Scholar]
  35. YangS.Q. YeQ. DingJ-J. Ming-Zhu Yin LuA-P. ChenX. HouT-J. CaoD-S. Current advances in ligand‐based target prediction.Wiley Interdiscip. Rev. Comput. Mol. Sci.2021113e1504[J].10.1002/wcms.1504
    [Google Scholar]
  36. JiK.Y. LiuC. LiuZ.Q. DengY.F. HouT.J. CaoD.S. Comprehensive assessment of nine target prediction web services: which should we choose for target fishing?Brief. Bioinform.2023242bbad01410.1093/bib/bbad014 36681902
    [Google Scholar]
  37. HewettM. OliverD.E. RubinD.L. EastonK.L. StuartJ.M. AltmanR.B. KleinT.E. PharmGKB: The Pharmacogenetics Knowledge Base.Nucleic Acids Res.200230116316510.1093/nar/30.1.163 11752281
    [Google Scholar]
  38. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D1082[J].10.1093/nar/gkx1037
    [Google Scholar]
  39. ZhangW. Bojorquez-GomezA. VelezD.O. XuG. SanchezK.S. ShenJ.P. ChenK. LiconK. MeltonC. OlsonK.M. YuM.K. HuangJ.K. CarterH. FarleyE.K. SnyderM. FraleyS.I. KreisbergJ.F. IdekerT. A global transcriptional network connecting noncoding mutations to changes in tumor gene expression.Nat. Genet.201850461362010.1038/s41588‑018‑0091‑2 29610481
    [Google Scholar]
  40. RebhanM. Chalifa-CaspiV. PriluskyJ. LancetD. GeneCards: Integrating information about genes, proteins and diseases.Trends Genet.199713416316910.1016/S0168‑9525(97)01103‑7 9097728
    [Google Scholar]
  41. WangY. ZhangS. LiF. ZhouY. ZhangY. WangZ. ZhangR. ZhuJ. RenY. TanY. QinC. LiY. LiX. ChenY. ZhuF. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics.Nucleic Acids Res.202048D1D1031D1041[J]. 31691823
    [Google Scholar]
  42. DavisA.P. GrondinC.J. JohnsonR.J. SciakyD. KingB.L. McMorranR. WiegersJ. WiegersT.C. MattinglyC.J. The Comparative Toxicogenomics Database: update 2017.Nucleic Acids Res.201745D1D972D97810.1093/nar/gkw838
    [Google Scholar]
  43. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  44. GuS. XueY. GaoY. ShenS. ZhangY. ChenK. XueS. PanJ. TangY. ZhuH. WuH. DouD. Mechanisms of indigo naturalis on treating ulcerative colitis explored by GEO gene chips combined with network pharmacology and molecular docking.Sci. Rep.20201011520410.1038/s41598‑020‑71030‑w 32938944
    [Google Scholar]
  45. NiuX. RenL. HuA. ZhangS. QiH. Identification of Potential Diagnostic and Prognostic Biomarkers for Gastric Cancer Based on Bioinformatic Analysis.Front. Genet.2022132286210510.3389/fgene.2022.862105 35368700
    [Google Scholar]
  46. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  47. HuangC. LiR. ShiW. HuangZ. Discovery of the anti-tumor mechanism of calycosin against colorectal cancer by using system pharmacology approach.Med. Sci. Monit.201925225589559310.12659/MSM.918250 31352466
    [Google Scholar]
  48. SzklarczykD. FranceschiniA. WyderS. ForslundK. HellerD. Huerta-CepasJ. SimonovicM. RothA. SantosA. TsafouK.P. KuhnM. BorkP. JensenL.J. von MeringC. STRING v10: Protein–protein interaction networks, integrated over the tree of life.Nucleic Acids Res.201543D1D447D45210.1093/nar/gku1003
    [Google Scholar]
  49. ZhangL. HanL. MaJ. WuT. WeiY. ZhaoL. TongX. Exploring the synergistic and complementary effects of berberine and paeoniflorin in the treatment of type 2 diabetes mellitus by network pharmacology.Eur. J. Pharmacol.202291974217476910.1016/j.ejphar.2022.174769 35151646
