Skip to content
2000
image of Mechanism of Herbal Pairs Modulating Endogenous Melatonin to Ameliorate Sleep Disorders: Data Mining, Network Pharmacology and Meta-Analysis

Abstract

Introduction

Sleep disorders (SD) affect approximately 25% of the global population. Traditional Chinese Medicine (TCM) formulas have been shown to alleviate SD by modulating endogenous melatonin. This study used data mining, network pharmacology, and meta-analysis to identify key herbal pairs from TCM formulas and the mechanism of action.

Methods

Literature was retrieved from PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang Data Information Site, China Science and Technology Journal Database, and SinoMed. R was used for frequency and association rule analysis, SPSS for clustering, and Cytoscape, STRING, Gene Ontology, and KEGG enrichment analyses were utilized to explore targets, protein-protein interactions, and pathways. A meta-analysis using the Metan command was performed to assess the optimal herbal pairs for SD treatment.

Results

Data mining identified 77 commonly used herbs, revealing four advantageous herbal pairs: . Network pharmacology showed that (PRA-BR)-SD, (PA-BR)-SD, (CR-CC)-SD, and (ZSS-MC)-SD targeted CACNA1D, GRIN2A, AGT, and ATP1A1 prion diseases, nicotine addiction, neuroactive ligand-receptor interaction, and cardiac muscle contraction pathways, respectively.

Discussion

Research shows that CACNA1D could regulate Ca2+ inward flow, avoid mitochondrial dysfunction in prion diseases, and reduce ROS generation, thus indirectly maintaining MT levels and sleep. GRIN2A as an amygdala hub gene closely related to daily smoking, combining brain transcriptome analysis and tobacco consumption GWAS data. The sleep regulation mechanism of MT relies on the neuroactive ligand-receptor pathway. As a neuroactive ligand, MT triggers sleep-promoting physiological responses by activating the G-protein-coupled receptors MT and MT and transmitting “night” signals to the relevant neural networks. Insufficient MT secretion or circadian rhythm disruption might lead to abnormal blood pressure rhythms accompanied by sympathetic overactivation, increasing the risk of insomnia and cardiovascular disease. ATP1A1 is a key molecule in the maintenance of electrochemical gradients in cardiac myocytes through the modulation of the Na+/K+ homeostasis affects myocardial excitability, calcium kinetics, and contractile function.

Conclusion

Meta-analysis and network pharmacology suggest that the PA-BR pair might offer superior efficacy by modulating membrane potential and nicotine addiction pathways, targeting GRIN2A, GRIN1, GRIN3A, and GRIN2B to regulate melatonin levels.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073393993250930120235
2025-10-20
2025-12-23
Loading full text...

Full text loading...

References

  1. Pavlova K. M.; Latreille, V. Sleep disorders. Am. J. Med. 2019 132 3 292 299 10.1016/j.amjmed.2018.09.021 30292731
    [Google Scholar]
  2. Zielinski M.R. McKenna J.T. McCarley R.W. Functions and mechanisms of sleep. AIMS Neurosci. 2016 3 1 67 104 10.3934/Neuroscience.2016.1.67 28413828
    [Google Scholar]
  3. Chen C.F. Clinical research progress of insomnia treated by traditional Chinese medicine. Clin. J. Tradit. Chin. Med. 2019 31 09 1776 1780
    [Google Scholar]
  4. Sofi F. Cesari F. Casini A. Macchi C. Abbate R. Gensini G.F. Insomnia and risk of cardiovascular disease: A meta-analysis. Eur. J. Prev. Cardiol. 2014 21 1 57 64 10.1177/2047487312460020 22942213
    [Google Scholar]
  5. Cappuccio F.P. Cooper D. D’Elia L. Strazzullo P. Miller M.A. Sleep duration predicts cardiovascular outcomes: A systematic review and meta-analysis of prospective studies. Eur. Heart J. 2011 32 12 1484 1492 10.1093/eurheartj/ehr007 21300732
    [Google Scholar]
  6. Torjesen I. Deaths from cardiovascular disease are four times higher in eastern Europe than western Europe. BMJ 2015 351 h4606 10.1136/bmj.h4606 26316627
    [Google Scholar]
  7. Shamim S.A. Warriach Z.I. Tariq M.A. Rana K.F. Malik B.H. Insomnia: Risk factor for neurodegenerative diseases. Cureus 2019 11 10 e6004 31807391
    [Google Scholar]
  8. Owen J.E. Veasey S.C. Impact of sleep disturbances on neurodegeneration: Insight from studies in animal models. Neurobiol. Dis. 2020 139 104820 10.1016/j.nbd.2020.104820 32087293
    [Google Scholar]
  9. Gaugler J.E. Kane R.L. Kane R.A. Family care for older adults with disabilities: Toward more targeted and interpretable research. Int. J. Aging Hum. Dev. 2002 54 3 205 231 10.2190/FACK‑QE61‑Y2J8‑5L68 12148687
    [Google Scholar]
  10. Vaz M. Silvestre S. Alzheimer’s disease: Recent treatment strategies. Eur. J. Pharmacol. 2020 887 173554 10.1016/j.ejphar.2020.173554 32941929
    [Google Scholar]
  11. Feng Z.X. Dong H. Qu W.M. Zhang W. Oral delivered dexmedetomidine promotes and consolidates non-rapid eye movement sleep via sleep–wake regulation systems in mice. Front. Pharmacol. 2018 9 1196 10.3389/fphar.2018.01196 30568589
    [Google Scholar]
  12. Sateia M.J. Buysse D.J. Krystal A.D. Neubauer D.N. Heald J.L. Clinical practice guideline for the pharmacologic treatment of chronic insomnia in adults: An American academy of sleep medicine clinical practice guideline. J. Clin. Sleep Med. 2017 13 2 307 349 10.5664/jcsm.6470 27998379
    [Google Scholar]
  13. Wei H.F. Ye C.F. Wu Y.C. Effects of Anshen Bunao syrup on the inducible nitric-oxide synthase activity and melatonin content in brain of sleep deprivation rats. Zhongyao Xinyao Yu Linchuang Yaoli 2007 18 5 369 371 10.19378/j.issn.1003‑9783.2007.05.011
    [Google Scholar]
  14. Gao Y. Clinical observation of the efficacy of Lily and Rehmanniae Decoction in treating post-stroke Circadian sleep-arousal disorder with heart-lung yin deficiency Hunan University of Chinese Medicine 2022 03 1 104 10.27138/d.cnki.ghuzc.2022.000129
    [Google Scholar]
  15. Li L. Clinical efficacy of therapy of calming liver,activating blood and resolving phlegm for the treatment of senile insomnia and its effect on serum 5-hydroxytryptamine,dopamine and melatonin levels. J. Guangzhou Univ Tradit Chin Med. 2022 39 7 1498 1505
    [Google Scholar]
