Skip to content
2000
image of Decoding Barberry Root’s Therapeutic Network: A Synergistic Solution for IBS-D

Abstract

Introduction

Barberry Root (Sankezhen, SKZ), a traditional Uyghur herb from Xinjiang, China, has been shown to alleviate diarrhea-predominant irritable bowel syndrome (IBS-D); however, its molecular mechanisms remain unclear. This study aimed to systematically predict SKZ’s therapeutic targets and pathways for IBS-D using computational and experimental integration.

Methods

Active SKZ compounds and targets were sourced from TCM-Suite, BATMAN-TCM, and related databases. IBS-D targets were identified DisGeNET and GeneCards, etc. Protein-Protein Interaction (PPI) networks, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Molecular docking and 100-ns Molecular Dynamics (MD) simulations validated compound-target stability. (LPS-induced RAW264.7 macrophages) and (IBS-D model rats, isolated intestinal segments) experiments verified SKZ’s effects.

Results

Fifteen bioactive compounds and 85 overlapping targets were identified, with four key compounds [(R)-Reticuline, Ferulic acid 4-O-glucoside, Magnoflorine, SW 7] and 15 hub targets (, ESR1, EGF, ALB) prioritized. Enrichment analyses linked targets to inflammation and intestinal motility pathways. Docking showed strong binding affinities (<-8.0 kcal/mol), and MD simulations confirmed stability. SKZ suppressed inflammatory mediators, downregulated CHAT/C-FOS/5-HTR/5-HTR mRNA, and antagonized acetylcholine/barium chloride-induced intestinal contractions.

Discussion

The findings highlight SKZ’s synergistic role in ameliorating IBS-D multi-pathway regulation, consistent with existing research on inflammation and neurotransmission, though limitations include the need for further validation of individual compounds.

Conclusion

SKZ exerts synergistic therapeutic effects on IBS-D by ameliorating inflammation and regulating neurotransmission and intestinal motility, potentially NF-κB/MAPK, COX-2/PGE2, cholinergic/5-HT, and calcium/potassium channel pathways, forming a multidimensional network.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073421977250903053304
2025-09-15
2025-11-29
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073421977250903053304/BMS-CCHTS-2025-376.html?itemId=/content/journals/cchts/10.2174/0113862073421977250903053304&mimeType=html&fmt=ahah