    [Google Scholar]
  50. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148S4Suppl. 4S1110.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  51. SunD. WanX. PanB. SunQ. JiX. ZhangF. ZhangH. CaoC. Bioinformatics analysis of genes and pathways of CD11b(+)/Ly6C(intermediate) macrophages after renal ischemia-reperfusion injury.Curr. Med. Sci.2018381707710.1007/s11596‑018‑1848‑7 30074154
    [Google Scholar]
  52. LuoJ. LiH. LiuZ. LiC. WangR. FangJ. LuS. GuoJ. ZhuX. WangX. Integrative analyses of gene expression profile reveal potential crucial roles of mitotic cell cycle and microtubule cytoskeleton in pulmonary artery hypertension.BMC Med. Genomics2020131868810.1186/s12920‑020‑00740‑x 32586319
    [Google Scholar]
  53. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  54. AshburnerM. BallC.A. BlakeJ.A. BotsteinD. ButlerH. CherryJ.M. DavisA.P. DolinskiK. DwightS.S. EppigJ.T. HarrisM.A. HillD.P. Issel-TarverL. KasarskisA. LewisS. MateseJ.C. RichardsonJ.E. RingwaldM. RubinG.M. SherlockG. Gene Ontology: Tool for the unification of biology.Nat. Genet.2000251252910.1038/75556 10802651
    [Google Scholar]
  55. OgataH. GotoS. SatoK. FujibuchiW. BonoH. KanehisaM. KEGG: Kyoto Encyclopedia of Genes and Genomes.Nucleic Acids Res.1999271293410.1093/nar/27.1.29 9847135
    [Google Scholar]
  56. ZhaoJ. MoC. ShiW. MengL. AiJ. Network Pharmacology Combined with Bioinformatics to Investigate the Mechanisms and Molecular Targets of Astragalus Radix-Panax notoginseng Herb Pair on Treating Diabetic Nephropathy.Evid. Based Complement. Alternat. Med.2021202114511910.1155/2021/9980981 34349833
    [Google Scholar]
  57. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  58. MolinaD.M. JafariR. IgnatushchenkoM. SekiT. LarssonE.A. DanC. SreekumarL. CaoY. NordlundP. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay.Science20133416141848710.1126/science.1233606 23828940
    [Google Scholar]
  59. JafariR. AlmqvistH. AxelssonH. IgnatushchenkoM. LundbäckT. NordlundP. MolinaD.M. The cellular thermal shift assay for evaluating drug target interactions in cells.Nat. Protoc.2014992100212210.1038/nprot.2014.138 25101824
    [Google Scholar]
  60. ChenJ.F. WuS.W. ShiZ.M. QuY.J. DingM.R. HuB. Exploring the components and mechanism of Solanum nigrum L. for colon cancer treatment based on network pharmacology and molecular docking.Front. Oncol.20231342111179910.3389/fonc.2023.1111799 36969029
    [Google Scholar]
  61. LomenickB. HaoR. JonaiN. ChinR.M. AghajanM. WarburtonS. WangJ. WuR.P. GomezF. LooJ.A. WohlschlegelJ.A. VondriskaT.M. PelletierJ. HerschmanH.R. ClardyJ. ClarkeC.F. HuangJ. Target identification using drug affinity responsive target stability (DARTS).Proc. Natl. Acad. Sci. USA200910651219842198910.1073/pnas.0910040106 19995983
    [Google Scholar]
  62. FeldmannM. BrennanF.M. MainiR.N. Role of cytokines in rheumatoid arthritis.Annu. Rev. Immunol.199614139744010.1146/annurev.immunol.14.1.397 8717520
    [Google Scholar]