  16. Delanty N. Dichter M.A. Antioxidant therapy in neurologic disease. Arch. Neurol. 2000 57 9 1265 1270 10.1001/archneur.57.9.1265 10987892
    [Google Scholar]
  17. Reiter R.J. The melatonin rhythm: Both a clock and a calendar. Experientia 1993 49 8 654 664 10.1007/BF01923947 8395408
    [Google Scholar]
  18. Touitou Y. Melatonin and aging: Facts and artifacts. Aging 1997 9 4 11 [Suppl. 9358862
    [Google Scholar]
  19. Reiter R.J. The pineal gland and melatonin in relation to aging: A summary of the theories and of the data. Exp. Gerontol. 1995 30 3-4 199 212 10.1016/0531‑5565(94)00045‑5 7556503
    [Google Scholar]
  20. Manchester L.C. Coto-Montes A. Boga J.A. Andersen L.P.H. Zhou Z. Galano A. Vriend J. Tan D.X. Reiter R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 2015 59 4 403 419 10.1111/jpi.12267 26272235
    [Google Scholar]
  21. Gilgun-Sherki Y. Melamed E. Offen D. Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 2001 40 8 959 975 10.1016/S0028‑3908(01)00019‑3 11406187
    [Google Scholar]
  22. Lahiri D.K. Chen D. Lahiri P. Melatonin, metals, and gene expression: Implications in aging and neurodegenerative disorders. Ann. N. Y. Acad. Sci. 2004 1035 216 230 10.1196/annals.1332.014
    [Google Scholar]
  23. Vecchierini MF Kilic-Huck U Quera-Salva MA Melatonin (MEL) and its use in neurological diseases and insomnia: Recommendations of the French Medical and Research Sleep Society (SFRMS). Rev. Neurol. 2020
    [Google Scholar]
  24. Cardinali D.P. Melatonin as a chronobiotic/cytoprotector: Its role in healthy aging. Biol. Rhythm Res. 2019 50 1 28 45 10.1080/09291016.2018.1491200
    [Google Scholar]
  25. Riemersma-van der Lek R.F. Swaab D.F. Twisk J. Hol E.M. Hoogendijk W.J. Van Someren E.J. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: A randomized controlled trial. JAMA 2008 299 22 2642 2655 10.1001/jama.299.22.2642 18544724
    [Google Scholar]
  26. Adam Daulatzai M. Pharmacotherpy and Alzheimer’s disease: The M-drugs (melatonin, minocycline, modafinil, and memantine) approach. Curr. Pharm. Des. 2016 22 16 2411 2430 10.2174/1381612822666160203142111 26845126
    [Google Scholar]
  27. Chen J.D. Hong Y.Z. Research progress and thinking on traditional Chinese medicine pairs. J. Shanxi Univ Chin Med. 2007 04 56 57
    [Google Scholar]
  28. Gao-tang Z. The progress and thinking of Chinese medicine pairs Nearly 20 years. J. Sichuan Tradit Chin Med. 2016 34 09 221 223
    [Google Scholar]
  29. Yang H.Z. Gong Y.P. Research progress and thinking on traditional Chinese medicine pairs. Chin J. Integr Tradit West Med. 2010 30 02 218 220 20462057
    [Google Scholar]
  30. Wang K. Yin Y.J. Li Y.W. Application of data mining methods in the research of medical records of traditional chinese medicine. World Chin Med. 2021 16 11 1659 1664
    [Google Scholar]
  31. Zhai JQ Guo J Song DR The application of data mining methods in summarizing the clinical experience of renowned traditional Chinese medicine practitioners. Renowned Doctor 2020 04 66
    [Google Scholar]
  32. Yi Z. Jia Q. Lin Y. Wang Y. Cong J. Gu Z. Ling J. Cai G. Mechanism of Elian granules in the treatment of precancerous lesions of gastric cancer in rats through the MAPK signalling pathway based on network pharmacology. Pharm. Biol. 2022 60 1 87 95 10.1080/13880209.2021.2017980 34962453
    [Google Scholar]
  33. Niu B. Wei S. Sun J. Zhao H. Wang B. Chen G. Deciphering the molecular mechanism of tetrandrine in inhibiting hepatocellular carcinoma and increasing sorafenib sensitivity by combining network pharmacology and experimental evaluation. Pharm. Biol. 2022 60 1 75 86 10.1080/13880209.2021.2017468 34962429
    [Google Scholar]
  34. Zhai Z. Zhu Z. Kong F. Xie D. Cai J. Dai J. Zhong Y. Gan Y. Zheng S. Xu Y. Sun T. Distinguish the characteristic mechanism of 3 drug pairs of corydalis rhizome in ameliorating angina pectoris: Network pharmacology and meta-analysis. Nat. Prod Commun 2023 18 1 1934578X231152309. 10.1177/1934578X231152309
    [Google Scholar]
  35. Bradburn M.J. Deeks J.J. Altman D.G. metan-an alternative meta-analysis command. Stata Tech. Bull 1999 8 44 Available from https://ideas.repec.org/a/tsj/stbull/y1999v8i44sge24.html
  36. Rouse B. Cipriani A. Shi Q. Coleman A.L. Dickersin K. Li T. Network meta-analysis for clinical practice guidelines: A case study on first-line medical therapies for primary open-angle glaucoma. Ann. Intern. Med. 2016 164 10 674 682 10.7326/M15‑2367 27088551
    [Google Scholar]
  37. Zhang X.L. Zhu Q.Q. Kang L.N. Li X.L. Xu B. Mid- and long-term outcome comparisons of everolimus-eluting bioresorbable scaffolds versus everolimus-eluting metallic stents. Ann. Intern. Med. 2017 167 9 642 654 10.7326/M17‑1101 29049539
    [Google Scholar]
  38. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  39. Xu H.Y. Zhang Y.Q. Liu Z.M. Chen T. Lv C.Y. Tang S.H. Zhang X.B. Zhang W. Li Z.Y. Zhou R.R. Yang H.J. Wang X.J. Huang L.Q. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019 47 D1 D976 D982 10.1093/nar/gky987 30365030
    [Google Scholar]
  40. Liu Z. Guo F. Wang Y. Li C. Zhang X. Li H. Diao L. Gu J. Wang W. Li D. He F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci. Rep. 2016 6 1 21146 10.1038/srep21146 26879404
    [Google Scholar]
  41. Safran M. Dalah I. Alexander J. Rosen N. Iny Stein T. Shmoish M. Nativ N. Bahir I. Doniger T. Krug H. Sirota-Madi A. Olender T. Golan Y. Stelzer G. Harel A. Lancet D. GeneCards version 3: The human gene integrator. Database 2010 2010 0 baq020 10.1093/database/baq020 20689021
    [Google Scholar]
  42. Wang Y. Zhang S. Li F. Zhou Y. Zhang Y. Wang Z. Zhang R. Zhu J. Ren Y. Tan Y. Qin C. Li Y. Li X. Chen Y. Zhu F. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020 48 D1 D1031 D1041 31691823
    [Google Scholar]
  43. Piñero J. Bravo À. Queralt-Rosinach N. Gutiérrez-Sacristán A. Deu-Pons J. Centeno E. García-García J. Sanz F. Furlong L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 45 D1 D833 D839 10.1093/nar/gkw943 27924018
    [Google Scholar]
  44. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  45. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  46. Zheng S. Baak J.P. Li S. Xiao W. Ren H. Yang H. Gan Y. Wen C. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in Corona virus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW. Phytomedicine 2020 79 153336 10.1016/j.phymed.2020.153336 32949888
