Skip to content
2000
image of ACC Inhibition by Lanatoside C: A Repurposed MASH Therapy

Abstract

Introduction

Metabolic Dysfunction-Associated Steatohepatitis (MASH) is a growing global health concern, with only one FDA-approved therapy currently available. Acetyl-CoA carboxylase (ACC) inhibition has emerged as a promising strategy, yet effective and clinically translatable inhibitors remain limited. This study aimed to identify potential ACC inhibitors for MASH via drug repurposing.

Methods

A small-molecule library was screened using structure-based virtual screening, and candidate compounds were validated in a free fatty acid-induced MASH cell model. Intracellular triglyceride (TG) and aspartate aminotransferase (AST) levels were measured, while quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate lipid metabolism-related gene expression. Molecular dynamics simulations were conducted to further evaluate binding stability.

Results

Lanatoside C was identified as the most potent candidate. In vitro studies revealed significant reductions in TG and AST levels, downregulation of lipogenesis-related genes (SREBP1, FASN, ACC), and upregulation of fatty acid oxidation genes (CPT1A, ACOX1, FABP1). Molecular dynamics simulations confirmed the stable binding of Lanatoside C to ACC.

Discussion

These findings indicate that Lanatoside C exerts dual regulatory effects on lipid metabolism by suppressing fatty acid synthesis and enhancing oxidation. As an FDA-approved cardiac glycoside, Lanatoside C’s known pharmacological profile supports its potential repositioning for MASH, although further in vivo studies and mechanistic validation are warranted.

Conclusion

Lanatoside C demonstrates promise as a repurposed ACC inhibitor for MASH treatment, offering a cost-effective repurposing strategy to advance therapeutic options for MASH.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073405993251117054929
2026-01-08
2026-01-30
Loading full text...

Full text loading...