  63. BrennanF.M. McInnesI.B. Evidence that cytokines play a role in rheumatoid arthritis.J. Clin. Invest.2008118113537354510.1172/JCI36389 18982160
    [Google Scholar]
  64. KallioliasG.D. IvashkivL.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies.Nat. Rev. Rheumatol.2016121496210.1038/nrrheum.2015.169 26656660
    [Google Scholar]
  65. McInnesI.B. BuckleyC.D. IsaacsJ.D. Cytokines in rheumatoid arthritis — shaping the immunological landscape.Nat. Rev. Rheumatol.2016121636810.1038/nrrheum.2015.171 26656659
    [Google Scholar]
  66. McInnesI.B. SchettG. Cytokines in the pathogenesis of rheumatoid arthritis.Nat. Rev. Immunol.20077642944210.1038/nri2094 17525752
    [Google Scholar]
  67. HaworthC. BrennanF.M. ChantryD. TurnerM. MainiR.N. FeldmannM. Expression of granulocyte‐macrophage colony‐stimulating factor in rheumatoid arthritis: Regulation by tumor necrosis factor‐α.Eur. J. Immunol.199121102575257910.1002/eji.1830211039 1915559
    [Google Scholar]
  68. BrennanF. ChantryD. JacksonA. MainiR. FeldmannM. INHIBITORY EFFECT OF TNF$alpha; ANTIBODIES ON SYNOVIAL CELL INTERLEUKIN-1 PRODUCTION IN RHEUMATOID ARTHRITIS.Lancet1989334865724424710.1016/S0140‑6736(89)90430‑3 2569055
    [Google Scholar]
  69. ButlerD.M. MainiR.N. FeldmannM. BrennanF.M. Modulation of proinflammatory cytokine release in rheumatoid synovial membrane cell cultures. Comparison of monoclonal anti TNF-alpha antibody with the interleukin-1 receptor antagonist.Eur. Cytokine Netw.199564225230[J]. 8789287
    [Google Scholar]
  70. AbreuJ.R.F. KrauszS. DontjeW. GrabiecA.M. de LaunayD. NolteM.A. TakP.P. ReedquistK.A. Sustained T cell Rap1 signaling is protective in the collagen‐induced arthritis model of rheumatoid arthritis.Arthritis Rheum.201062113289329910.1002/art.27656 20662068
    [Google Scholar]
  71. IlchovskaD.D. BarrowD.M. An Overview of the NF-kB mechanism of pathophysiology in rheumatoid arthritis, investigation of the NF-kB ligand RANKL and related nutritional interventions.Autoimmun. Rev.202120210274110.1016/j.autrev.2020.102741 33340772
    [Google Scholar]
  72. FunkJ.L. KrulE.J. MoserA.H. ShigenagaJ.K. StrewlerG.J. GrunfeldC. FeingoldK.R. Endotoxin increases parathyroid hormone-related protein mRNA levels in mouse spleen. Mediation by tumor necrosis factor.J. Clin. Invest.19939252546255210.1172/JCI116864 8227368
    [Google Scholar]
  73. TsukazakiT. OhtsuruA. EnomotoH. YanoH. MotomuraK. ItoM. NambaH. IwasakiK. YamashitaS. Expression of parathyroid hormone-related protein in rat articular cartilage.Calcif. Tissue Int.199557319620010.1007/BF00310258 8574936
    [Google Scholar]
  74. AdachiN. YamaguchiK. MiyakeY. HondaS. NagasakiK. AkiyamaY. AdachiI. AbeK. Parathyroid hormone-related protein is a possible autocrine growth inhibitor for lymphocytes.Biochem. Biophys. Res. Commun.199016631088109410.1016/0006‑291X(90)90978‑V 2306230
    [Google Scholar]
  75. McCauleyL.K. RosolT.J. MerrymanJ.I. CapenC.C. Parathyroid hormone-related protein binding to human T-cell lymphotropic virus type I-infected lymphocytes.Endocrinology1992130130030610.1210/endo.130.1.1309334 1309334
    [Google Scholar]