    [Google Scholar]
  47. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  48. Ge H. Zhang B. Li T. Yu Y. Men F. Zhao S. Liu J. Zhang T. Potential targets and the action mechanism of food-derived dipeptides on colitis: Network pharmacology and bioinformatics analysis. Food Funct. 2021 12 13 5989 6000 10.1039/D1FO00469G 34037039
    [Google Scholar]
  49. Zdrazil B. Richter L. Brown N. Guha R. Moving targets in drug discovery. Sci. Rep. 2020 10 1 20213 10.1038/s41598‑020‑77033‑x 33214619
    [Google Scholar]
  50. Lü X. Bao X. Huang Y. Qu Y. Lu H. Lu Z. Mechanisms of cytotoxicity of nickel ions based on gene expression profiles. Biomaterials 2009 30 2 141 148 10.1016/j.biomaterials.2008.09.011 18922574
    [Google Scholar]
  51. Roncaglia P. Martone M.E. Hill D.P. Berardini T.Z. Foulger R.E. Imam F.T. Drabkin H. Mungall C.J. Lomax J. The gene ontology (GO) cellular component ontology: Integration with SAO (subcellular anatomy ontology) and other recent developments. J. Biomed. Semantics 2013 4 1 20 10.1186/2041‑1480‑4‑20 24093723
    [Google Scholar]
  52. Kanehisa M. Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  53. Kanehisa M. Furumichi M. Tanabe M. Sato Y. Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 45 D1 D353 D361 10.1093/nar/gkw1092 27899662
    [Google Scholar]
  54. Zhou Y. Zhou B. Pache L. Chang M. Khodabakhshi A.H. Tanaseichuk O. Benner C. Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  55. Shorten A. Shorten B. What is meta-analysis? Evid. Based Nurs. 2013 16 1 3 4 10.1136/eb‑2012‑101118 23178310
    [Google Scholar]
  56. Akobeng A.K. Understanding systematic reviews and meta-analysis. Arch. Dis. Child. 2005 90 8 845 848 10.1136/adc.2004.058230 16040886
    [Google Scholar]
  57. Harris RJ Deeks JJ Altman DG Metan: Fixed- and random-effects meta-analysis. Stata J. 2008 8 1 3 28
    [Google Scholar]
  58. Irwin M.R. Witarama T. Caudill M. Olmstead R. Breen E.C. Sleep loss activates cellular inflammation and signal transducer and activator of transcription (STAT) family proteins in humans. Brain Behav. Immun. 2015 47 86 92 10.1016/j.bbi.2014.09.017 25451613
    [Google Scholar]
  59. Möller-Levet C.S. Archer S.N. Bucca G. Laing E.E. Slak A. Kabiljo R. Lo J.C.Y. Santhi N. von Schantz M. Smith C.P. Dijk D.J. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc. Natl. Acad. Sci. USA 2013 110 12 E1132 E1141 10.1073/pnas.1217154110 23440187
    [Google Scholar]
  60. Archer S.N. Laing E.E. Möller-Levet C.S. van der Veen D.R. Bucca G. Lazar A.S. Santhi N. Slak A. Kabiljo R. von Schantz M. Smith C.P. Dijk D.J. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc. Natl. Acad. Sci. USA 2014 111 6 E682 E691 10.1073/pnas.1316335111 24449876
    [Google Scholar]
  61. Verhoeven W.M.A. Egger J.I.M. Jongbloed R.E. Meijer van Putten M. de Bruijn-van Zandwijk M. Zwemer A.S. Pfundt R. Willemsen M.H. A de novo CTNNB1 novel splice variant in an adult female with severe intellectual disability. Int. Med. Case Rep. J. 2020 13 487 492 10.2147/IMCRJ.S270487 33116939
    [Google Scholar]
  62. Ho S.K.L. Tsang M.H.Y. Lee M. CTNNB1 neurodevelopmental disorder. In: GeneReviews is a registered trademark of the University of Washington. Seattle University of Washington 1993
    [Google Scholar]
  63. Miroševič Š. Khandelwal S. Sušjan P. Žakelj N. Gosar D. Forstnerič V. Lainšček D. Jerala R. Osredkar D. Correlation between phenotype and genotype in CTNNB1 syndrome: A systematic review of the literature. Int. J. Mol. Sci. 2022 23 20 12564 10.3390/ijms232012564 36293418
    [Google Scholar]
  64. Zheng X. Sehgal A. AKT and TOR signaling set the pace of the circadian pacemaker. Curr. Biol. 2010 20 13 1203 1208 10.1016/j.cub.2010.05.027 20619819
    [Google Scholar]
  65. Luciano A.K. Santana J.M. Velazquez H. Sessa W.C. Akt1 controls the timing and amplitude of vascular circadian gene expression. J. Biol. Rhythms 2017 32 3 212 221 10.1177/0748730417704534 28452287
    [Google Scholar]
  66. Motta M. Pannone L. Pantaleoni F. Bocchinfuso G. Radio F.C. Cecchetti S. Ciolfi A. Di Rocco M. Elting M.W. Brilstra E.H. Boni S. Mazzanti L. Tamburrino F. Walsh L. Payne K. Fernández-Jaén A. Ganapathi M. Chung W.K. Grange D.K. Dave-Wala A. Reshmi S.C. Bartholomew D.W. Mouhlas D. Carpentieri G. Bruselles A. Pizzi S. Bellacchio E. Piceci-Sparascio F. Lißewski C. Brinkmann J. Waclaw R.R. Waisfisz Q. van Gassen K. Wentzensen I.M. Morrow M.M. Álvarez S. Martínez-García M. De Luca A. Memo L. Zampino G. Rossi C. Seri M. Gelb B.D. Zenker M. Dallapiccola B. Stella L. Prada C.E. Martinelli S. Flex E. Tartaglia M. Enhanced MAPK1 function causes a neurodevelopmental disorder within the RASopathy clinical spectrum. Am. J. Hum. Genet. 2020 107 3 499 513 10.1016/j.ajhg.2020.06.018 32721402
    [Google Scholar]
  67. Ribeiro D.A. Noguti J. Alvarenga T.A. Andersen M.L. Tufik S. Oshima C.T.F. The influence of sleep deprivation on expression of apoptosis regulatory proteins p53, bcl-2 and bax following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. Dent. Res. J. 2013 10 2 247 253 10.4103/1735‑3327.113360 23946744
    [Google Scholar]
  68. Rohleder N. Aringer M. Boentert M. Role of interleukin‐6 in stress, sleep, and fatigue. Ann. N. Y. Acad. Sci. 2012 1261 1 88 96 10.1111/j.1749‑6632.2012.06634.x 22823398
    [Google Scholar]
  69. Vgontzas A.N. Papanicolaou D.A. Bixler E.O. Lotsikas A. Zachman K. Kales A. Prolo P. Wong M.L. Licinio J. Gold P.W. Hermida R.C. Mastorakos G. Chrousos G.P. Circadian interleukin-6 secretion and quantity and depth of sleep. J. Clin. Endocrinol. Metab. 1999 84 8 2603 2607 10.1210/jcem.84.8.5894 10443646
    [Google Scholar]
  70. Rockstrom M.D. Chen L. Taishi P. Nguyen J.T. Gibbons C.M. Veasey S.C. Krueger J.M. Tumor necrosis factor alpha in sleep regulation. Sleep Med. Rev. 2018 40 69 78 10.1016/j.smrv.2017.10.005 29153862
    [Google Scholar]
  71. Gardini E.S. Fiacco S. Mernone L. Ehlert U. Sleep and methylation of estrogen receptor genes, ESR1 and GPER, in healthy middle-aged and older women: Findings from the women 40+ healthy aging study. Nat. Sci. Sleep 2020 12 525 536 10.2147/NSS.S256102 32801978
