Skip to content
2000
image of T1D-Related Cataract Risk Amplification: Mendelian Randomisation Confirms a Dual Hit of Immune-Inflammatory Burden and Metabolic Stress

Abstract

Background/Objective

Observational studies have linked diabetes with cataracts, but they cannot fully elucidate the underlying causes and mechanisms. This investigation aims to evaluate the causal relationship between genetically predicted diabetes and cataract risk utilizing Mendelian randomisation (MR) techniques.

Methods

We identified single nucleotide polymorphisms (SNPs) with a significant threshold of < 5×10^-8 as instrumental variables from genome-wide association study datasets pertaining to Type 1 (finn-b-E4_DM1, =189,113), Type 2 diabetes (finn-b-E4_DM2, 215,654), and cataract (ukb-b-8329, controls=136,388, cataract=14,254). Various Mendelian randomisation methods were employed, including inverse-variance weighted (IVW), MR-Egger, weighted median, simple mode (SM), and weighted mode analyses. Additionally, sensitivity analyses were conducted to assess the robustness of the findings, encompassing tests for heterogeneity, pleiotropy, and leave-one-out assessments. A multivariable (MVMR) approach was used to account for potential confounders, such as obesity (IEUA-92, controls = 47468, obesity = 2896), smoking (ukb-a-16, = 337030), and alcohol consumption (IEUA-1283, = 112,117).

Results

The analysis included 12 SNPs, which were derived from loci specifically associated with Type 1 diabetes and known to govern immune-inflammatory and metabolic pathways. The genetically-predicted Type 1 diabetes was found to elevate cataract risk significantly (OR=1.003, 95% CI: 1.001–1.005, =0.001). The results of the sensitivity analyses corroborated the robustness of these findings, showing no significant heterogeneity (Cochran Q, P value = 0.73) or pleiotropy (MR-Egger intercept, value = 0.38). Furthermore, multivariable MR demonstrated that the impact of diabetes on cataract risk remained significant after adjustment for multiple lifestyle factors.

Discussion

We provide novel MR evidence that Type 1 diabetes causally increases the risk of cataract through the synergistic activity of immune dysregulation, chronic inflammation, and metabolic disturbance, with immune-metabolic crosstalk as the primary driver.

Conclusions

T1D causally increases the risk of cataract through the disruption of immune-inflammatory and metabolic pathways. Targeting immune-metabolic interactions may offer novel therapeutic strategies for preventing diabetic cataracts.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073425549250926170012
2025-10-09
2025-12-19
Loading full text...

Full text loading...