  76. AdamiG. OrsoliniG. AdamiS. ViapianaO. IdolazziL. GattiD. RossiniM. Effects of TNF inhibitors on parathyroid hormone and Wnt signaling antagonists in rheumatoid arthritis.Calcif. Tissue Int.201699436036410.1007/s00223‑016‑0161‑3 27307275
    [Google Scholar]
  77. MalemudC.J. The PI3K/Akt/PTEN/mTOR pathway: A fruitful target for inducing cell death in rheumatoid arthritis?Future Med. Chem.2015791137114710.4155/fmc.15.55 26132523
    [Google Scholar]
  78. QuY. WuJ. DengJ.X. ZhangY.P. LiangW.Y. JiangZ.L. YuQ.H. LiJ. MicroRNA-126 affects rheumatoid arthritis synovial fibroblast proliferation and apoptosis by targeting PIK3R2 and regulating PI3K-AKT signal pathway.Oncotarget2016745742177422610.18632/oncotarget.12487 27729613
    [Google Scholar]
  79. LacativaP.G.S. FariasM.L.F. Osteoporosis and inflammation.Arq. Bras. Endocrinol. Metabol201054212313210.1590/S0004‑27302010000200007 20485900
    [Google Scholar]
  80. Sapir-KorenR. LivshitsG. Postmenopausal osteoporosis in rheumatoid arthritis: The estrogen deficiency-immune mechanisms link.Bone20171035810211510.1016/j.bone.2017.06.020 28666971
    [Google Scholar]
  81. ChabaudM. DurandJ.M. BuchsN. FossiezF. PageG. FrappartL. MiossecP. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium.Arthritis Rheum.199942596397010.1002/1529‑0131(199905)42:5<963:AID‑ANR15>3.0.CO;2‑E 10323452
    [Google Scholar]
  82. AarvakT. ChabaudM. MiossecP. NatvigJ.B. IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells.J. Immunol.199916231246125110.4049/jimmunol.162.3.1246 9973376
    [Google Scholar]
  83. ZiolkowskaM. KocA. LuszczykiewiczG. Ksiezopolska-PietrzakK. KlimczakE. Chwalinska-SadowskaH. MaslinskiW. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism.J. Immunol.200016452832283810.4049/jimmunol.164.5.2832 10679127
    [Google Scholar]
  84. KirkhamB.W. LassereM.N. EdmondsJ.P. JuhaszK.M. BirdP.A. LeeC.S. ShnierR. PortekI.J. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: A two‐year prospective study (the DAMAGE study cohort).Arthritis Rheum.20065441122113110.1002/art.21749 16572447
    [Google Scholar]
  85. MetawiS.A. AbbasD. KamalM.M. IbrahimM.K. Serum and synovial fluid levels of interleukin-17 in correlation with disease activity in patients with RA.Clin. Rheumatol.20113091201120710.1007/s10067‑011‑1737‑y 21874405
    [Google Scholar]
  86. KoendersM.I. LubbertsE. Oppers-WalgreenB. van den BersselaarL. HelsenM.M. Di PadovaF.E. BootsA.M.H. GramH. JoostenL.A.B. van den BergW.B. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1.Am. J. Pathol.2005167114114910.1016/S0002‑9440(10)62961‑6 15972960
    [Google Scholar]
  87. LubbertsE. KoendersM.I. Oppers-WalgreenB. van den BersselaarL. Coenen-de RooC.J.J. JoostenL.A.B. van den BergW.B. Treatment with a neutralizing anti‐murine interleukin‐17 antibody after the onset of collagen‐induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion.Arthritis Rheum.200450265065910.1002/art.20001 14872510
    [Google Scholar]
  88. ShiomiA. UsuiT. IshikawaY. ShimizuM. MurakamiK. MimoriT. GM-CSF but not IL-17 is critical for the development of severe interstitial lung disease in SKG mice.J. Immunol.2014193284985910.4049/jimmunol.1303255 24951817
    [Google Scholar]