    [Google Scholar]
  72. Baek S.J. Ban H.J. Park S.M. Lee B. Choi Y. Baek Y. Lee S. Cha S. Circulating microRNAs as potential diagnostic biomarkers for poor sleep quality. Nat. Sci. Sleep 2021 13 1001 1012 10.2147/NSS.S311541 34234603
    [Google Scholar]
  73. Ye M. Luo G. Ye D. She M. Sun N. Lu Y.J. Zheng J. Network pharmacology, molecular docking integrated surface plasmon resonance technology reveals the mechanism of Toujie Quwen Granules against coronavirus disease 2019 pneumonia. Phytomedicine 2021 85 153401 10.1016/j.phymed.2020.153401 33191068
    [Google Scholar]
  74. Gan X. Zhong L. Shen F. Feng J. Li Y. Li S. Cai W. Xu B. Network pharmacology to explore the molecular mechanisms of Prunella vulgaris for treating hashimoto’s thyroiditis. Front. Pharmacol. 2021 12 700896 10.3389/fphar.2021.700896 34690752
    [Google Scholar]
  75. Tang S. Jing H. Huang Z. Huang T. Lin S. Liao M. Zhou J. Identification of key candidate genes in neuropathic pain by integrated bioinformatic analysis. J. Cell. Biochem. 2020 121 2 1635 1648 10.1002/jcb.29398 31535407
    [Google Scholar]
  76. Bojarskaite L. Bjørnstad D.M. Pettersen K.H. Cunen C. Hermansen G.H. Åbjørsbråten K.S. Chambers A.R. Sprengel R. Vervaeke K. Tang W. Enger R. Nagelhus E.A. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat. Commun. 2020 11 1 3240 10.1038/s41467‑020‑17062‑2 32632168
    [Google Scholar]
  77. Ayoub A. Aumann D. Hörschelmann A. Kouchekmanesch A. Paul P. Born J. Marshall L. Differential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activity. Sleep 2013 36 6 905 911 10.5665/sleep.2722 23729934
    [Google Scholar]
  78. Geng X. Li T.L. Progress on chemical composition and pharmacological activities of semen zizyphi spinosae. Acta. Chinese Medicine and Pharmacology 2016 44 05 84 86
    [Google Scholar]
  79. Zhang T. Zhang Y. Wang W.T. Research progress on flavonoid components and their pharmacological effects in Zizyphi Spinosi Semen. Tianjin Pharm. 2018 30 01 69 74
    [Google Scholar]
  80. Zhu X.C. Liu X. Wang X.L. Exploring the historical evolution of the processing methods of Zizyphi Spinosae Semen based on the principle of “enhancing efficacy through processing” and its material foundation for sedative and hypnotic effects. Zhong Yao Cai 2017 40 08 1991 1995 10.13863/j.issn1001‑4454.2017.08.057
    [Google Scholar]
  81. Yuan Y.Y. Sun C.Y. Xu X.M. Research progress in the pharmacological mechanism of active ingredients in semen ziziphi spinosae. China Pharmacist 2017 20 09 1622 1627
    [Google Scholar]
  82. Wang L.E. Cui X.Y. Cui S.Y. Cao J.X. Zhang J. Zhang Y.H. Zhang Q.Y. Bai Y.J. Zhao Y.Y. Potentiating effect of spinosin, a C-glycoside flavonoid of Semen Ziziphi spinosae, on pentobarbital-induced sleep may be related to postsynaptic 5-HT1A receptors. Phytomedicine 2010 17 6 404 409 10.1016/j.phymed.2010.01.014 20171860
    [Google Scholar]
  83. Zhang S.J. Pang W.J. Wang L. Analysis of pharmacological mechanism of radix paeoniae alba based on network pharmacology. Asia-Pacific Traditional Medicine 2020 16 09 162 167
    [Google Scholar]
  84. Zhang Y. Ming L. Wang Y. The anticonvulsant effects of total glucosides of Paeonia. Zhongguo Yaolixue Tongbao 1994 05 372 374
    [Google Scholar]
  85. Li T. Li X. Tian J.S. Study on antidepressant effect of Radix Paeoniae AlbaBased on 1H-NMR hepatic metabolomics. Acta. Chinese Medicine and Pharmacology 2021 49 08 17 26 10.19664/j.cnki.1002‑2392.210182
    [Google Scholar]
  86. Nie S.Q. Pharmacological characteristics of herbal preparations (20): Screening of natural precursor drugs in Polygala tenuifolia. Int. J. Tradit. Chin. Med. 1996 06 39 40
    [Google Scholar]
  87. Liu J. Guo X. Huang N.N. Study on efficacy network of Chaihu Guizhi Ganjiang Decoction in treating insomnia. Chin. Tradit. Herbal Drugs 2019 50 21 5145 5153
    [Google Scholar]
  88. Zhu S. Duan H. Liu Y. Li G. Liu Y. Huang M. Chen X. Xu Y. Neuroprotective effects and mechanism of saikosaponin A on acute spinal cord injury in rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2017 31 7 825 829 29798527
    [Google Scholar]
  89. Yang W.L. Liu Y.R. Hao L. Analysis of the medication rule of traditional chinese medicine for insomnia based on data mining. Clin. J. Tradit. Chin. Med. 2022 34 09 1671 1676 10.13702/j.1000‑0607.20210096 35218630
    [Google Scholar]
  90. Wang M. Patent technology analysis of the main active components and medical applications of Glycyrrhiza uralensis Fisch. China Science and Technology Information 2019 07 19 21
    [Google Scholar]
  91. Ditmer M. Gabryelska A. Turkiewicz S. Białasiewicz P. Małecka-Wojciesko E. Sochal M. Sleep problems in chronic inflammatory diseases: Prevalence, treatment, and new perspectives: A narrative review. J. Clin. Med. 2021 11 1 67 10.3390/jcm11010067 35011807
    [Google Scholar]
  92. Li X.D. Study on the regularity of insomnia prescription based on data mining; Shanxi University of Chinese Medicine 2021 09 176 10.27820/d.cnki.gszxy.2021.000028
    [Google Scholar]
  93. Sheng Y.N. The study of sedative hypnotic active ingredients of jiaotai pill; Guangzhou University of Chinese Medicine 2010 11 1 55
    [Google Scholar]
  94. Zhou Y. Li T. Zhu S. Gong W. Qin X. Du G. Study on antidepressant mechanism of Radix Bupleuri – Radix Paeoniae Alba herb pair by metabonomics combined with 1H nuclear magnetic resonance and ultra-high-performance liquid chromatography-tandem mass spectrometry detection technology. J. Pharm. Pharmacol. 2021 73 9 1262 1273 10.1093/jpp/rgab061 33885788
    [Google Scholar]
  95. Wang X. Summary of Professor Zhao Jianjun’s experience in treating insomnia based on data mining system. CHANGCHUN UNIVERSITY OF CHINESE MEDICINE 2020
    [Google Scholar]
  96. Vandenberghe C. St-Pierre V. Pierotti T. Fortier M. Castellano C.A. Cunnane S.C. Tricaprylin alone increases plasma ketone response more than coconut oil or other medium-chain triglycerides: An acute crossover study in healthy adults. Curr. Dev. Nutr. 2017 1 4 e000257 10.3945/cdn.116.000257 29955698
    [Google Scholar]
  97. Spector R. Fatty acid transport through the blood-brain barrier. J. Neurochem. 1988 50 2 639 643 10.1111/j.1471‑4159.1988.tb02958.x 3335863