References

  1. ElSayed N.A. Aleppo G. Bannuru R.R. Bruemmer D. Collins B.S. Ekhlaspour L. Gaglia J.L. Hilliard M.E. Johnson E.L. Khunti K. Lingvay I. Matfin G. McCoy R.G. Perry M.L. Pilla S.J. Polsky S. Prahalad P. Pratley R.E. Segal A.R. Seley J.J. Selvin E. Stanton R.C. Gabbay R.A. 2. diagnosis and classification of diabetes: Standards of care in diabetes—2024. Diabetes Care 2024 47 Suppl. 1 S20 S42 10.2337/dc24‑S002 38078589
    [Google Scholar]
  2. Gregg E.W. Buckley J. Ali M.K. Davies J. Flood D. Mehta R. Griffiths B. Lim L.L. Manne-Goehler J. Pearson-Stuttard J. Tandon N. Roglic G. Slama S. Shaw J.E. Agoudavi K. Aryal K.K. Atun R. Bahendeka S. Bicaba B.W. Bovet P. Brian G. Damasceno A. Davies J.I. Dorobantu M. Farzadfar F. Flood D. Geldsetzer P. Gurung M.S. Guwatudde D. Houehanou C. Houinato D. Hwalla N. Jaacks L. Karki B.K. Labadarios D. Lunet N. Manne-Goehler J. Marcus M.E. Martins J. Mayige T.M. Norov B. Saeedi Moghaddam S. Quesnel-Crooks S. Sibai A.M. Sturua L. Theilmann M. Tsabedze L. Vollmer S. Zhumadilov Z. Improving health outcomes of people with diabetes: Target setting for the WHO Global Diabetes Compact. Lancet 2023 401 10384 1302 1312 10.1016/S0140‑6736(23)00001‑6 36931289
    [Google Scholar]
  3. Diabetes-related complications: A toll too high. Lancet Diabetes Endocrinol. 2024 12 9 601 10.1016/S2213‑8587(24)00246‑8
    [Google Scholar]
  4. Mrugacz M. Pony-Uram M. Bryl A. Zorena K. Current approach to the pathogenesis of diabetic cataracts. Int. J. Mol. Sci. 2023 24 7 6317 10.3390/ijms24076317 37047290
    [Google Scholar]
  5. Klein B.K. Klein R. Moss S. Incidence of cataract surgery in the wisconsin epidemiologic study of diabetic retinopathy. Am. J. Ophthalmol. 1995 119 3 295 300 10.1016/S0002‑9394(14)71170‑5 7872389
    [Google Scholar]
  6. Go J.A. Mamalis C.A. Khandelwal S.S. Cataract surgery considerations for diabetic patients. Curr. Diab. Rep. 2021 21 12 67 10.1007/s11892‑021‑01418‑z 34967932
    [Google Scholar]
  7. Zhang H. Xiu X. Xue A. Yang Y. Yang Y. Zhao H. Mendelian randomization study reveals a population-specific putative causal effect of type 2 diabetes in risk of cataract. Int. J. Epidemiol. 2022 50 6 2024 2037 10.1093/ije/dyab175 34999863
    [Google Scholar]
  8. Li L. Wan X. Zhao G. Meta-analysis of the risk of cataract in type 2 diabetes. BMC Ophthalmol. 2014 14 1 94 10.1186/1471‑2415‑14‑94 25060855
    [Google Scholar]
  9. Lindblad B.E. Håkansson N. Philipson B. Wolk A. Metabolic syndrome components in relation to risk of cataract extraction: A prospective cohort study of women. Ophthalmology 2008 115 10 1687 1692 10.1016/j.ophtha.2008.04.004 18538408
    [Google Scholar]
  10. Skrivankova V.W. Richmond R.C. Woolf B.A.R. Davies N.M. Swanson S.A. VanderWeele T.J. Timpson N.J. Higgins J.P.T. Dimou N. Langenberg C. Loder E.W. Golub R.M. Egger M. Davey Smith G. Richards J.B. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ 2021 375 2233 n2233 10.1136/bmj.n2233 34702754
    [Google Scholar]
  11. Yang C. Fagan A.M. Perrin R.J. Rhinn H. Harari O. Cruchaga C. Mendelian randomization and genetic colocalization infer the effects of the multi-tissue proteome on 211 complex disease-related phenotypes. Genome Med. 2022 14 1 140 10.1186/s13073‑022‑01140‑9 36510323
    [Google Scholar]