  89. ShenP. JiaoY. MiaoL. ChenJ. Momtazi-BorojeniA.A. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management.J. Cell. Mol. Med.20202421122341224510.1111/jcmm.15803 32969153
    [Google Scholar]
  90. TominagaT. NonakaT. SumidaY. HidakaS. SawaiT. NagayasuT. The C-reactive protein to albumin ratio as a predictor of severe side effffects of adjuvant chemotherapy in stage III colorectal cancer patients.PLoS One20161112e016796710.1371/journal.pone.0167967 27930703
    [Google Scholar]
  91. IshizukaM. NagataH. TakagiK. IwasakiY. ShibuyaN. KubotaK. Clinical signifificance of the C-reactive protein to albumin ratio for survival after surgery for colorectal cancer.Ann. Surg. Oncol.201623390090710.1245/s10434‑015‑4948‑7 26530445
    [Google Scholar]
  92. ZhangP. LiuJ. TanB. Hypercoagulable state is associated with NF-kappa B activation and increased inflammatory factors in patients with rheumatoid arthritis.Xi bao yu fen zi mian yi xue za zhi.2016323361368
    [Google Scholar]
  93. SahebariM. AyatiR. MirzaeiH. SahebkarA. HejaziS. SaghafiM. SaadatiN. FernsG.A. Ghayour-MobarhanM. Serum trace element concentrations in rheumatoid arthritis.Biol. Trace Elem. Res.2016171223724510.1007/s12011‑015‑0501‑6 26450515
    [Google Scholar]
  94. CohenG.M. Caspases: The executioners of apoptosis.Biochem. J.1997326111610.1042/bj3260001 9337844
    [Google Scholar]
  95. HongS.J. RimG.S. YangH.I. YinC.S. KohH.G. JangM.H. KimC.J. ChoeB.K. ChungJ.H. Bee venom induces apoptosis through caspase-3 activation in synovial fibroblasts of patients with rheumatoid arthritis.Toxicon2005461394510.1016/j.toxicon.2005.03.015 15922390
    [Google Scholar]
  96. NakayamaH. YaguchiT. YoshiyaS. NishizakiT. Resveratrol induces apoptosis MH7A human rheumatoid arthritis synovial cells in a sirtuin 1-dependent manner.Rheumatol. Int.201232115115710.1007/s00296‑010‑1598‑8 20697895
    [Google Scholar]
  97. ByunH.S. SongJ.K. KimY.R. PiaoL. WonM. ParkK.A. ChoiB.L. LeeH. HongJ.H. ParkJ. SeokJ.H. LeeY.J. KangS.W. HurG.M. Caspase-8 has an essential role in resveratrol-induced apoptosis of rheumatoid fibroblast-like synoviocytes.Rheumatology (Oxford)200747330130810.1093/rheumatology/kem368 18276737
    [Google Scholar]
  98. ShiozawaS. ShiozawaK. TanakaY. MorimotoI. UchihashiM. FujitaT. HirohataK. HirataY. ImuraS. Human epidermal growth factor for the stratification of synovial lining layer and neovascularisation in rheumatoid arthritis.Ann. Rheum. Dis.1989481082082810.1136/ard.48.10.820 2479344
    [Google Scholar]
  99. SumariwallaP.F. JinP. ZhangJ. NiI. CrawfordD. ShepardH.M. PaleologE.M. FeldmannM. Antagonism of the human epidermal growth factor receptor family controls disease severity in murine collagen‐induced arthritis.Arthritis Rheum.200858103071308010.1002/art.23885 18821697
    [Google Scholar]
  100. GompelsL.L. MalikN.M. MaddenL. JinP. FeldmannM. ShepardH.M. PaleologE.M. Human epidermal growth factor receptor bispecific ligand trap RB200: Abrogation of collagen-induced arthritis in combination with tumour necrosis factor blockade.Arthritis Res. Ther.2011135R16110.1186/ar3480 21982514
    [Google Scholar]