References

  1. Shin A. Xu H. Healthcare costs of irritable bowel syndrome and irritable bowel syndrome subtypes in the United States. Am. J. Gastroenterol. 2024 119 8 1571 1579 10.14309/ajg.0000000000002753 38483304
    [Google Scholar]
  2. Sperber A.D. Bangdiwala S.I. Drossman D.A. Ghoshal U.C. Simren M. Tack J. Whitehead W.E. Dumitrascu D.L. Fang X. Fukudo S. Kellow J. Okeke E. Quigley E.M.M. Schmulson M. Whorwell P. Archampong T. Adibi P. Andresen V. Benninga M.A. Bonaz B. Bor S. Fernandez L.B. Choi S.C. Corazziari E.S. Francisconi C. Hani A. Lazebnik L. Lee Y.Y. Mulak A. Rahman M.M. Santos J. Setshedi M. Syam A.F. Vanner S. Wong R.K. Lopez-Colombo A. Costa V. Dickman R. Kanazawa M. Keshteli A.H. Khatun R. Maleki I. Poitras P. Pratap N. Stefanyuk O. Thomson S. Zeevenhooven J. Palsson O.S. Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study. Gastroenterology 2021 160 1 99 114.e3 10.1053/j.gastro.2020.04.014 32294476
    [Google Scholar]
  3. Lacy B.E. Mearin F. Chang L. Chey W.D. Lembo A.J. Simren M. Spiller R. Bowel Disorders. Gastroenterology 2016 150 6 1393 1407.e5 10.1053/j.gastro.2016.02.031 27144627
    [Google Scholar]
  4. Colomier E. Algera J. Melchior C. Pharmacological therapies and their clinical targets in irritable bowel syndrome with diarrhea. Front. Pharmacol. 2021 11 629026 10.3389/fphar.2020.629026 33679391
    [Google Scholar]
  5. Xia B. Lin T. Li Z. Wang J. Sun Y. Wang D. Ye J. Zhang Y. Kou R. Zhao B. Yi J. Bai G. Liu X. Lactiplantibacillus plantarum regulates intestinal physiology and enteric neurons in ibs through microbial tryptophan metabolites. J. Agric. Food Chem. 2024 72 32 17989 18002 10.1021/acs.jafc.4c03087 39082086
    [Google Scholar]
  6. Yuan Y. Wang X. Huang S. Wang H. Shen G. Low-level inflammation, immunity, and brain-gut axis in IBS: Unraveling the complex relationships. Gut Microbes 2023 15 2 2263209 10.1080/19490976.2023.2263209 37786296
    [Google Scholar]
  7. Zhang L. Wang H. Zhang Y. Mao X. Wu T. Huang Z. Jiang W. Fan K. Liu D. Yang B. Zhuang M. Huang G. Liang Y. Zhu S.J. Zhong J. Xu G. Li X. Cao Q. Li Y. Jin J. Stress triggers irritable bowel syndrome with diarrhea through a spermidine-mediated decline in type I interferon. Cell Metab. 2025 37 1 87 103.e10 10.1016/j.cmet.2024.09.002 39366386
    [Google Scholar]
  8. De Vadder F. Grasset E. Mannerås Holm L. Karsenty G. Macpherson A.J. Olofsson L.E. Bäckhed F. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl. Acad. Sci. USA 2018 115 25 6458 6463 10.1073/pnas.1720017115 29866843
    [Google Scholar]
  9. Maqoud F. Tricarico D. Mallamaci R. Orlando A. Russo F. The role of ion channels in functional gastrointestinal disorders (fgid): Evidence of channelopathies and potential avenues for future research and therapeutic targets. Int. J. Mol. Sci. 2023 24 13 11074 10.3390/ijms241311074 37446251
    [Google Scholar]
  10. Du L. Zhang Z. Zhai L. Xu S. Yang W. Huang C. Lin C. Zhong L.L.D. Bian Z. Zhao L. Altered gut microbiota–host bile acid metabolism in IBS-D patients with liver depression and spleen deficiency pattern. Chin. Med. 2023 18 1 87 10.1186/s13020‑023‑00795‑9 37468912
    [Google Scholar]
  11. Grabauskas G. Gao J. Wu X. Zhou S.Y. Turgeon D.K. Owyang C. WITHDRAWN: Gut microbiota alter visceral pain sensation and inflammation via modulation of synthesis of resolvin d1 in colonic tuft cells. Gastroenterology 2022 8 4 1 13 10.1053/j.gastro.2022.07.053 35934059
    [Google Scholar]
  12. Ford AC. Sperber AD. Corsetti M. Camilleri, M Irritable bowel syndrome. Lancet 2020 396 10263 1675 1688 10.1016/S0140‑6736(20)31548‑8 33049223
    [Google Scholar]