  12. Lee S.C.W.Y. Ko G.T. Ma R.C. Critchley J.A. Cockram C.S. Chan J.C. Risk factors for cataract in Chinese patientswith type 2 diabetes evidence for theinfluence of the aldose reductase gene. Clin. Genet. 2001 59 5 4 10.1034/j.1399‑0004.2001.590510.x
    [Google Scholar]
  13. Lin H.J. Huang Y.C. Lin J.M. Liao W.L. Wu J.Y. Chen C.H. Chou Y.C. Chen L.A. Lin C.J. Tsai F.J. Novel susceptibility genes associated with diabetic cataract in a Taiwanese population. Ophthalmic Genet. 2013 34 1-2 35 42 10.3109/13816810.2012.736590 23137000
    [Google Scholar]
  14. Lu W.L. Shen P.C. Lee C.H. Su Y.T. Chen L.M. High risk of early cataracts in young type 1 diabetes group: A nationwide cohort study. Int. J. Endocrinol. 2020 2020 1 8 10.1155/2020/8160256 33133186
    [Google Scholar]
  15. Shi Y. Qin J. Li Y. Yang J. Lu Y. Type 1 diabetes and cataracts: investigating mediating effects of serum metabolites using bidirectional mendelian randomization. Metabolites 2024 14 11 644 10.3390/metabo14110644 39590881
    [Google Scholar]
  16. Weng H. Li H. Zhang Z. Zhang Y. Xi L. Zhang D. Deng C. Wang D. Chen R. Chen G. Tang S. Zuo X. Yang P. Zhai Z. Wang C. Association between uric acid and risk of venous thromboembolism in East Asian populations: A cohort and Mendelian randomization study. Lancet Reg. Health West. Pac. 2023 39 100848 10.1016/j.lanwpc.2023.100848 37565068
    [Google Scholar]
  17. Wong T.H.T. Mo J.M.Y. Zhou M. Zhao J.V. Schooling C.M. He B. Luo S. Au Yeung S.L. A two-sample Mendelian randomization study explores metabolic profiling of different glycemic traits. Commun. Biol. 2024 7 1 293 10.1038/s42003‑024‑05977‑1 38459184
    [Google Scholar]
  18. Sekula P. Del Greco M F. Pattaro C. Köttgen A. Mendelian randomization as an approach to assess causality using observational data. J. Am. Soc. Nephrol. 2016 27 11 3253 3265 10.1681/ASN.2016010098 27486138
    [Google Scholar]
  19. Berndt S.I. Gustafsson S. Mägi R. Ganna A. Wheeler E. Feitosa M.F. Justice A.E. Monda K.L. Croteau-Chonka D.C. Day F.R. Esko T. Fall T. Ferreira T. Gentilini D. Jackson A.U. Luan J. Randall J.C. Vedantam S. Willer C.J. Winkler T.W. Wood A.R. Workalemahu T. Hu Y.J. Lee S.H. Liang L. Lin D.Y. Min J.L. Neale B.M. Thorleifsson G. Yang J. Albrecht E. Amin N. Bragg-Gresham J.L. Cadby G. den Heijer M. Eklund N. Fischer K. Goel A. Hottenga J.J. Huffman J.E. Jarick I. Johansson Å. Johnson T. Kanoni S. Kleber M.E. König I.R. Kristiansson K. Kutalik Z. Lamina C. Lecoeur C. Li G. Mangino M. McArdle W.L. Medina-Gomez C. Müller-Nurasyid M. Ngwa J.S. Nolte I.M. Paternoster L. Pechlivanis S. Perola M. Peters M.J. Preuss M. Rose L.M. Shi J. Shungin D. Smith A.V. Strawbridge R.J. Surakka I. Teumer A. Trip M.D. Tyrer J. Van Vliet-Ostaptchouk J.V. Vandenput L. Waite L.L. Zhao J.H. Absher D. Asselbergs F.W. Atalay M. Attwood A.P. Balmforth A.J. Basart H. Beilby J. Bonnycastle L.L. Brambilla P. Bruinenberg M. Campbell H. Chasman D.I. Chines P.S. Collins F.S. Connell J.M. Cookson W.O. de Faire U. de Vegt F. Dei M. Dimitriou M. Edkins S. Estrada K. Evans D.M. Farrall M. Ferrario M.M. Ferrières J. Franke L. Frau F. Gejman P.V. Grallert H. Grönberg H. Gudnason V. Hall A.S. Hall P. Hartikainen A.L. Hayward C. Heard-Costa N.L. Heath A.C. Hebebrand J. Homuth G. Hu F.B. Hunt S.E. Hyppönen E. Iribarren C. Jacobs K.B. Jansson J.O. Jula A. Kähönen M. Kathiresan S. Kee F. Khaw K.T. Kivimäki M. Koenig W. Kraja A.T. Kumari M. Kuulasmaa K. Kuusisto J. Laitinen J.H. Lakka T.A. Langenberg C. Launer L.J. Lind L. Lindström