  101. YamaneS. IshidaS. HanamotoY. KumagaiK. MasudaR. TanakaK. ShiobaraN. YamaneN. MoriT. JujiT. FukuiN. ItohT. OchiT. SuzukiR. Proinflammatory role of amphiregulin, an epidermal growth factor family member whose expression is augmented in rheumatoid arthritis patients.J. Inflamm. (Lond.)2008515910.1186/1476‑9255‑5‑5 18439312
    [Google Scholar]
  102. KopE.N. KwakkenbosM.J. TeskeG.J.D. KraanM.C. SmeetsT.J. StaceyM. LinH.H. TakP.P. HamannJ. Identification of the epidermal growth factor–TM7 receptor EMR2 and its ligand dermatan sulfate in rheumatoid synovial tissue.Arthritis Rheum.200552244245010.1002/art.20788 15693006
    [Google Scholar]
  103. TahaE.A. OnoK. EguchiT. Roles of extracellular HSPs as biomarkers in immune surveillance and immune evasion.Int. J. Mol. Sci.20192018458810.3390/ijms20184588 31533245
    [Google Scholar]
  104. ZavarehR. SpangenbergS. WoodsA. HSP90 inhibition enhances cancer immunotherapy by modulating the surface expression of multiple immune checkpoint proteins.Cell Chem. Biol.20201014510 33113406
    [Google Scholar]
  105. KurkoJ. BesenyeiT. LakiJ. Genetics of rheumatoid arthritis - a comprehensive review.Clin. Rev. Allergy Immunol.2013201345170179
    [Google Scholar]
  106. SinghS. VennilaJ.J. SnijeshV.P. GeorgeG. SunnyC. Implying analytic measures for unravelling rheumatoid arthritis signifificant proteins through drug-target interaction.Interdiscip. Sci.20168212213110.1007/s12539‑015‑0108‑9 26286007
    [Google Scholar]
  107. AdamO. BeringerC. KlessT. LemmenC. AdamA. WisemanM. AdamP. KlimmekR. ForthW. Anti-inflammatory effects of a low arachidonic acid diet and fish oil in patients with rheumatoid arthritis.Rheumatol. Int.2003231273610.1007/s00296‑002‑0234‑7 12548439
    [Google Scholar]
  108. Lorenzo-GomezI. Nogueira-RecaldeU. OreiroN. HSP90AA1, a chaperone-mediated autophagy, is a biomarker associated with defective autophagy in osteoarthritis.Osteoarthritis Cartilage2020248586597
    [Google Scholar]
  109. ByeonS.E. YiY.S. OhJ. YooB.C. HongS. ChoJ.Y. The role of Src kinase in macrophage-mediated inflammatory responses.Mediators Inflamm.2012201269711810.1155/2012/512926 23209344
    [Google Scholar]
  110. HuangC.C. TsengT.T. LiuS.C. LinY.Y. LawY.Y. HuS.L. WangS.W. TsaiC.H. TangC.H. S1P Increases VEGF Production in Osteoblasts and Facilitates Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-16-5p Expression via the c-Src/FAK Signaling Pathway in Rheumatoid Arthritis.Cells2021108216810.3390/cells10082168 34440937
    [Google Scholar]
  111. MorelJ.C.M. ParkC.C. ZhuK. KumarP. RuthJ.H. KochA.E. Signal transduction pathways involved in rheumatoid arthritis synovial fibroblast interleukin-18-induced vascular cell adhesion molecule-1 expression.J. Biol. Chem.200227738346793469110.1074/jbc.M206337200 12105209
    [Google Scholar]
  112. MiyazakiT. TanakaS. SanjayA. BaronR. The role of c-Src kinase in the regulation of osteoclast function.Mod. Rheumatol.2006162687410.3109/s10165‑006‑0460‑z 16633924
    [Google Scholar]
  113. ChenL. LiJ. KeX. QuW. ZhangJ. FengF. LiuW. The therapeutic effects of Periploca forrestii Schltr. Stem extracts on collagen-induced arthritis by inhibiting the activation of Src/NF-κB signaling pathway in rats.J. Ethnopharmacol.2017202156121910.1016/j.jep.2017.03.005 28286042