    [Google Scholar]
  98. DeWolfe J.L. Malow B. Huguenard J. Stickgold R. Bourgeois B. Holmes G.L. Sleep and epilepsy: A summary of the 2011 merritt-putnam symposium. Epilepsy Curr. 2013 13 1 42 49 10.5698/1535‑7511‑13.1.42 23447740
    [Google Scholar]
  99. Cicolin A. Magliola U. Giordano A. Terreni A. Bucca C. Mutani R. Effects of levetiracetam on nocturnal sleep and daytime vigilance in healthy volunteers. Epilepsia 2006 47 1 82 85 10.1111/j.1528‑1167.2006.00376.x 16417535
    [Google Scholar]
  100. Oishi K. Yamamoto S. Oike H. Ohkura N. Taniguchi M. Cinnamic acid shortens the period of the circadian clock in mice. Biochem. Biophys. Rep. 2017 9 232 237 10.1016/j.bbrep.2016.12.008 28956010
    [Google Scholar]
  101. Ralph M.R. Shi S. Johnson C.H. Houdek P. Shrestha T.C. Crosby P. O’Neill J.S. Sládek M. Stinchcombe A.R. Sumová A. Targeted modification of the Per2 clock gene alters circadian function in mPer2luciferase (mPer2Luc) mice. PLOS Comput. Biol. 2021 17 5 e1008987 10.1371/journal.pcbi.1008987 34048425
    [Google Scholar]
  102. Martin-Burgos B. Wang W. William I. Tir S. Mohammad I. Javed R. Smith S. Cui Y. Arzavala J. Mora D. Smith C.B. van der Vinne V. Molyneux P.C. Miller S.C. Weaver D.R. Leise T.L. Harrington M.E. Methods for detecting PER2:LUCIFERASE Bioluminescence rhythms in freely moving mice. J. Biol. Rhythms 2022 37 1 78 93 10.1177/07487304211062829 34873943
    [Google Scholar]
  103. Resmi M. Nyi Mekar S. Sandra M. Molecule attachment and prediction of ADMET compounds in cinnamomum burmannii on orexin receptor as anti-insomnia. Pharmacogn. J. 2022 14 3
    [Google Scholar]
  104. Yogeeswari P. Sriram D. Betulinic acid and its derivatives: A review on their biological properties. Curr. Med. Chem. 2005 12 6 657 666 10.2174/0929867053202214 15790304
    [Google Scholar]
  105. Lee S. Jung W. Eom S. Yeom H.D. Park H-D. Lee J.H. Molecular regulation of betulinic acid on α3β4 nicotinic acetylcholine receptors. Molecules 2021 26 9 2659 10.3390/molecules26092659
    [Google Scholar]
  106. Karlin A. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 2002 3 2 102 114 10.1038/nrn731 11836518
    [Google Scholar]
  107. Reitstetter R. Lukas R.J. Gruener R. Dependence of nicotinic acetylcholine receptor recovery from desensitization on the duration of agonist exposure. J. Pharmacol. Exp. Ther. 1999 289 2 656 660 10.1016/S0022‑3565(24)38184‑4 10215636
    [Google Scholar]
  108. Duga S. Soldà G. Asselta R. Bonati M.T. Dalprà L. Malcovati M. Tenchini M.L. Characterization of the genomic structure of the human neuronal nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster and identification of novel intragenic polymorphisms. J. Hum. Genet. 2001 46 11 640 648 10.1007/s100380170015 11721883
    [Google Scholar]
  109. Niwa Y. Kanda G.N. Yamada R.G. Shi S. Sunagawa G.A. Ukai-Tadenuma M. Fujishima H. Matsumoto N. Masumoto K. Nagano M. Kasukawa T. Galloway J. Perrin D. Shigeyoshi Y. Ukai H. Kiyonari H. Sumiyama K. Ueda H.R. Muscarinic acetylcholine receptors Chrm1 and Chrm3 are essential for REM sleep. Cell Rep. 2018 24 9 2231 2247.e7 10.1016/j.celrep.2018.07.082 30157420
    [Google Scholar]
  110. Singh A. Gebhart M. Fritsch R. Sinnegger-Brauns M.J. Poggiani C. Hoda J.C. Engel J. Romanin C. Striessnig J. Koschak A. Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain. J. Biol. Chem. 2008 283 30 20733 20744 10.1074/jbc.M802254200 18482979
    [Google Scholar]
  111. Pinggera A. Striessnig J. Ca v 1.3 (CACNA1D) L‐type Ca 2+ channel dysfunction in CNS disorders. J. Physiol. 2016 594 20 5839 5849 10.1113/JP270672 26842699
    [Google Scholar]
  112. Tatsuki F. Sunagawa G.A. Shi S. Susaki E.A. Yukinaga H. Perrin D. Sumiyama K. Ukai-Tadenuma M. Fujishima H. Ohno R. Tone D. Ode K.L. Matsumoto K. Ueda H.R. Involvement of Ca2+-dependent hyperpolarization in sleep duration in mammals. Neuron 2016 90 1 70 85 10.1016/j.neuron.2016.02.032 26996081
    [Google Scholar]
  113. Wang Q. Zhu D. Ping S. Li C. Pang K. Zhu S. Zhang J. Comai S. Sun J. Melatonin recovers sleep phase delayed by MK‐801 through the melatonin MT 2 receptor‐ Ca 2+ ‐CaMKII‐CREB pathway in the ventrolateral preoptic nucleus. J. Pineal Res. 2020 69 3 e12674 10.1111/jpi.12674 32535982
    [Google Scholar]
  114. Burgdorf J.S. Vitaterna M.H. Olker C.J. Song E.J. Christian E.P. Sørensen L. Turek F.W. Madsen T.M. Khan M.A. Kroes R.A. Moskal J.R. NMDAR activation regulates the daily rhythms of sleep and mood. Sleep 2019 42 10 zsz135 10.1093/sleep/zsz135 31504971
    [Google Scholar]
  115. Campbell I.G. Feinberg I. NREM delta stimulation following MK-801 is a response of sleep systems. J. Neurophysiol. 1996 76 6 3714 3720 10.1152/jn.1996.76.6.3714 8985869
    [Google Scholar]
  116. Srivastava U. Aromolaran A.S. Fabris F. Lazaro D. Kassotis J. Qu Y. Boutjdir M. Novel function of α 1D L-type calcium channel in the atria. Biochem. Biophys. Res. Commun. 2017 482 4 771 776 10.1016/j.bbrc.2016.11.109 27884747
    [Google Scholar]
  117. Mangoni M.E. Couette B. Bourinet E. Platzer J. Reimer D. Striessnig J. Nargeot J. Functional role of L-type Ca v 1.3 Ca 2+ channels in cardiac pacemaker activity. Proc. Natl. Acad. Sci. USA 2003 100 9 5543 5548 10.1073/pnas.0935295100 12700358
    [Google Scholar]
  118. Reinbothe T.M. Alkayyali S. Ahlqvist E. Tuomi T. Isomaa B. Lyssenko V. Renström E. The human L-type calcium channel Cav1.3 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia 2013 56 2 340 349 10.1007/s00125‑012‑2758‑z 23229155
    [Google Scholar]
  119. Namkung Y. Skrypnyk N. Jeong M.J. Lee T. Lee M.S. Kim H.L. Chin H. Suh P.G. Kim S.S. Shin H.S. Requirement for the L-type Ca2+ channel α1D subunit in postnatal pancreatic β cell generation. J. Clin. Invest. 2001 108 7 1015 1022 10.1172/JCI200113310 11581302
    [Google Scholar]
  120. Sutcu R. Yonden Z. Yilmaz A. Delibas N. Melatonin increases NMDA receptor subunits 2A and 2B concentrations in rat hippocampus. Mol. Cell. Biochem. 2006 283 1-2 101 105 10.1007/s11010‑006‑2385‑4 16444591
    [Google Scholar]
  121. Zhang W. Chen X. Du Z. Mao X. Gao R. Chen Z. Wang H. Zhang G. Zhang N. Li H. Song Y. Chang L. Wu Y. Knockdown of astrocytic Grin2a exacerbated sleep deprivation-induced cognitive impairments and elevation of amyloid-beta. Sleep Med. 2022 100 280 290 10.1016/j.sleep.2022.08.021 36148760