  13. Lembo A. Sultan S. Chang L. Heidelbaugh J.J. Smalley W. Verne G.N. AGA clinical practice guideline on the pharmacological management of irritable bowel syndrome with diarrhea. Gastroenterology 2022 163 1 137 151 10.1053/j.gastro.2022.04.017 35738725
    [Google Scholar]
  14. Lacy B.E. Pimentel M. Brenner D.M. Chey W.D. Keefer L.A. Long M.D. Moshiree B. ACG Clinical Guideline: Management of irritable bowel syndrome. Am. J. Gastroenterol. 2021 116 1 17 44 10.14309/ajg.0000000000001036 33315591
    [Google Scholar]
  15. Pharmacopoeia of the People’s Republic of China Pharmacopoeia of the People’s Republic of China: Volume I, 2020th ed 2020
    [Google Scholar]
  16. Li L. Zhu H.M. Yan Q. Li S.Y. Li F. The antibacterial activity of Berberis heteropoda Schrenk and its effect on irritable bowel syndrome in rats. Chin. J. Nat. Med. 2020 18 5 356 368 10.1016/S1875‑5364(20)30042‑X 32451093
    [Google Scholar]
  17. Fan X. Shi J. Liu Y. Zhang M. Lu M. Qu D. Cannabidiol-Decorated berberine-loaded microemulsions improve ibs-d therapy through ketogenic diet-induced cannabidiol receptors overexpression. Int. J. Nanomedicine 2023 18 2839 2853 10.2147/IJN.S402871 37273286
    [Google Scholar]
  18. Gong Z. Yang Q. Wang Y. Weng X. Li Y. Dong Y. Zhu X. Chen Y. Pharmacokinetic differences of wuji pill components in normal and chronic visceral hypersensitivity irritable bowel syndrome rats attributable to changes in tight junction and transporters. Front. Pharmacol. 2022 13 948678 10.3389/fphar.2022.948678 35873589
    [Google Scholar]
  19. Min F. Li L. Fei L. Comparative study on the anti-inflammatory and immunosuppressive activity of different medicinal parts of xinjiang berberis heteropoda schrenk in Vitro. Chung Kuo Yao Hsueh Tsa Chih 2021 56 10 801 808 10.11669/cpj.2021.10.005
    [Google Scholar]
  20. Li S. Chen J. Hu Y. Ye M. Editorial: Network pharmacology and AI. J. Ethnopharmacol. 2023 307 116260 10.1016/j.jep.2023.116260 36773788
    [Google Scholar]
  21. Zhang P. Zhang D. Zhou W. Wang L. Wang B. Zhang T. Li S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023 25 1 bbad518 10.1093/bib/bbad518 38197310
    [Google Scholar]
  22. Qi Y. Li, Li; Songya, L; Min, F; Wei, L; Xiaomei, W; Fei, L Inhibiting intestinal spasm and anti-inflammatory activities of extraction parts of different polar solvents of heiguoxiaochai (Berberis heteropoda Schrenk) Roots in Vitro and Preliminary Exploration of Components. Zhonghua Zhongyiyao Xuekan 2022 40 3 115 120, 270 10.13193/j.issn.1673‑7717.2022.03.027
    [Google Scholar]
  23. Qi Y. Li L. Juanjuan D. Fei L. Huimin Z. Songya L. Simultaneous determination of seven components in Berberis heteropoda Schrenk roots by HPLC method. Zhong Yao Cai 2019 42 7 1584 1588 10.13863/j.issn1001‑4454.2019.07.025
    [Google Scholar]
  24. Saeidnia S. Gohari A.R. Kurepaz-Mahmoodabadi M. Mokhber-Dezfuli N. Phytochemistry and pharmacology of berberis species. Pharmacogn. Rev. 2014 8 15 8 15 10.4103/0973‑7847.125517 24600191
    [Google Scholar]
  25. Leeson P.D. Molecular inflation, attrition and the rule of five. Adv. Drug Deliv. Rev. 2016 101 22 33 10.1016/j.addr.2016.01.018 26836397
    [Google Scholar]
  26. Hossain R. Noonong K. Nuinoon M. Majima H.J. Eawsakul K. Sompol P. Rahman M.A. Tangpong J. Network Pharmacology, Molecular Docking, and In Vitro Insights into the Potential of Mitragyna speciosa for Alzheimer’s Disease. Int. J. Mol. Sci. 2024 25 23 13201 10.3390/ijms252313201 39684911
    [Google Scholar]
  27. Liu B. Xiang M. Zhou M. Li C. Xin H. Zhang S. Lin J. Pharmacological effects and mechanisms of danlong oral liquid in asthma airway remodeling: Insights from serum medicinal chemistry, network pharmacology, and experimental validation. J. Ethnopharmacol. 2025 340 119259 10.1016/j.jep.2024.119259 39694425