References

  1. Rinella M.E. Lazarus J.V. Ratziu V. Francque S.M. Sanyal A.J. Kanwal F. Romero D. Abdelmalek M.F. Anstee Q.M. Arab J.P. Arrese M. Bataller R. Beuers U. Boursier J. Bugianesi E. Byrne C.D. Castro Narro G.E. Chowdhury A. Cortez-Pinto H. Cryer D.R. Cusi K. El-Kassas M. Klein S. Eskridge W. Fan J. Gawrieh S. Guy C.D. Harrison S.A. Kim S.U. Koot B.G. Korenjak M. Kowdley K.V. Lacaille F. Loomba R. Mitchell-Thain R. Morgan T.R. Powell E.E. Roden M. Romero-Gómez M. Silva M. Singh S.P. Sookoian S.C. Spearman C.W. Tiniakos D. Valenti L. Vos M.B. Wong V.W.S. Xanthakos S. Yilmaz Y. Younossi Z. Hobbs A. Villota-Rivas M. Newsome P.N. NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023 78 6 1966 1986 10.1097/HEP.0000000000000520 37363821
    [Google Scholar]
  2. Lim GEH Tang A Ng CH Chin YH Lim W.H. Tan DJH Yong JN Xiao J Lee CW Chan M Chew NW Xuan Tan EX Siddiqui MS Huang D Noureddin M Sanyal AJ Muthiah MD An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD. Clin. Gastroenterol. Hepatol. 2023 21 3 619 629.e7 10.1016/j.cgh.2021.11.038 34871813
    [Google Scholar]
  3. Younossi Z.M. Golabi P. Paik J.M. Henry A. Van Dongen C. Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023 77 4 1335 1347 10.1097/HEP.0000000000000004 36626630
    [Google Scholar]
  4. Miao L. Targher G. Byrne C.D. Cao Y.Y. Zheng M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024 35 8 697 707 10.1016/j.tem.2024.02.007 38429161
    [Google Scholar]
  5. Riazi K. Azhari H. Charette J.H. Underwood F.E. King J.A. Afshar E.E. Swain M.G. Congly S.E. Kaplan G.G. Shaheen A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022 7 9 851 861 10.1016/S2468‑1253(22)00165‑0 35798021
    [Google Scholar]
  6. Keam S.J. Resmetirom: First approval. Drugs 2024 84 6 729 735 10.1007/s40265‑024‑02045‑0 38771485
    [Google Scholar]
  7. Mousa A.M. Mahmoud M. AlShuraiaan G.M. Resmetirom: The first disease‐specific treatment for MASH. Int. J. Endocrinol. 2025 2025 1 6430023 10.1155/ije/6430023 40212963
    [Google Scholar]
  8. Wang D. Miao J. Zhang L. Zhang L. Research advances in the diagnosis and treatment of MASLD/MASH. Ann. Med. 2025 57 1 2445780 10.1080/07853890.2024.2445780
    [Google Scholar]
  9. Wei C. Liu Y. Yan Z. Han J. Jiang N. Dual modulator of FXR and HSD17B13: Revitalizing FXR therapies in MASH. J. Med. Chem. 2025 68 6 6104 6107 10.1021/acs.jmedchem.5c00539 40045167
    [Google Scholar]
  10. Sabatini S. Gastaldelli A. Metabolic effects and mechanism of action of the pan-PPAR agonist lanifibranor. J. Hepatol. 2025 82 6 950 952 10.1016/j.jhep.2025.03.003 40089070
    [Google Scholar]
  11. Zafer M. Tavaglione F. Romero-Gómez M. Loomba R. Review article: GLP ‐1 receptor agonists and glucagon/GIP/GLP ‐1 receptor dual or triple agonists—mechanism of action and emerging therapeutic landscape in MASLD. Aliment. Pharmacol. Ther. 2025 61 12 1872 1888 10.1111/apt.70196 40364529
    [Google Scholar]
  12. Banoon Shaima Sarhan Athraa Ibrahim Fatima Abed Zahraa Ghasemian, Abdolmajid Drugs loaded in bilosomes for the treatment of gastrointestinal cancers: A comprehensive review. Adv. Biol. Earth Sci. 2025 10 1 111 134 10.62476/abes.101111
    [Google Scholar]
  13. Liang S. Lin M. Wang J. Wei H. Huang S. Yin T. Xiao H. Shuai X. Ren J.A. ROS/ultrasound dual-responsive nanocarrier enhances drug penetration for ameliorating metabolic dysfunction-associated steatohepatitis. Acta Biomater. 2025 202 503 516 10.1016/j.actbio.2025.07.010 40617493