    [Google Scholar]
  122. Conroy J. McGettigan P.A. McCreary D. Shah N. Collins K. Parry-Fielder B. Moran M. Hanrahan D. Deonna T.W. Korff C.M. Webb D. Ennis S. Lynch S.A. King M.D. Towards the identification of a genetic basis for L andau‐ K leffner s yndrome. Epilepsia 2014 55 6 858 865 10.1111/epi.12645 24828792
    [Google Scholar]
  123. Lee Y.M. Kang H.C. Lee J.S. Kim S.H. Kim E.Y. Lee S.K. Slama A. Kim H.D. Mitochondrial respiratory chain defects: Underlying etiology in various epileptic conditions. Epilepsia 2008 49 4 685 690 10.1111/j.1528‑1167.2007.01522.x 18266755
    [Google Scholar]
  124. Brand E. Chatelain N. Paillard F. Tiret L. Visvikis S. Lathrop M. Soubrier F. Demenais F. Detection of putative functional angiotensinogen (AGT) gene variants controlling plasma AGT levels by combined segregation-linkage analysis. Eur. J. Hum. Genet. 2002 10 11 715 723 10.1038/sj.ejhg.5200874 12404103
    [Google Scholar]
  125. Lam S.Y. Liu Y. Ng K.M. Liong E.C. Tipoe G.L. Leung P.S. Fung M.L. Upregulation of a local renin–angiotensin system in the rat carotid body during chronic intermittent hypoxia. Exp. Physiol. 2014 99 1 220 231 10.1113/expphysiol.2013.074591 24036592
    [Google Scholar]
  126. Jiang W. He H. Yang Z. The angiotensinogen gene polymorphism is associated with heart failure among Asians. Sci. Rep. 2014 4 1 4207 10.1038/srep04207 24572548
    [Google Scholar]
  127. Liang X. Qiu J. Liu X. Li X. Zhao S. Wang J. Ma Y. Gao H. Polymorphism of angiotensinogen gene M235T in myocardial infarction and brain infarction: A meta-analysis. Gene 2013 529 1 73 79 10.1016/j.gene.2013.07.095 23933419
    [Google Scholar]
  128. Rani B. Kumar A. Bahl A. Sharma R. Prasad R. Khullar M. Renin–angiotensin system gene polymorphisms as potential modifiers of hypertrophic and dilated cardiomyopathy phenotypes. Mol. Cell. Biochem. 2017 427 1-2 1 11 10.1007/s11010‑016‑2891‑y 28120210
    [Google Scholar]
  129. Wang H. Teng Y. Wang K. Xia Z. Tian Y. Li C. The M235T polymorphism in the angiotensinogen gene and atrial fibrillation: A meta-analysis. J. Renin Angiotensin Aldosterone Syst. 2015 16 3 647 652 10.1177/1470320313513482 25172907
    [Google Scholar]
  130. Hu P.Y. Wang Y.W. Pang X.H. Wang H.W. T174M polymorphism in the angiotensinogen gene and risk of myocardial infarction: A meta-analysis. Genet. Mol. Res. 2015 14 2 3767 3774 10.4238/2015.April.22.5 25966146
    [Google Scholar]
  131. Liao X. Yang Z. Peng D. Dai H. Lei Y. Zhao Q. Han Y. Wang W. Association of T174M polymorphism of angiotensinogen gene with essential hypertension: A meta-analysis. Genet. Mol. Biol. 2014 37 3 473 479 10.1590/S1415‑47572014000400001 25249768
    [Google Scholar]
  132. Wang W.Z. Association between T174M polymorphism in the angiotensinogen gene and risk of coronary artery disease: A meta-analysis. J. Geriatr. Cardiol. 2013 10 1 59 65 23610575
    [Google Scholar]
  133. Giacchetti G. Faloia E. Sardu C. Camilloni M.A. Mariniello B. Gatti C. Garrapa G.G.M. Guerrieri M. Mantero F. Gene expression of angiotensinogen in adipose tissue of obese patients. Int. J. Obes 2000 24 S2 S142 S143 (Suppl. 2) 10.1038/sj.ijo.0801305 10997636
    [Google Scholar]
  134. Lin Z. Li J. Ji T. Wu Y. Gao K. Jiang Y. ATP1A1 de novo Mutation-Related Disorders: Clinical and Genetic Features. Front Pediatr. 2021 9 657256 10.3389/fped.2021.657256 33968856
    [Google Scholar]
  135. Sun J. Zheng Y. Chen Z. Wang Y. The role of Na + ‐K + ‐ ATPase in the epileptic brain. CNS Neurosci. Ther. 2022 28 9 1294 1302 10.1111/cns.13893 35751846
    [Google Scholar]
  136. Chakravarty S. Rizvi S.I. Circadian modulation of sodium-potassium ATPase and sodium - proton exchanger in human erythrocytes: In vitro effect of melatonin. Cell. Mol. Biol. 2011 57 1 80 86 21366966
    [Google Scholar]
  137. Jahnen-Dechent W. Ketteler M. Magnesium basics. . Clin. Kidney J. 2012 5 i3 i14 Suppl. 1) 10.1093/ndtplus/sfr163 26069819
    [Google Scholar]
  138. Biondo E.D. Spontarelli K. Ababioh G. Méndez L. Artigas P. Diseases caused by mutations in the Na + /K + pump α1 gene ATP1A1. Am. J. Physiol. Cell Physiol. 2021 321 2 C394 C408 10.1152/ajpcell.00059.2021 34232746
    [Google Scholar]
  139. Levi A.J. A role for sodium/calcium exchange in the action potential shortening caused by strophanthidin in guinea pig ventricular myocytes. Cardiovasc. Res. 1993 27 3 471 481 10.1093/cvr/27.3.471 8387887
    [Google Scholar]
  140. Hayward R.P. Hamer J. Taggart P. Emanuel R. Observations on the biphasic nature of digitalis electrophysiological actions in the human right atrium. Cardiovasc. Res. 1983 17 9 533 546 10.1093/cvr/17.9.533 6627274
    [Google Scholar]
  141. Armoundas A.A. Hobai I.A. Tomaselli G.F. Winslow R.L. O’Rourke B. Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ. Res. 2003 93 1 46 53 10.1161/01.RES.0000080932.98903.D8 12805237
    [Google Scholar]
  142. Pott A. Bock S. Berger I.M. Frese K. Dahme T. Keßler M. Rinné S. Decher N. Just S. Rottbauer W. Mutation of the Na+/K+-ATPase Atp1a1a.1 causes QT interval prolongation and bradycardia in zebrafish. J. Mol. Cell. Cardiol. 2018 120 42 52 10.1016/j.yjmcc.2018.05.005 29750993
    [Google Scholar]
  143. Pfeufer A. Sanna S. Arking D.E. Müller M. Gateva V. Fuchsberger C. Ehret G.B. Orrú M. Pattaro C. Köttgen A. Perz S. Usala G. Barbalic M. Li M. Pütz B. Scuteri A. Prineas R.J. Sinner M.F. Gieger C. Najjar S.S. Kao W.H.L. Mühleisen T.W. Dei M. Happle C. Möhlenkamp S. Crisponi L. Erbel R. Jöckel K.H. Naitza S. Steinbeck G. Marroni F. Hicks A.A. Lakatta E. Müller-Myhsok B. Pramstaller P.P. Wichmann H.E. Schlessinger D. Boerwinkle E. Meitinger T. Uda M. Coresh J. Kääb S. Abecasis G.R. Chakravarti A. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 2009 41 4 407 414 10.1038/ng.362 19305409
    [Google Scholar]