J. Liu J. Liuzzi A. Lokki M.L. Lorentzon M. Madden P.A. Magnusson P.K. Manunta P. Marek D. März W. Leach I.M. McKnight B. Medland S.E. Mihailov E. Milani L. Montgomery G.W. Mooser V. Mühleisen T.W. Munroe P.B. Musk A.W. Narisu N. Navis G. Nicholson G. Nohr E.A. Ong K.K. Oostra B.A. Palmer C.N.A. Palotie A. Peden J.F. Pedersen N. Peters A. Polasek O. Pouta A. Pramstaller P.P. Prokopenko I. Pütter C. Radhakrishnan A. Raitakari O. Rendon A. Rivadeneira F. Rudan I. Saaristo T.E. Sambrook J.G. Sanders A.R. Sanna S. Saramies J. Schipf S. Schreiber S. Schunkert H. Shin S.Y. Signorini S. Sinisalo J. Skrobek B. Soranzo N. Stančáková A. Stark K. Stephens J.C. Stirrups K. Stolk R.P. Stumvoll M. Swift A.J. Theodoraki E.V. Thorand B. Tregouet D.A. Tremoli E. Van der Klauw M.M. van Meurs J.B.J. Vermeulen S.H. Viikari J. Virtamo J. Vitart V. Waeber G. Wang Z. Widén E. Wild S.H. Willemsen G. Winkelmann B.R. Witteman J.C.M. Wolffenbuttel B.H.R. Wong A. Wright A.F. Zillikens M.C. Amouyel P. Boehm B.O. Boerwinkle E. Boomsma D.I. Caulfield M.J. Chanock S.J. Cupples L.A. Cusi D. Dedoussis G.V. Erdmann J. Eriksson J.G. Franks P.W. Froguel P. Gieger C. Gyllensten U. Hamsten A. Harris T.B. Hengstenberg C. Hicks A.A. Hingorani A. Hinney A. Hofman A. Hovingh K.G. Hveem K. Illig T. Jarvelin M.R. Jöckel K.H. Keinanen-Kiukaanniemi S.M. Kiemeney L.A. Kuh D. Laakso M. Lehtimäki T. Levinson D.F. Martin N.G. Metspalu A. Morris A.D. Nieminen M.S. Njølstad I. Ohlsson C. Oldehinkel A.J. Ouwehand W.H. Palmer L.J. Penninx B. Power C. Province M.A. Psaty B.M. Qi L. Rauramaa R. Ridker P.M. Ripatti S. Salomaa V. Samani N.J. Snieder H. Sørensen T.I.A. Spector T.D. Stefansson K. Tönjes A. Tuomilehto J. Uitterlinden A.G. Uusitupa M. van der Harst P. Vollenweider P. Wallaschofski H. Wareham N.J. Watkins H. Wichmann H.E. Wilson J.F. Abecasis G.R. Assimes T.L. Barroso I. Boehnke M. Borecki I.B. Deloukas P. Fox C.S. Frayling T. Groop L.C. Haritunian T. Heid I.M. Hunter D. Kaplan R.C. Karpe F. Moffatt M.F. Mohlke K.L. O’Connell J.R. Pawitan Y. Schadt E.E. Schlessinger D. Steinthorsdottir V. Strachan D.P. Thorsteinsdottir U. van Duijn C.M. Visscher P.M. Di Blasio A.M. Hirschhorn J.N. Lindgren C.M. Morris A.P. Meyre D. Scherag A. McCarthy M.I. Speliotes E.K. North K.E. Loos R.J.F. Ingelsson E. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 2013 45 5 501 512 10.1038/ng.2606 23563607
    [Google Scholar]
  20. Clarke T-K. Adams M.J. Davies G. Howard D.M. Hall L.S. Padmanabhan S. Murray A.D. Smith B.H. Campbell A. Hayward C. Porteous D.J. Deary I.J. McIntosh A.M. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N=112 117). Mol. Psychiatry 2017 22 10 1376 1384 10.1038/mp.2017.153 28937693
    [Google Scholar]
  21. Bowden J. Davey Smith G. Haycock P.C. Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016 40 4 304 314 10.1002/gepi.21965 27061298
    [Google Scholar]
  22. Park S. Kim T. Cho S.I. Lee E.H. Association between cataract and the degree of obesity. Optom. Vis. Sci. 2013 90 9 1019 1027 10.1097/OPX.0b013e31829cae62 23811609
    [Google Scholar]
  23. Kelly S.P. Thornton J. Edwards R. Sahu A. Harrison R. Smoking and cataract: Review of causal association. J. Cataract Refract. Surg. 2005 31 12 2395 2404 10.1016/j.jcrs.2005.06.039 16473237
    [Google Scholar]
  24. Gong Y. Feng K. Yan N. Xu Y. Pan C.W. Different amounts of alcohol consumption and cataract: A meta-analysis. Optom. Vis. Sci. 2015 92 4 471 479 10.1097/OPX.0000000000000558 25785534