    [Google Scholar]
  114. SchettG. GravalleseE. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment.Nat. Rev. Rheumatol.201281165666410.1038/nrrheum.2012.153 23007741
    [Google Scholar]
  115. XueM. McKelveyK. ShenK. MinhasN. MarchL. ParkS.Y. JacksonC.J. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation.Rheumatology (Oxford)201453122270227910.1093/rheumatology/keu254 24982240
    [Google Scholar]
  116. CrottiT.N. DharmapatniA.A.S.S.K. AliasE. Arthritis Res. Ther.20121478156162
    [Google Scholar]
  117. YangY.H. LiD.L. BiX.Y. SunL. YuX.J. FangH.L. MiaoY. ZhaoM. HeX. LiuJ.J. ZangW.J. Acetylcholine Inhibits LPS-Induced MMP-9 Production and Cell Migration via the a7 nAChR-JAK2/STAT3 Pathway in RAW264.7 Cells.Cell. Physiol. Biochem.20153652025203810.1159/000430170 26202362
    [Google Scholar]
  118. KimK.S. ChoiH.M. LeeY.A. ChoiI.A. LeeS.H. HongS.J. YangH.I. YooM.C. Expression levels and association of gelatinases MMP-2 and MMP-9 and collagenases MMP-1 and MMP-13 with VEGF in synovial fluid of patients with arthritis.Rheumatol. Int.201131454354710.1007/s00296‑010‑1592‑1 20665024
    [Google Scholar]
  119. LiG. ZhangY. QianY. ZhangH. GuoS. SunagawaM. HisamitsuT. LiuY. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway.Mol. Immunol.201353322723610.1016/j.molimm.2012.08.018 22960198
    [Google Scholar]
  120. OrmsethM.J. OeserA.M. CunninghamA. BianA. ShintaniA. SolusJ. TannerS.B. SteinC.M. Reversing vascular dysfunction in rheumatoid arthritis: Improved augmentation index but not endothelial function with peroxisome proliferator-activated receptor γ agonist therapy.Arthritis Rheumatol.20146692331233810.1002/art.38686 24782291
    [Google Scholar]
  121. LeeY.H. BaeS.C. SongG.G. Meta-analysis of associations between the peroxisome proliferator-activated receptor-γ Pro12Ala polymorphism and susceptibility to nonalcoholic fatty liver disease, rheumatoid arthritis, and psoriatic arthritis.Genet. Test. Mol. Biomarkers201418534134810.1089/gtmb.2013.0503 24697566
    [Google Scholar]
  122. LiX.F. SunY.Y. BaoJ. ChenX. LiY.H. YangY. ZhangL. HuangC. WuB.M. MengX.M. LiJ. Functional role of PPAR-γ on the proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis.Sci. Rep.2017711267110.1038/s41598‑017‑12570‑6 28978936
    [Google Scholar]
  123. MalaviyaA.N. Low-Dose Methotrexate (LD-MTX) in rheumatology practice - A most widely misunderstood drug.Curr. Rheumatol. Rev.201612316817610.2174/1573397112666160824151801 27964706
    [Google Scholar]
  124. KrügerK. BoltenW. Treatment with leflunomide in rheumatoid arthritis.Z. Rheumatol.20056429610110.1007/s00393‑005‑0694‑8 15793675
    [Google Scholar]
  125. KrügerK. AlbrechtK. RehartS. ScholzR. Recommendations of the German Society for Rheumatology on the perioperative approach under therapy with DMARDs and biologicals in inflammatory rheumatic diseases.Z. Rheumatol.20147317784 24310229
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073285626240604093210
Loading
/content/journals/cchts/10.2174/0113862073285626240604093210
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test