    [Google Scholar]
  28. Li J. Wang D. Hao X. Li Y. Gao H. Fan Y. Fang B. Guo Y. Exploring the high-quality ingredients and mechanisms of Da Chuanxiong Formula in the treatment of neuropathic pain based on network pharmacology, molecular docking, and molecular dynamics simulation. Biomed. Pharmacother. 2024 178 117195 10.1016/j.biopha.2024.117195 39068852
    [Google Scholar]
  29. Tang D. Chen M. Huang X. Zhang G. Zeng L. Zhang G. Wu S. Wang Y. SRplot: A free online platform for data visualization and graphing. PLoS One 2023 18 11 e0294236 10.1371/journal.pone.0294236 37943830
    [Google Scholar]
  30. Wang Z. Fang L. Han M. Liu K. Zheng Y. Zhan Y. Exploring the mechanism of avenanthramide in the treatment of atherosclerosis based on network pharmacology and molecular docking: An observational study. Medicine 2024 103 51 e40932 10.1097/MD.0000000000040932 39705422
    [Google Scholar]
  31. Liu Y. Yang X. Gan J. Chen S. Xiao Z.X. Cao Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022 50 W1 W159 W164 10.1093/nar/gkac394 35609983
    [Google Scholar]
  32. Yang X. Liu Y. Gan J. Xiao Z.X. Cao Y. FitDock: Protein–ligand docking by template fitting. Brief. Bioinform. 2022 23 3 bbac087 10.1093/bib/bbac087 35289358
    [Google Scholar]
  33. Jo S. Kim T. Iyer V.G. Im, W. CHARMM‐GUI: A web‐based graphical user interface for CHARMM. J. Comput. Chem. 2008 29 11 1859 1865 10.1002/jcc.20945 18351591
    [Google Scholar]
  34. Lee J. Cheng X. Swails J.M. Yeom M.S. Eastman P.K. Lemkul J.A. Wei S. Buckner J. Jeong J.C. Qi Y. Jo S. Pande V.S. Case D.A. Brooks C.L. MacKerell A.D. Klauda J.B. Im, W. CHARMM-GUI input generator for namd, gromacs, amber, openmm, and charmm/openmm simulations using the charmm36 additive force field. J. Chem. Theory Comput. 2016 12 1 405 413 10.1021/acs.jctc.5b00935 26631602
    [Google Scholar]
  35. Liu M. Wang Y. Deng W. Xie J. He Y. Wang L. Zhang J. Cui M. Combining network pharmacology, machine learning, molecular docking and molecular dynamic to explore the mechanism of Chufeng Qingpi decoction in treating schistosomiasis. Front. Cell. Infect. Microbiol. 2024 14 1453529 10.3389/fcimb.2024.1453529 39310787
    [Google Scholar]
  36. Wang F. Liu L. Zhu Z. Aisa H.A. Xin X. Anti-inflammatory effect and mechanism of active parts of Artemisia mongolica in LPS-induced Raw264.7 cells based on network pharmacology analysis. J. Ethnopharmacol. 2024 321 117509 10.1016/j.jep.2023.117509 38030026
    [Google Scholar]
  37. Guo Q. Zhang C. Gao J. Shi W. Liu X. Penehyclidine hydrochloride alleviates LPS-induced inflammatory responses and oxidative stress via ROS/Nrf2/HO-1 activation in RAW264.7 cells. Adv. Clin. Exp. Med. 2025 34 1 101 111 10.17219/acem/183883 38530320
    [Google Scholar]
  38. Zhu H. Li L. Li S. Yan Q. Li F. Effect of water extract from Berberis heteropoda Schrenk roots on diarrhea-predominant irritable bowel syndrome by adjusting intestinal flora. J. Ethnopharmacol. 2019 237 182 191 10.1016/j.jep.2019.03.045 30902748
    [Google Scholar]
  39. Wu H. Zhan K. Rao K. Zheng H. Qin S. Tang X. Huang S. Comparison of five diarrhea-predominant irritable bowel syndrome (IBS-D) rat models in the brain-gut-microbiota axis. Biomed. Pharmacother. 2022 149 112811 10.1016/j.biopha.2022.112811 35303570
    [Google Scholar]
  40. Guo L.Q. Zhou L. Li S.N. Bai J. Shi L.L. Hua F. Zhou P. Integrating network pharmacology and in vivo model to reveal the cardiovascular protective effects of kaempferol-3- O -rutinoside on heart failure. Acta Pharm. 2025 75 1 119 132 10.2478/acph‑2025‑0001 39686653
    [Google Scholar]