    [Google Scholar]
  25. Hemani G. Zheng J. Elsworth B. Wade K.H. Haberland V. Baird D. Laurin C. Burgess S. Bowden J. Langdon R. Tan V.Y. Yarmolinsky J. Shihab H.A. Timpson N.J. Evans D.M. Relton C. Martin R.M. Davey Smith G. Gaunt T.R. Haycock P.C. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018 7 34408 10.7554/eLife.34408 29846171
    [Google Scholar]
  26. Muaddi M.A. Exploring the causal relationship between modifiable exposures and diabetes mellitus: A two-sample mendelian randomization analysis. Cureus 2024 16 4 59034 10.7759/cureus.59034 38800249
    [Google Scholar]
  27. Jia M.J. Chen L. Effect of trace elements and nutrients on diabetes and its complications: a Mendelian randomization study. Front. Nutr. 2024 11 1439217 10.3389/fnut.2024.1439217 39149550
    [Google Scholar]
  28. Greenberg M.J. Bamba S. Diabetic cataracts. Dis. Mon. 2021 67 5 101134 10.1016/j.disamonth.2021.101134 33485606
    [Google Scholar]
  29. Mohammad N.K. Rajab I.A. Al-Taie R.H. Ismail M. Machine learning and vision: Advancing the frontiers of diabetic cataract management. Cureus 2024 16 8 66600 10.7759/cureus.66600 39258082
    [Google Scholar]
  30. Armitage L.H. Wallet M.A. Mathews C.E. Influence of PTPN22 allotypes on innate and adaptive immune function in health and disease. Front. Immunol. 2021 12 636618 10.3389/fimmu.2021.636618 33717184
    [Google Scholar]
  31. Michalek D.A. Tern C. Zhou W. Robertson C.C. Farber E. Campolieto P. Chen W.M. Onengut-Gumuscu S. Rich S.S. A multi-ancestry genome-wide association study in type 1 diabetes. Hum. Mol. Genet. 2024 33 11 958 968 10.1093/hmg/ddae024 38453145
    [Google Scholar]
  32. Kullo I.J. Shameer K. Jouni H. Lesnick T.G. Pathak J. Chute C.G. de Andrade M. The ATXN2-SH2B3 locus is associated with peripheral arterial disease: an electronic medical record-based genome-wide association study. Front. Genet. 2014 5 166 10.3389/fgene.2014.00166 25009551
    [Google Scholar]
  33. Zhu M. Xu K. Chen Y. Gu Y. Zhang M. Luo F. Liu Y. Gu W. Hu J. Xu H. Xie Z. Sun C. Li Y. Sun M. Xu X. Hsu H.T. Chen H. Fu Q. Shi Y. Xu J. Ji L. Liu J. Bian L. Zhu J. Chen S. Xiao L. Li X. Jiang H. Shen M. Huang Q. Fang C. Li X. Huang G. Fan J. Jiang Z. Jiang Y. Dai J. Ma H. Zheng S. Cai Y. Dai H. Zheng X. Zhou H. Ni S. Jin G. She J.X. Yu L. Polychronakos C. Hu Z. Zhou Z. Weng J. Shen H. Yang T. Identification of novel T1D risk loci and their association with age and islet function at diagnosis in autoantibody-positive t1d individuals: Based on a two-stage genome-wide association study. Diabetes Care 2019 42 8 1414 1421 10.2337/dc18‑2023 31152121
    [Google Scholar]
  34. Mero I.L. Gustavsen M.W. Sæther H.S. Flåm S.T. Berg-Hansen P. Søndergaard H.B. Jensen P.E.H. Berge T. Bjølgerud A. Muggerud A. Aarseth J.H. Myhr K.M. Celius E.G. Sellebjerg F. Hillert J. Alfredsson L. Olsson T. Oturai A.B. Kockum I. Lie B.A. Andreassen B.K. Harbo H.F. Oligoclonal band status in Scandinavian multiple sclerosis patients is associated with specific genetic risk alleles. PLoS One 2013 8 3 58352 10.1371/journal.pone.0058352 23472185
    [Google Scholar]
  35. Johannessen L.E. Panagopoulos I. Haugvik S.P. Gladhaug I.P. Heim S. Micci F. Upregulation of INS-IGF2 read-through expression and identification of a novel INS-IGF2 splice variant in insulinomas. Oncol. Rep. 2016 36 5 2653 2662 10.3892/or.2016.5132 27667266