    [Google Scholar]
  14. Fidiyawati E. Waluyo B. Widaryanto E. Screening of antioxidant and nutrient compounds from several varieties of zucchini (Cucurbita Pepo L.) at different harvest ages in the middle plains screening of antioxidant and nutrient compounds from several varieties of zucchini (Cucurbita Pepo L.) at different harvest ages in the middle plains. Agric. Vet. Sci. 2024 8 3 136 143 10.62476/ravs83136
    [Google Scholar]
  15. Dungubat E. Fujikura K. Kuroda M. Fukusato T. Takahashi Y. Food nutrients and bioactive compounds for managing metabolic dysfunction-associated steatotic liver disease: A comprehensive review. Nutrients 2025 17 13 2211 10.3390/nu17132211 40647314
    [Google Scholar]
  16. Addissouky T.A. Molecular insights into herbal medicines for the treatment of metabolic associated Steatohepatitis. Discover Chemistry 2025 2 1 128 10.1007/s44371‑025‑00212‑0
    [Google Scholar]
  17. Souza M. Al-Sharif L. Antunes V.L.J. Huang D.Q. Loomba R. Comparison of pharmacological therapies in metabolic dysfunction–associated steatohepatitis for fibrosis regression and MASH resolution: Systematic review and network meta-analysis. Hepatology 2025 10 1097 10.1097/HEP.0000000000001254 39903735
    [Google Scholar]
  18. Wang Y. Yu W. Li S. Guo D. He J. Wang Y. Acetyl-CoA carboxylases and diseases. Front. Oncol. 2022 12 836058 10.3389/fonc.2022.836058 35359351
    [Google Scholar]
  19. Li C. Zhang L. Qiu Z. Deng W. Wang W. Key molecules of fatty acid metabolism in gastric cancer. Biomolecules 2022 12 5 706 10.3390/biom12050706 35625633
    [Google Scholar]
  20. Calle R.A. Amin N.B. Carvajal-Gonzalez S. Ross T.T. Bergman A. Aggarwal S. Crowley C. Rinaldi A. Mancuso J. Aggarwal N. Somayaji V. Inglot M. Tuthill T.A. Kou K. Boucher M. Tesz G. Dullea R. Bence K.K. Kim A.M. Pfefferkorn J.A. Esler W.P. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: Two parallel, placebo-controlled, randomized phase 2a trials. Nat. Med. 2021 27 10 1836 1848 10.1038/s41591‑021‑01489‑1 34635855
    [Google Scholar]
  21. Wang X. Zhang L. Dong B. Molecular mechanisms in MASLD/MASH-related HCC. Hepatology 2024 10 1097 10.1097/HEP.0000000000000786 38349726
    [Google Scholar]
  22. Harrison S.A. Allen A.M. Dubourg J. Noureddin M. Alkhouri N. Challenges and opportunities in NASH drug development. Nat. Med. 2023 29 3 562 573 10.1038/s41591‑023‑02242‑6 36894650
    [Google Scholar]
  23. Chen Y. He X. Chen X. Li Y. Ke Y. SeP is elevated in NAFLD and participates in NAFLD pathogenesis through AMPK/ACC pathway. J. Cell. Physiol. 2021 236 5 3800 3807 10.1002/jcp.30121 33094480
    [Google Scholar]
  24. Zhang X.J. Cai J. Li H. Targeting ACC for NASH resolution. Trends Mol. Med. 2022 28 1 5 7 10.1016/j.molmed.2021.11.002 34844875
    [Google Scholar]
  25. Bian H. Liu Y.M. Chen Z.N. New avenues for NASH therapy by targeting ACC. Cell Metab. 2022 34 2 191 193 10.1016/j.cmet.2022.01.001 35108509
    [Google Scholar]
  26. Tamura Y.O. Sugama J. Iwasaki S. Sasaki M. Yasuno H. Aoyama K. Watanabe M. Erion D.M. Yashiro H. Selective acetyl-CoA carboxylase 1 inhibitor improves hepatic steatosis and hepatic fibrosis in a preclinical nonalcoholic steatohepatitis model. J. Pharmacol. Exp. Ther. 2021 379 3 280 289 10.1124/jpet.121.000786 34535562