  144. Arking D.E. Pulit S.L. Crotti L. van der Harst P. Munroe P.B. Koopmann T.T. Sotoodehnia N. Rossin E.J. Morley M. Wang X. Johnson A.D. Lundby A. Gudbjartsson D.F. Noseworthy P.A. Eijgelsheim M. Bradford Y. Tarasov K.V. Dörr M. Müller-Nurasyid M. Lahtinen A.M. Nolte I.M. Smith A.V. Bis J.C. Isaacs A. Newhouse S.J. Evans D.S. Post W.S. Waggott D. Lyytikäinen L.P. Hicks A.A. Eisele L. Ellinghaus D. Hayward C. Navarro P. Ulivi S. Tanaka T. Tester D.J. Chatel S. Gustafsson S. Kumari M. Morris R.W. Naluai Å.T. Padmanabhan S. Kluttig A. Strohmer B. Panayiotou A.G. Torres M. Knoflach M. Hubacek J.A. Slowikowski K. Raychaudhuri S. Kumar R.D. Harris T.B. Launer L.J. Shuldiner A.R. Alonso A. Bader J.S. Ehret G. Huang H. Kao W.H.L. Strait J.B. Macfarlane P.W. Brown M. Caulfield M.J. Samani N.J. Kronenberg F. Willeit J. Smith J.G. Greiser K.H. Meyer zu Schwabedissen H. Werdan K. Carella M. Zelante L. Heckbert S.R. Psaty B.M. Rotter J.I. Kolcic I. Polašek O. Wright A.F. Griffin M. Daly M.J. Arnar D.O. Hólm H. Thorsteinsdottir U. Denny J.C. Roden D.M. Zuvich R.L. Emilsson V. Plump A.S. Larson M.G. O’Donnell C.J. Yin X. Bobbo M. D’Adamo A.P. Iorio A. Sinagra G. Carracedo A. Cummings S.R. Nalls M.A. Jula A. Kontula K.K. Marjamaa A. Oikarinen L. Perola M. Porthan K. Erbel R. Hoffmann P. Jöckel K.H. Kälsch H. Nöthen M.M. den Hoed M. Loos R.J.F. Thelle D.S. Gieger C. Meitinger T. Perz S. Peters A. Prucha H. Sinner M.F. Waldenberger M. de Boer R.A. Franke L. van der Vleuten P.A. Beckmann B.M. Martens E. Bardai A. Hofman N. Wilde A.A.M. Behr E.R. Dalageorgou C. Giudicessi J.R. Medeiros-Domingo A. Barc J. Kyndt F. Probst V. Ghidoni A. Insolia R. Hamilton R.M. Scherer S.W. Brandimarto J. Margulies K. Moravec C.E. Greco M. F.; Fuchsberger, C.; O’Connell, J.R.; Lee, W.K.; Watt, G.C.M.; Campbell, H.; Wild, S.H.; El Mokhtari, N.E.; Frey, N.; Asselbergs, F.W.; Leach, I.M.; Navis, G.; van den Berg, M.P.; van Veldhuisen, D.J.; Kellis, M.; Krijthe, B.P.; Franco, O.H.; Hofman, A.; Kors, J.A.; Uitterlinden, A.G.; Witteman, J.C.M.; Kedenko, L.; Lamina, C.; Oostra, B.A.; Abecasis, G.R.; Lakatta, E.G.; Mulas, A.; Orrú, M.; Schlessinger, D.; Uda, M.; Markus, M.R.P.; Völker, U.; Snieder, H.; Spector, T.D.; Ärnlöv, J.; Lind, L.; Sundström, J.; Syvänen, A.C.; Kivimaki, M.; Kähönen, M.; Mononen, N.; Raitakari, O.T.; Viikari, J.S.; Adamkova, V.; Kiechl, S.; Brion, M.; Nicolaides, A.N.; Paulweber, B.; Haerting, J.; Dominiczak, A.F.; Nyberg, F.; Whincup, P.H.; Hingorani, A.D.; Schott, J.J.; Bezzina, C.R.; Ingelsson, E.; Ferrucci, L.; Gasparini, P.; Wilson, J.F.; Rudan, I.; Franke, A.; Mühleisen, T.W.; Pramstaller, P.P.; Lehtimäki, T.J.; Paterson, A.D.; Parsa, A.; Liu, Y.; van Duijn, C.M.; Siscovick, D.S.; Gudnason, V.; Jamshidi, Y.; Salomaa, V.; Felix, S.B.; Sanna, S.; Ritchie, M.D.; Stricker, B.H.; Stefansson, K.; Boyer, L.A.; Cappola, T.P.; Olsen, J.V.; Lage, K.; Schwartz, P.J.; Kääb, S.; Chakravarti, A.; Ackerman, M.J.; Pfeufer, A.; de Bakker, P.I.W.; Newton-Cheh, C. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 2014 46 8 826 836 10.1038/ng.3014 24952745
    [Google Scholar]
  145. Tabuchi M. Coates K.E. Bautista O.B. Zukowski L.H. Light/clock influences membrane potential dynamics to regulate sleep states. Front. Neurol. 2021 12 625369 10.3389/fneur.2021.625369 33854471
    [Google Scholar]
  146. Hirsch J.C. Fourment A. Marc M.E. Sleep-related variations of membrane potential in the lateral geniculate body relay neurons of the cat. Brain Res. 1983 259 2 308 312 10.1016/0006‑8993(83)91264‑7 6297675
    [Google Scholar]
  147. Song G.H. Leng P.H. Gwee K.A. Moochhala S.M. Ho K.Y. Melatonin improves abdominal pain in irritable bowel syndrome patients who have sleep disturbances: A randomised, double blind, placebo controlled study. Gut 2005 54 10 1402 1407 10.1136/gut.2004.062034 15914575
    [Google Scholar]
  148. Kim T.W. Jeong J.H. Hong S.C. The impact of sleep and circadian disturbance on hormones and metabolism. Int. J. Endocrinol. 2015 2015 1 9 10.1155/2015/591729 25861266
    [Google Scholar]
  149. Deguchi T. Sinha A.K. Dement W.C. Barchas J.D. Enzyme activity in sleep and sleep deprivation. Pharmacol. Biochem. Behav. 1975 3 6 957 960 10.1016/0091‑3057(75)90001‑5 4817
    [Google Scholar]
  150. Tafti M. Maret S. Dauvilliers Y. Genes for normal sleep and sleep disorders. Ann. Med. 2005 37 8 580 589 10.1080/07853890500372047 16338760
    [Google Scholar]
  151. Irwin M.R. Vitiello M.V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. 2019 18 3 296 306 10.1016/S1474‑4422(18)30450‑2 30661858
    [Google Scholar]
  152. Hartmann J. Verkhratsky A. Relations between intracellular Ca2+ stores and store-operated Ca2+ entry in primary cultured human glioblastoma cells. J. Physiol. 1998 513 Pt 2 411 424
    [Google Scholar]
  153. Matuz-Mares D. González-Andrade M. Araiza-Villanueva M.G. Vilchis-Landeros M.M. Vázquez-Meza H. Mitochondrial calcium: Effects of its imbalance in disease. Antioxidants 2022 11 5 801 10.3390/antiox11050801 35624667
    [Google Scholar]
  154. Zhu T. Chen J-L. Wang Q. Modulation of mitochondrial dynamics in neurodegenerative diseases: An insight into prion diseases. Front. Aging Neurosci. 2018 10
    [Google Scholar]
  155. Reiter R.J. Oxidative damage in the central nervous system: Protection by melatonin. Prog. Neurobiol. 1998 56 3 359 384 10.1016/S0301‑0082(98)00052‑5 9770244
    [Google Scholar]
  156. Govind A.P. Vezina P. Green W.N. Nicotine-induced upregulation of nicotinic receptors: Underlying mechanisms and relevance to nicotine addiction. Biochem. Pharmacol. 2009 78 7 756 765 10.1016/j.bcp.2009.06.011 19540212
    [Google Scholar]
  157. Markus R.P. Zago W.M. Carneiro R.C. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 1996 279 1 18 22 10.1016/S0022‑3565(25)20931‑4 8858970
    [Google Scholar]
  158. Lax P. Melatonin inhibits nicotinic currents in cultured rat cerebellar granule neurons. J. Pineal Res. 2008 44 1 70 77 10.1111/j.1600‑079X.2007.00481.x 18078451
    [Google Scholar]
  159. Ursing C. Bahr C. Brismar K. Röjdmark S. Influence of cigarette smoking on melatonin levels in man. Eur. J. Clin. Pharmacol. 2005 61 3 197 201 10.1007/s00228‑005‑0908‑7 15824912
    [Google Scholar]
  160. Ferguson S.A. Kennaway D.J. Moyer R.W. Nicotine phase shifts the 6-sulphatoxymelatonin rhythm and induces c-Fos in the SCN of rats. Brain Res. Bull. 1999 48 5 527 538 10.1016/S0361‑9230(99)00033‑7 10372514
    [Google Scholar]