  41. Morton A.B. Norton C.E. Jacobsen N.L. Fernando C.A. Cornelison D.D.W. Segal S.S. Barium chloride injures myofibers through calcium-induced proteolysis with fragmentation of motor nerves and microvessels. Skelet. Muscle 2019 9 1 27 10.1186/s13395‑019‑0213‑2 31694693
    [Google Scholar]
  42. Tanahashi Y. Komori S. Matsuyama H. Kitazawa T. Unno T. Functions of muscarinic receptor subtypes in gastrointestinal smooth muscle: A review of studies with receptor-knockout mice. Int. J. Mol. Sci. 2021 22 2 926 10.3390/ijms22020926 33477687
    [Google Scholar]
  43. Wang H.W. Chao P.Z. Lee F.P. Enhanced basal tension in isolated rat tracheal smooth muscle stimulated by electric field stimulation under low temperature. Int. J. Med. Sci. 2018 15 14 1611 1615 10.7150/ijms.27603 30588183
    [Google Scholar]
  44. Zheng Z. Tang J. Hu Y. Zhang W. Role of gut microbiota-derived signals in the regulation of gastrointestinal motility. Front. Med. 2022 9 961703 10.3389/fmed.2022.961703 35935766
    [Google Scholar]
  45. Schreiber D. Jost V. Bischof M. Seebach K. Lammers W.J. Douglas R. Schäfer K-H. Motility patterns of ex vivo intestine segments depend on perfusion mode. World J. Gastroenterol. 2014 20 48 18216 18227 10.3748/wjg.v20.i48.18216 25561789
    [Google Scholar]
  46. Ezebuo F.C. Uzochukwu I.C. Drug repurposing for schistosomiasis: Molecular docking and dynamics investigations. J. Biomol. Struct. Dyn. 2022 40 3 995 1009 10.1080/07391102.2020.1820382 32924851
    [Google Scholar]
  47. Tuo Y. Lu X. Tao F. Tukhvatshin M. Xiang F. Wang X. Shi Y. Lin J. Hu Y. The potential mechanisms of catechins in tea for anti-hypertension: An integration of network pharmacology, molecular docking, and molecular dynamics simulation. Foods 2024 13 17 2685 10.3390/foods13172685 39272451
    [Google Scholar]
  48. Bisht A. Tewari D. Kumar S. Chandra S. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia. Mol. Divers. 2024 28 3 1743 1763 10.1007/s11030‑023‑10684‑w 37439907
    [Google Scholar]
  49. Yamamoto E. Akimoto T. Mitsutake A. Metzler R. Universal relation between instantaneous diffusivity and radius of gyration of proteins in aqueous solution. Phys. Rev. Lett. 2021 126 12 128101 10.1103/PhysRevLett.126.128101 33834804
    [Google Scholar]
  50. Jiang B. Liu J. Qu Z. Wang Y. Wang Y. Li Z. Jin X. Lao Y. He R. Yang S. Mechanism of dihydroartemisinin in the treatment of ischaemia/reperfusion-induced acute kidney injury via network pharmacology, molecular dynamics simulation and experiments. Int. Immunopharmacol. 2025 144 113705 10.1016/j.intimp.2024.113705 39626534
    [Google Scholar]
  51. Gao S. Wang Y. Li D. Guo Y. Zhu M. Xu S. Mao J. Fan G. TanshinoneIIA alleviates inflammatory response and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 Cells. Inflammation 2019 42 1 264 275 10.1007/s10753‑018‑0891‑7 30218320
    [Google Scholar]
  52. Tang B.B. Su C.X. Wen N. Zhang Q. Chen J.H. Liu B.B. Wang Y.Q. Huang C.Q. Hu Y.L. FMT and TCM to treat diarrhoeal irritable bowel syndrome with induced spleen deficiency syndrome- microbiomic and metabolomic insights. BMC Microbiol. 2024 24 1 433 10.1186/s12866‑024‑03592‑y 39455910
    [Google Scholar]
  53. Zheng H. Jin S. Shen Y.L. Peng W.Y. Ye K. Tang T.C. Zhao J. Chen M. Li Z.G. Chinese herbal medicine for irritable bowel syndrome: A meta-analysis and trial sequential analysis of randomized controlled trials. Front. Pharmacol. 2021 12 694741 10.3389/fphar.2021.694741 34385918
    [Google Scholar]
  54. Yue S.J. Liu J. Wang W.X. Wang A.T. Yang X.Y. Guan H.S. Wang C.Y. Yan D. Berberine treatment-emergent mild diarrhea associated with gut microbiota dysbiosis. Biomed. Pharmacother. 2019 116 109002 10.1016/j.biopha.2019.109002 31154270