    [Google Scholar]
  27. Pang Y. Xu X. Xiang X. Li Y. Zhao Z. Li J. Gao S. Liu Q. Mai K. Ai Q. High fat activates O-GlcNAcylation and affects AMPK/ACC pathway to regulate lipid metabolism. Nutrients 2021 13 6 1740 10.3390/nu13061740 34063748
    [Google Scholar]
  28. Zhang J. Zhang W. Yang L. Zhao W. Liu Z. Wang E. Wang J. Phytochemical gallic acid alleviates nonalcoholic fatty liver disease via AMPK-ACC-PPARa axis through dual regulation of lipid metabolism and mitochondrial function. Phytomedicine 2023 109 154589 10.1016/j.phymed.2022.154589 36610145
    [Google Scholar]
  29. Risi R. Vidal-Puig A. Bidault G. An adipocentric perspective of pancreatic lipotoxicity in diabetes pathogenesis. J. Endocrinol. 2024 262 1 262 10.1530/JOE‑23‑0313 38642584
    [Google Scholar]
  30. Hughey C.C. Puchalska P. Crawford P.A. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2022 1867 11 159209 10.1016/j.bbalip.2022.159209 35934297
    [Google Scholar]
  31. Puengel T. Tacke F. Liver steatosis: From lipotoxicity to cellular damage. Metabolic Dysfunction-Associated Steatotic Liver Disease: Prevalence, research insights and the future directions. Qi X. Sánchez N.M. Singapore Springer 2024 25 48 10.1007/978‑981‑97‑9519‑2_4
    [Google Scholar]
  32. Venkatesan N. Doskey L.C. Malhi H. The role of endoplasmic reticulum in lipotoxicity during metabolic dysfunction–associated steatotic liver disease (MASLD) pathogenesis. Am. J. Pathol. 2023 193 12 1887 1899 10.1016/j.ajpath.2023.08.007 37689385
    [Google Scholar]
  33. Xu L. Yang H. Xu H. Yang R. Fen L. Jiang D. Xu L. Xing Y. Efficacy and safety of acetyl-CoA carboxylase (ACC) inhibitors in the treatment of nonalcoholic steatohepatitis (NASH): A protocol for systematic review. Medicine 2022 101 50 e32357 10.1097/MD.0000000000032357 36550852
    [Google Scholar]
  34. Vijayakumar A. Okesli-Armlovich A. Wang T. Olson I. Seung M. Kusam S. Hollenback D. Mahadevan S. Marchand B. Toteva M. Breckenridge D.G. Trevaskis J.L. Bates J. Combinations of an acetyl CoA carboxylase inhibitor with hepatic lipid modulating agents do not augment antifibrotic efficacy in preclinical models of NASH and fibrosis. Hepatol. Commun. 2022 6 9 2298 2309 10.1002/hep4.2011 35735253
    [Google Scholar]
  35. Ashburn T.T. Thor K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004 3 8 673 683 10.1038/nrd1468 15286734
    [Google Scholar]
  36. Pushpakom S. Iorio F. Eyers P.A. Escott K.J. Hopper S. Wells A. Doig A. Guilliams T. Latimer J. McNamee C. Norris A. Sanseau P. Cavalla D. Pirmohamed M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019 18 1 41 58 10.1038/nrd.2018.168 30310233
    [Google Scholar]
  37. Kulkarni V.S. Alagarsamy V. Solomon V.R. Jose P.A. Murugesan S. Drug repurposing: An effective tool in modern drug discovery. Russ. J. Bioorganic Chem. 2023 49 2 157 166 10.1134/S1068162023020139 36852389
    [Google Scholar]
  38. Zhan P. Yu B. Ouyang L. Drug repurposing: An effective strategy to accelerate contemporary drug discovery. Drug Discov. 2022 27 7 1785 1788 10.1016/j.drudis.2022.05.026 35661705
    [Google Scholar]
  39. De Rosa M.C. Purohit R. García-Sosa A.T. Drug repurposing: A nexus of innovation, science, and potential. Sci. Rep. 2023 13 1 17887 10.1038/s41598‑023‑44264‑7 37857641