  161. Liu M. Fan R. Liu X. Cheng F. Wang J. Pathways and networks-based analysis of candidate genes associated with nicotine addiction. PLoS One 2015 10 5 e0127438 10.1371/journal.pone.0127438 25965070
    [Google Scholar]
  162. Yang B.Z. Xiang B. Wang T. Ma S. Li C.S.R. Neurogenetic underpinnings of nicotine use severity: Integrating the brain transcriptomes and GWAS variants via network approaches. Psychiatry Res. 2024 334 115815 10.1016/j.psychres.2024.115815 38422867
    [Google Scholar]
  163. Duan J. Yu Y. Li Y. Li Y. Liu H. Jing L. Yang M. Wang J. Li C. Sun Z. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos. Nanotoxicology 2016 10 5 575 585 10.3109/17435390.2015.1102981 26551753
    [Google Scholar]
  164. Xu L.M. Li J.R. Huang Y. Zhao M. Tang X. Wei L. Autism KB An evidence-based knowledgebase of autism genetics. Nucleic Acids Res. 2012 40 D1 D1016 D1022 10.1093/nar/gkr1145 22139918
    [Google Scholar]
  165. Bringmann H. Sleep-active neurons: Conserved motors of sleep. Genetics 2018 208 4 1279 1289 10.1534/genetics.117.300521 29618588
    [Google Scholar]
  166. Papassotiropoulos A. de Quervain D.J.F. Failed drug discovery in psychiatry: Time for human genome-guided solutions. Trends Cogn. Sci. 2015 19 4 183 187 10.1016/j.tics.2015.02.002 25727774
    [Google Scholar]
  167. Malin R. Wirta V. Hiltunen T.P. Lehtimäki T. Rapid detection of angiotensinogen M/T235 polymorphism by fluorescence probe melting curves. Clin. Chem. 2000 46 6 880 881 10.1093/clinchem/46.6.880 10839787
    [Google Scholar]
  168. Reghunandanan V. Functional interactions between neurotransmitters and neuropeptides in regulating suprachiasmatic nucleus function and circadian rhythms. Explor. Neurosci. 2024 3 5 434 477 10.37349/en.2024.00059
    [Google Scholar]
  169. Campos L.A. Cipolla-Neto J. Amaral F.G. Michelini L.C. Bader M. Baltatu O.C. The Angiotensin-melatonin axis. Int. J. Hypertens. 2013 2013 1 7 10.1155/2013/521783 23365722
    [Google Scholar]
  170. Baltatu O. Afeche S.C. Santos S.H.J. Campos L.A. Barbosa R. Michelini L.C. Bader M. Cipolla-Neto J. Locally synthesized angiotensin modulates pineal melatonin generation. J. Neurochem. 2002 80 2 328 334 10.1046/j.0022‑3042.2001.00701.x 11902123
    [Google Scholar]
  171. Oishi A. Gbahou F. Jockers R. Melatonin receptors, brain functions, and therapies. Handb. Clin. Neurol. 2021 179 345 356 10.1016/B978‑0‑12‑819975‑6.00022‑4 34225974
    [Google Scholar]
  172. Auzan C. Clauser E. Structure and functions of the angiotensin II AT1 receptors during evolution J. Soc. Biol. 2009 203 4 295 302 10.1051/jbio/2009033 20122387
    [Google Scholar]
  173. Bretschneider F. de Weille J.R. 4 - Signal analysis. Introduction to Electrophysiological Methods and Instrumentation. Bretschneider F. de Weille J.R. Amsterdam Academic Press 2006 132 209 10.1016/B978‑012370588‑4/50063‑4
    [Google Scholar]
  174. Ventricular preexcitation (wolff-parkinson-white syndrome and its variants). In: Surawicz, B.; Knilans, T.K., Eds.; Chou’s Electrocardiography in Clinical Practice, 6th ed; W.B. Saunders: Philadelphia 6th ed Philadelphia W.B. Saunders 2008 481 508 10.1016/B978‑141603774‑3.10020‑6
    [Google Scholar]
  175. Alawad A. Sati W. Ahmed S.M.I. Elgassim M. Elgassim M. Balal A. Melatonin-induced symptomatic bradycardia in an otherwise healthy male: A case report. Oxf. Med. Case Rep. 2024 2024 8 omae096 10.1093/omcr/omae096 39193480
    [Google Scholar]
  176. Kumar B. Chawla O. Bhattacharjee M. Singh A. Circadian rhythm of blood pressure. Indian J. Med. Spec. 2021 12 2 53 58 10.4103/injms.injms_4_21
    [Google Scholar]
  177. Ewbank H. Nagai M. Dasari T.W. Circadian rhythm and melatonin in heart failure- a systematic review. J. Card. Fail. 2025 31 1 222 10.1016/j.cardfail.2024.10.109
    [Google Scholar]
  178. Conger L.P. Weigl Y. Spontarelli K. Abe K. Reish O. Artigas P. A new ATP1A1 variant associated with a novel disease phenotype. Biophys. J. 2024 123 3 398a 10.1016/j.bpj.2023.11.2438
    [Google Scholar]
  179. Suzuki K. Deyama Y. Minamikawa H. Na+/K+-ATPase as a target for cardiotonic steroids and cisplatin. Hokkaido J. Dent. Sci. 2017 38 Special issue 74 79
    [Google Scholar]
  180. Semenenko SB Tkachuk SS Tkachuk OV Specific features of chronorhyth-mologic changes of the ion-regulating function of the kidneys under the hypofunction of the pineal gland. Fiziol. Zh. 2016 62 5 45 49
    [Google Scholar]
  181. Arnao M.B. Hernández-Ruiz J. The potential of phytomelatonin as a nutraceutical. Molecules 2018 23 1 238 10.3390/molecules23010238 29361780
    [Google Scholar]
  182. Dzierzewski J.M. Donovan E.K. Kay D.B. Sannes T.S. Bradbrook K.E. Sleep inconsistency and markers of inflammation. Front. Neurol. 2020 11 1042 10.3389/fneur.2020.01042 33041983
    [Google Scholar]
  183. Ghilotti F. Bellocco R. Trolle Lagerros Y. Thorson A. Theorell-Haglöw J. Åkerstedt T. Lindberg E. Relationship between sleep characteristics and markers of inflammation in Swedish women from the general population. J. Sleep Res. 2021 30 2 e13093 10.1111/jsr.13093 32441868
    [Google Scholar]
  184. Al-Rasheed N.M. Fadda L. Attia H.A. Sharaf I.A. Mohamed A.M. Al-Rasheed N.M. Pulmonary prophylactic impact of melatonin and/or quercetin: A novel therapy for inflammatory hypoxic stress in rats. Acta Pharm. 2017 67 1 125 135 10.1515/acph‑2017‑0010 28231050
    [Google Scholar]
  185. Li Y.F. Liu Y.S. Li Y.S. (Bupleuri Radix) in the treatment of insomnia rats. Liaoning Zhongyiyao Daxue Xuebao 2023 25 03 31 34
    [Google Scholar]
  186. Karbownik M.S. Kręczyńska J. Wiktorowska-Owczarek A. Kwarta P. Cybula M. Stilinović N. Pietras T. Kowalczyk E. Decrease in salivary serotonin in response to probiotic supplementation with Saccharomyces boulardii in healthy volunteers under psychological stress: Secondary analysis of a randomized, double-blind, placebo-controlled trial. Front. Endocrinol. 2022 12 800023 10.3389/fendo.2021.800023 35069447
    [Google Scholar]
  187. Jenkins T. Nguyen J. Polglaze K. Bertrand P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 2016 8 1 56 10.3390/nu8010056 26805875
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073393993250930120235
Loading
/content/journals/cchts/10.2174/0113862073393993250930120235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test