    [Google Scholar]
  36. Jordan D.M. Verbanck M. Do R. HOPS: a quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biol. 2019 20 1 222 10.1186/s13059‑019‑1844‑7 31653226
    [Google Scholar]
  37. Baek J.H. Lee D. Lee D. Jeong H. Cho E.Y. Ha T.H. Ha K. Hong K.S. Exploring intra-diagnosis heterogeneity and inter-diagnosis commonality in genetic architectures of bipolar disorders: association of polygenic risks of major psychiatric illnesses and lifetime phenotype dimensions. Psychol. Med. 2024 54 11 3082 3088 10.1017/S003329172400120X 38813618
    [Google Scholar]
  38. Boulesteix A.L. Strobl C. Weidinger S. Wichmann H-E. Wagenpfeil S. Multiple testing for SNP-SNP interactions. Stat. Appl. Genet. Mol. Biol. 2007 6 1 25 10.2202/1544‑6115.1315
    [Google Scholar]
  39. Power G.M. Sanderson E. Pagoni P. Fraser A. Morris T. Prince C. Frayling T.M. Heron J. Richardson T.G. Richmond R. Tyrrell J. Warrington N. Davey Smith G. Howe L.D. Tilling K.M. Methodological approaches, challenges, and opportunities in the application of Mendelian randomisation to lifecourse epidemiology: A systematic literature review. Eur. J. Epidemiol. 2024 39 5 501 520 10.1007/s10654‑023‑01032‑1 37938447
    [Google Scholar]
  40. Liang X. Liang L. Fan Y. Two-sample mendelian randomization analysis investigates ambient fine particulate matter’s impact on cardiovascular disease development. Sci. Rep. 2023 13 1 20129 10.1038/s41598‑023‑46816‑3 37978283
    [Google Scholar]
  41. Julaiti M. Wubuli D. Cui T. Nijiati N. Huang P. Hu B. Analysis of the relationship between environmental particulate matter exposure and congenital diseases, as well as the epidemiological trends and burden of impact on newborns. Ecotoxicol. Environ. Saf. 2025 289 117465 10.1016/j.ecoenv.2024.117465 39644568
    [Google Scholar]
  42. Yuan S. Gill D. Giovannucci E.L. Larsson S.C. Obesity, type 2 diabetes, lifestyle factors, and risk of gallstone disease: a mendelian randomization investigation. Clin. Gastroenterol. Hepatol. 2022 20 3 e529 e537 10.1016/j.cgh.2020.12.034 33418132
    [Google Scholar]
  43. Jaeggi A.V. Blackwell A.D. von Rueden C. Trumble B.C. Stieglitz J. Garcia A.R. Kraft T.S. Beheim B.A. Hooper P.L. Kaplan H. Gurven M. Do wealth and inequality associate with health in a small-scale subsistence society? eLife 2021 10 59437 10.7554/eLife.59437 33988506
    [Google Scholar]
  44. Saunders G.R.B. Wang X. Chen F. Jang S.K. Liu M. Wang C. Gao S. Jiang Y. Khunsriraksakul C. Otto J.M. Addison C. Akiyama M. Albert C.M. Aliev F. Alonso A. Arnett D.K. Ashley-Koch A.E. Ashrani A.A. Barnes K.C. Barr R.G. Bartz T.M. Becker D.M. Bielak L.F. Benjamin E.J. Bis J.C. Bjornsdottir G. Blangero J. Bleecker E.R. Boardman J.D. Boerwinkle E. Boomsma D.I. Boorgula M.P. Bowden D.W. Brody J.A. Cade B.E. Chasman D.I. Chavan S. Chen Y.D.I. Chen Z. Cheng I. Cho M.H. Choquet H. Cole J.W. Cornelis M.C. Cucca F. Curran J.E. de Andrade M. Dick D.M. Docherty A.R. Duggirala R. Eaton C.B. Ehringer M.A. Esko T. Faul J.D. Fernandes Silva L. Fiorillo E. Fornage M. Freedman B.I. Gabrielsen M.E. Garrett M.E. Gharib S.A. Gieger C. Gillespie N. Glahn D.C. Gordon S.D. Gu C.C. Gu D. Gudbjartsson D.F. Guo X. Haessler J. Hall M.E. Haller T. Harris K.M. He J. Herd P. Hewitt J.K. Hickie I. Hidalgo B. Hokanson J.E. Hopfer C. Hottenga J. Hou L. Huang H. Hung Y.J. Hunter D.J. Hveem K. Hwang