    [Google Scholar]
  40. Rosignoli S. Paiardini A. Boosting the full potential of PyMOL with structural biology plugins. Biomolecules 2022 12 12 1764 10.3390/biom12121764 36551192
    [Google Scholar]
  41. Huey R. Morris G.M. Forli S. Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. USA Scripps Research Institute Molecular Graphics Laboratory 2012
    [Google Scholar]
  42. Forli S. Huey R. Pique M.E. Sanner M.F. Goodsell D.S. Olson A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016 11 5 905 919 10.1038/nprot.2016.051 27077332
    [Google Scholar]
  43. Acuña-Pilarte K. Reichert E.C. Green Y.S. Halberg L.M. Golkowski M. Maguire K.M. Mimche P.N. Kamdem S.D. Hu P-A. Wright J. HAF prevents hepatocyte apoptosis and progression to MASH and hepatocellular carcinoma through transcriptional regulation of the NF-κB pathway. Hepatology 2025 82 2 438 453 10.1097/HEP.0000000000001070.
    [Google Scholar]
  44. Qin X. Tan Y. Ren W. Zhou W. Niu R. Liang L. Li J. Cao K. Wei G. Zhu X. Huang M. Elevated expression of LCN13 through FXR activation ameliorates hepatocellular lipid accumulation and inflammation. Int. Immunopharmacol. 2024 131 111812 10.1016/j.intimp.2024.111812 38493698
    [Google Scholar]
  45. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  46. Madauss K.P. Burkhart W.A. Consler T.G. Cowan D.J. Gottschalk W.K. Miller A.B. Short S.A. Tran T.B. Williams S.P. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist. Acta Crystallogr. D Biol. Crystallogr. 2009 65 5 449 461 10.1107/S0907444909008014 19390150
    [Google Scholar]
  47. Cheng D. Zinker B.A. Luo Y. Shipkova P. De Oliveira C.H. Krishna G. Brown E.A. Boehm S.L. Tirucherai G.S. Gu H. MGAT2 inhibitor decreases liver fibrosis and inflammation in murine NASH models and reduces body weight in human adults with obesity. Cell Metab. 2022 34 11 1732 1748.e5 10.1016/j.cmet.2022.10.007
    [Google Scholar]
  48. Ma M. Liu H. Yu J. He S. Li P. Ma C. Zhang H. Xu L. Ping F. Li W. Sun Q. Li Y. Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids Health Dis. 2020 19 1 121 10.1186/s12944‑020‑01303‑w 32487177
    [Google Scholar]
  49. Jakubiak G.K. Osadnik K. Lejawa M. Osadnik T. Goławski M. Lewandowski P. Pawlas N. “Obesity and insulin resistance” is the component of the metabolic syndrome most strongly associated with oxidative stress. Antioxidants 2021 11 1 79 10.3390/antiox11010079 35052583
    [Google Scholar]
  50. Tsouka S. Kumar P. Seubnooch P. Freiburghaus K. St-Pierre M. Dufour J.F. Masoodi M. Transcriptomics-driven metabolic pathway analysis reveals similar alterations in lipid metabolism in mouse MASH model and human. Commun. Med. 2024 4 1 39 10.1038/s43856‑024‑00465‑3 38443644
    [Google Scholar]
  51. Karin M. Kim J.Y. MASH as an emerging cause of hepatocellular carcinoma: Current knowledge and future perspectives. Mol. Oncol. 2025 19 2 275 294 10.1002/1878‑0261.13685 38874196
    [Google Scholar]
  52. Jalili V. Poorahmadi Z. Hasanpour Ardekanizadeh N. Gholamalizadeh M. Ajami M. Houshiarrad A. Hajipour A. Shafie F. Alizadeh A. Mokhtari Z. Shafaei H. Esmaeili M. Doaei S. The association between obesity with serum levels of liver enzymes, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and gamma‐glutamyl transferase in adult women. Endocrinol. Diabetes Metab. 2022 5 6 e367 10.1002/edm2.367 36039792