    [Google Scholar]
  55. Hou Q. Zhu S. Zhang C. Huang Y. Guo Y. Li P. Chen X. Wen Y. Han Q. Liu F. Berberine improves intestinal epithelial tight junctions by upregulating A20 expression in IBS-D mice. Biomed. Pharmacother. 2019 118 109206 10.1016/j.biopha.2019.109206 31306972
    [Google Scholar]
  56. Guo S. Jiang K. Wu H. Yang C. Yang Y. Yang J. Zhao G. Deng G. Magnoflorine ameliorates lipopolysaccharide-induced acute lung injury via Suppressing NF-κB and MAPK Activation. Front. Pharmacol. 2018 9 982 10.3389/fphar.2018.00982 30214410
    [Google Scholar]
  57. Yang X. Gao X. Cao Y. Guo Q. Li S. Zhu Z. Zhao Y. Tu P. Chai X. Anti-Inflammatory effects of boldine and reticuline isolated from litsea cubeba through JAK2/STAT3 and NF-κB Signaling Pathways. Planta Med. 2018 84 1 20 25 10.1055/s‑0043‑113447 28651290
    [Google Scholar]
  58. Koncz P. Szanda G. Fülöp L. Rajki A. Spät A. Mitochondrial Ca2+ uptake is inhibited by a concerted action of p38 MAPK and protein kinase D. Cell Calcium 2009 46 2 122 129 10.1016/j.ceca.2009.06.004 19631981
    [Google Scholar]
  59. Nee J. Lembo A. Review Article: Current and future treatment approaches for IBS with diarrhoea (IBS‐D) and IBS mixed pattern (IBS‐M) Aliment Pharmacol Ther 221 54 S1 S63 S74.(Suppl. 1) 10.1111/apt.16625 34927757
    [Google Scholar]
  60. Tuck C.J. Abu Omar A. De Palma G. Osman S. Jiménez-Vargas N.N. Yu Y. Bennet S.M.P. Lopez-Lopez C. Jaramillo-Polanco J.O. Baker C.C. Bennett A.S.W. Guzman-Rodriguez M. Tsang Q. Alward T. Rolland S. Morissette C. Verdu E.F. Bercik P. Vanner S.J. Lomax A.E. Reed D.E. Changes in signalling from faecal neuroactive metabolites following dietary modulation of IBS pain. Gut 2023 72 9 1678 1691 10.1136/gutjnl‑2022‑327260 36591617
    [Google Scholar]
  61. Chen L. Wei W. Sun J. Sun B. Deng R. Cordycepin enhances anti-tumor immunity in breast cancer by enhanceing ALB expression. Heliyon 2024 10 9 e29903 10.1016/j.heliyon.2024.e29903 38720766
    [Google Scholar]
  62. Jia Q. Zhang L. Zhang J. Pei F. Zhu S. Sun Q. Duan L. Fecal microbiota of diarrhea-predominant irritable bowel syndrome patients causes hepatic inflammation of germ-free rats and berberine reverses it partially. BioMed Res. Int. 2019 2019 1 12 10.1155/2019/4530203 31073525
    [Google Scholar]
  63. Goodman W.A. Bedoyan S.M. Havran H.L. Richardson B. Cameron M.J. Pizarro T.T. Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proc. Natl. Acad. Sci. USA 2020 117 29 17166 17176 10.1073/pnas.2002266117 32632016
    [Google Scholar]
  64. Balasuriya G.K. Nugapitiya S.S. Hill-Yardin E.L. Bornstein J.C. Nitric oxide regulates estrus cycle dependent colonic motility in mice. Front. Neurosci. 2021 15 647555 10.3389/fnins.2021.647555 34658750
    [Google Scholar]
  65. Al-Shboul O. Nazzal M. Mustafa A. Al-Dwairi A. Alqudah M. Abu Omar A. Alfaqih M. Alsalem M. Estrogen relaxes gastric muscle cells via a nitric oxide and cyclic guanosine monophosphate dependent mechanism: A sex associated differential effect. Exp. Ther. Med. 2018 16 3 1685 1692 10.3892/etm.2018.6406 30186388
    [Google Scholar]
  66. Cui X.F. Zhou W.M. Yang Y. Zhou J. Li X.L. Lin L. Zhang H.J. Epidermal growth factor upregulates serotonin transporter and its association with visceral hypersensitivity in irritable bowel syndrome. World J. Gastroenterol. 2014 20 37 13521 13529 10.3748/wjg.v20.i37.13521 25309082
    [Google Scholar]
  67. Gu Y. Wang C. Qin X. Zhou B. Liu X. Liu T. Xie R. Liu J. Wang B. Cao H. Saccharomyces boulardii, a yeast probiotic, inhibits gut motility through upregulating intestinal serotonin transporter and modulating gut microbiota. Pharmacol. Res. 2022 181 106291 10.1016/j.phrs.2022.106291 35690329