S.J. Hwu C.M. Iacono W. Irvin M.R. Jee Y.H. Johnson E.O. Joo Y.Y. Jorgenson E. Justice A.E. Kamatani Y. Kaplan R.C. Kaprio J. Kardia S.L.R. Keller M.C. Kelly T.N. Kooperberg C. Korhonen T. Kraft P. Krauter K. Kuusisto J. Laakso M. Lasky-Su J. Lee W.J. Lee J.J. Levy D. Li L. Li K. Li Y. Lin K. Lind P.A. Liu C. Lloyd-Jones D.M. Lutz S.M. Ma J. Mägi R. Manichaikul A. Martin N.G. Mathur R. Matoba N. McArdle P.F. McGue M. McQueen M.B. Medland S.E. Metspalu A. Meyers D.A. Millwood I.Y. Mitchell B.D. Mohlke K.L. Moll M. Montasser M.E. Morrison A.C. Mulas A. Nielsen J.B. North K.E. Oelsner E.C. Okada Y. Orrù V. Palmer N.D. Palviainen T. Pandit A. Park S.L. Peters U. Peters A. Peyser P.A. Polderman T.J.C. Rafaels N. Redline S. Reed R.M. Reiner A.P. Rice J.P. Rich S.S. Richmond N.E. Roan C. Rotter J.I. Rueschman M.N. Runarsdottir V. Saccone N.L. Schwartz D.A. Shadyab A.H. Shi J. Shringarpure S.S. Sicinski K. Skogholt A.H. Smith J.A. Smith N.L. Sotoodehnia N. Stallings M.C. Stefansson H. Stefansson K. Stitzel J.A. Sun X. Syed M. Tal-Singer R. Taylor A.E. Taylor K.D. Telen M.J. Thai K.K. Tiwari H. Turman C. Tyrfingsson T. Wall T.L. Walters R.G. Weir D.R. Weiss S.T. White W.B. Whitfield J.B. Wiggins K.L. Willemsen G. Willer C.J. Winsvold B.S. Xu H. Yanek L.R. Yin J. Young K.L. Young K.A. Yu B. Zhao W. Zhou W. Zöllner S. Zuccolo L. Batini C. Bergen A.W. Bierut L.J. David S.P. Gagliano Taliun S.A. Hancock D.B. Jiang B. Munafò M.R. Thorgeirsson T.E. Liu D.J. Vrieze S. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 2022 612 7941 720 724 10.1038/s41586‑022‑05477‑4 36477530
    [Google Scholar]
  45. Guo X. Zhang K. Sun Y. Dong R. Causal association of chronic venous insufficiency and cardiovascular diseases: a univariable and multivariable mendelian randomization study. Rev. Cardiovasc. Med. 2024 25 10 357 10.31083/j.rcm2510357 39484123
    [Google Scholar]
  46. Jiang C. Melles R.B. Sangani P. Hoffmann T.J. Hysi P.G. Glymour M.M. Jorgenson E. Lachke S.A. Choquet H. Association of Behavioral and Clinical Risk Factors With Cataract: A two-sample mendelian randomization study. Invest. Ophthalmol. Vis. Sci. 2023 64 10 19 10.1167/iovs.64.10.19 37459064
    [Google Scholar]
  47. Tan A.G. Kifley A. Flood V.M. Holliday E.G. Scott R.J. Cumming R.G. Mitchell P. Wang J.J. Evaluating the associations between obesity and age-related cataract: a Mendelian randomization study. Am. J. Clin. Nutr. 2019 110 4 969 976 10.1093/ajcn/nqz167 31401654
    [Google Scholar]
  48. Mukesh B.N.L.A. Dimitrov P.N. Ahmed S. Taylor H.R. McCarty C.A. Development of cataract and associated risk factors: The Visual Impairment Project. Arch. Ophthalmol. 2006 124 124 6
    [Google Scholar]
  49. Ye J.H.J. Wang C. Wu H. Shi X. Zhang H. Xie J. Lee S.Y. Smoking and risk of age-related cataract: A meta-analysis. Invest. Ophthalmol. Vis. Sci. 2012 53 7 11
    [Google Scholar]
  50. Chua S.Y.L. Luben R.N. Hayat S. Broadway D.C. Khaw K.T. Warwick A. Britten A. Day A.C. Strouthidis N. Patel P.J. Khaw P.T. Foster P.J. Khawaja A.P. Eye U.K.B. Vision C. Alcohol consumption and incident cataract surgery in two large UK cohorts. Ophthalmology 2021 128 6 837 847 10.1016/j.ophtha.2021.02.007 33571551
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073425549250926170012
Loading
/content/journals/cchts/10.2174/0113862073425549250926170012
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test