    [Google Scholar]
  53. Minato-Inokawa S. Tsuboi-Kaji A. Honda M. Takeuchi M. Kitaoka K. Kurata M. Wu B. Kazumi T. Fukuo K. Associations of alanine aminotransferase/aspartate aminotransferase, a marker of hepatosteatosis, with adipose tissue insulin resistance index and leptin/adiponectin ratio in Japanese women. Metab. Syndr. Relat. Disord. 2023 21 10 590 595 10.1089/met.2023.0118 38011534
    [Google Scholar]
  54. Vogli S. Naska A. Marinos G. Kasdagli M.I. Orfanos P. The effect of vitamin E supplementation on serum aminotransferases in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Nutrients 2023 15 17 3733 10.3390/nu15173733 37686767
    [Google Scholar]
  55. Martín-Fernández M. Arroyo V. Carnicero C. Sigüenza R. Busta R. Mora N. Antolín B. Tamayo E. Aspichueta P. Carnicero-Frutos I. Gonzalo-Benito H. Aller R. Role of oxidative stress and lipid peroxidation in the pathophysiology of NAFLD. Antioxidants 2022 11 11 2217 10.3390/antiox11112217 36358589
    [Google Scholar]
  56. Carli F. Della Pepa G. Sabatini S. Puig A.V. Gastaldelli A. Lipid metabolism in MASLD and MASH: From mechanism to the clinic. JHEP Rep. 2024 6 12 101185 10.1016/j.jhepr.2024.101185
    [Google Scholar]
  57. Steinberg G.R. Valvano C.M. De Nardo W. Watt M.J. Integrative metabolism in MASLD and MASH: Pathophysiology and emerging mechanisms. J. Hepatol. 2025 83 2 584 595 10.1016/j.jhep.2025.02.033 40032040
    [Google Scholar]
  58. Song Y. Zhong W. Lau H.C.H. Zhang Y. Guan H. Xie M. Ha S. Shou D. Zhou Y. Xu H. Yu J. Zhang X. Carboxyl ester lipase protects against metabolic dysfunction-associated steatohepatitis by binding to fatty acid synthase. Engineering 2024 41 204 215 10.1016/j.eng.2024.04.018
    [Google Scholar]
  59. Syed-Abdul M.M. Lipid metabolism in metabolic-associated steatotic liver disease (MASLD). Metabolites 2023 14 1 12 10.3390/metabo14010012 38248815
    [Google Scholar]
  60. Shimano H. Sato R. SREBP-regulated lipid metabolism: Convergent physiology — divergent pathophysiology. Nat. Rev. Endocrinol. 2017 13 12 710 730 10.1038/nrendo.2017.91 28849786
    [Google Scholar]
  61. Rong S Xia M Vale G Wang S Kim CW Li S McDonald JG Radhakrishnan A Horton JD DGAT2 inhibition blocks SREBP-1 cleavage and improves hepatic steatosis by increasing phosphatidylethanolamine in the ER. Cell Metab. 2024 36 3 617 629.e7 10.1016/j.cmet.2024.01.011 38340721 PMC10939742
    [Google Scholar]
  62. Chen Z. Yu D. Owonikoko T.K. Ramalingam S.S. Sun S.Y. Induction of SREBP1 degradation coupled with suppression of SREBP1-mediated lipogenesis impacts the response of EGFR mutant NSCLC cells to osimertinib. Oncogene 2021 40 49 6653 6665 10.1038/s41388‑021‑02057‑0 34635799
    [Google Scholar]
  63. Rao S. Wang Z. Ohshiro K. Zaidi S. Yang X. Latham P. Jogunoori W. Xiang X. Chung I. Shetty K. Vacca M. Vidal-Puig A. Mishra L. Abstract 89: A TGF-beta Pathway-SREBP1 axis controls liver diseases from nonalcoholic steatohepatitis to hepatocellular carcinoma. Cancer Res. 2021 81 13_Supplement 89 89 10.1158/1538‑7445.AM2021‑89
    [Google Scholar]
  64. Ribas V. Role of cholesterol homeostasis in MASH-driven hepatocellular carcinoma: Not just a neutral fat. Exploration of Digestive Diseases 2024 3 203 225 10.37349/edd.2024.00048
    [Google Scholar]