    [Google Scholar]
  68. Hong H. Lou S. Zheng F. Gao H. Wang N. Tian S. Huang G. Zhao H. Hydnocarpin D. Hydnocarpin D attenuates lipopolysaccharide-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway. Phytomedicine 2022 101 154143 10.1016/j.phymed.2022.154143 35537248
    [Google Scholar]
  69. Grabauskas G. Wu X. Gao J. Li J.Y. Turgeon D.K. Owyang C. Prostaglandin E2, produced by mast cells in colon tissues from patients with irritable bowel syndrome, contributes to visceral hypersensitivity in mice. Gastroenterology 2020 158 8 2195 2207.e6 10.1053/j.gastro.2020.02.022 32084424
    [Google Scholar]
  70. Bashashati M. Moradi M. Sarosiek I. Interleukin-6 in irritable bowel syndrome: A systematic review and meta-analysis of IL-6 (-G174C) and circulating IL-6 levels. Cytokine 2017 99 8 132 138 10.1016/j.cyto.2017.08.017 28886490
    [Google Scholar]
  71. Ghasemi-Dehnoo M. Lorigooini Z. Amini-Khoei H. Sabzevary-Ghahfarokhi M. Rafieian-Kopaei M. Quinic acid ameliorates ulcerative colitis in rats, through the inhibition of two TLR4‐NF‐κB and NF‐κB‐INOS‐NO signaling pathways. Immun. Inflamm. Dis. 2023 11 8 e926 10.1002/iid3.926 37647443
    [Google Scholar]
  72. Lee S.Y. Cho S.S. Li Y. Bae C.S. Park K.M. Park D.H. Anti-inflammatory Effect of Curcuma longa and Allium hookeri Co-treatment via NF-κB and COX-2 Pathways. Sci. Rep. 2020 10 1 5718 10.1038/s41598‑020‑62749‑7 32235914
    [Google Scholar]
  73. Chen Y.M. Li Y. Wang X. Wang Z.L. Hou J.J. Su S. Zhong W.L. Xu X. Zhang J. Wang B.M. Wang Y.M. Effect of Bacillus subtilis, Enterococcus faecium, and Enterococcus faecalis supernatants on serotonin transporter expression in cells and tissues. World J. Gastroenterol. 2022 28 5 532 546 10.3748/wjg.v28.i5.532 35316963
    [Google Scholar]
  74. Gao J. Xiong T. Grabauskas G. Owyang C. Mucosal serotonin reuptake transporter expression in irritable bowel syndrome is modulated by gut microbiota Via Mast Cell–Prostaglandin E2. Gastroenterology 2022 162 7 1962 1974.e6 10.1053/j.gastro.2022.02.016 35167867
    [Google Scholar]
  75. Ford A.C. Brandt L.J. Young C. Chey W.D. Foxx-Orenstein A.E. Moayyedi P. Efficacy of 5-HT3 antagonists and 5-HT4 agonists in irritable bowel syndrome: Systematic review and meta-analysis. Am. J. Gastroenterol. 2009 104 7 1831 1843 10.1038/ajg.2009.223 19471254
    [Google Scholar]
  76. Tsuchida Y. Hatao F. Fujisawa M. Murata T. Kaminishi M. Seto Y. Hori M. Ozaki H. Neuronal stimulation with 5-hydroxytryptamine 4 receptor induces anti-inflammatory actions via 7nACh receptors on muscularis macrophages associated with postoperative ileus. Gut 2011 60 5 638 647 10.1136/gut.2010.227546 21115544
    [Google Scholar]
  77. Zhang L. Wang R. Bai T. Xiang X. Qian W. Song J. Hou X. EphrinB2/ephB2‐mediated myenteric synaptic plasticity: Mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS. FASEB J. 2019 33 12 13644 13659 10.1096/fj.201901192R 31601124
    [Google Scholar]
  78. Agirman G. Yu K.B. Hsiao E.Y. Signaling inflammation across the gut-brain axis. Science 2021 374 6571 1087 1092 10.1126/science.abi6087 34822299
    [Google Scholar]
  79. Ni Y. Liu M. Yu H. Chen Y. Liu Y. Chen S. Ruan J. Da A. Zhang Y. Wang T. Desmethylbellidifolin From Gentianella acuta Ameliorate TNBS-Induced Ulcerative Colitis Through Antispasmodic Effect and Anti-Inflammation. Front. Pharmacol. 2019 10 1104 10.3389/fphar.2019.01104 31616306
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073421977250903053304
Loading
/content/journals/cchts/10.2174/0113862073421977250903053304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test