  65. Ratziu V. Scanlan T.S. Bruinstroop E. Thyroid hormone receptor-β analogs for the treatment of Metabolic Dysfunction-Associated Steatohepatitis (MASH). J. Hepatol. 2024 82 13 10.1016/j.jhep.2024.10.018
    [Google Scholar]
  66. Bertran L. Rusu E.C. Aguilar C. Auguet T. Richart C. Exploring the role of fatty acid esters of hydroxy fatty acids in metabolic dysfunction-associated steatotic liver disease in morbidly obese women. Dig. Liver Dis. 2025 57 2 526 534 10.1016/j.dld.2024.09.026 39532579
    [Google Scholar]
  67. Zhang M. Zhou W. Cao Y. Kou L. Liu C. Li X. Zhang B. Guo W. Xu B. Li S. O-GlcNAcylation regulates long-chain fatty acid metabolism by inhibiting ACOX1 ubiquitination-dependent degradation. Int. J. Biol. Macromol. 2024 266 Pt 2 131151 10.1016/j.ijbiomac.2024.131151 38547945
    [Google Scholar]
  68. Ramanathan R. Patwa S.A. Ali A.H. Ibdah J.A. Thyroid hormone and mitochondrial dysfunction: Therapeutic implications for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cells 2023 12 24 2806 10.3390/cells12242806 38132126
    [Google Scholar]
  69. da Fonseca A.M. Caluaco B.J. Madureira J.M.C. Cabongo S.Q. Gaieta E.M. Djata F. Colares R.P. Neto M.M. Fernandes C.F.C. Marinho G.S. dos Santos H.S. Marinho E.S. Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-bond, SASA and MMGBSA. Mol. Biotechnol. 2024 66 8 1919 1933 10.1007/s12033‑023‑00831‑x 37490200
    [Google Scholar]
  70. Bagal V.K. Rathod S.S. Mulla M.M. Pawar S.C. Choudhari P.B. Pawar V.T. Mahuli D.V. Exploration of bioactive molecules from Tinospora cordifolia and Actinidia deliciosa as an immunity modulator via molecular docking and molecular dynamics simulation study. Nat. Prod. Res. 2023 37 23 4053 4057 10.1080/14786419.2023.2165076 36622893
    [Google Scholar]
  71. Cai X. Liang C. Liu H. Zhang G. Conformation and structure of ring polymers in semidilute solutions: A molecular dynamics simulation study. Polymer 2022 253 124953 10.1016/j.polymer.2022.124953
    [Google Scholar]
  72. Azad H. Akbar M.Y. Sarfraz J. Haider W. Ghazanfar S. Simulation studies to identify high-affinity probiotic peptides for inhibiting PAK1 gastric cancer protein: A comparative approach. Comput. Biol. Chem. 2025 115 108345 10.1016/j.compbiolchem.2025.108345 39818002
    [Google Scholar]
  73. Kato K. Nakayoshi T. Mizuno A. Yabu M. Kurimoto E. Oda A. Molecular dynamics simulations of putative primitive proteins including β-aspartic acid residues. Bull. Chem. Soc. Jpn. 2025 98 1 uoae143 10.1093/bulcsj/uoae143
    [Google Scholar]
  74. dos Santos Nascimento I.J. de Aquino T.M. da Silva-Júnior E.F. Molecular docking and dynamics simulation studies of a dataset of NLRP3 inflammasome inhibitors. Recent Adv. Inflamm. Allergy Drug Discov. 2022 15 2 80 86 10.2174/2772270816666220126103909
    [Google Scholar]
  75. Karpun Y.O. Fedotov S. Khilkovets A. Karpenko Y.V. Parchenko V. Klochkova Y.V. Bila Y.V. Lukina I. Nahorna N. Nahornyi V. An in silico investigation of 1,2,4-triazole derivatives as potential antioxidant agents using molecular docking, MD simulations, MM-PBSA free energy calculations and ADME predictions. Pharmacia 2023 70 1 10.3897/pharmacia.70.e90783
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073405993251117054929
Loading
/content/journals/cchts/10.2174/0113862073405993251117054929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test