Skip to content
2000
image of Network Pharmacology and Computational Study to Identify Active Components and Potential Targets of Polygonatum sibiricum for Hepatocellular Carcinoma Treatment

Abstract

Introduction

() possesses antioxidant and anti-inflammatory activities. We explored the multi-target mechanisms of against hepatocellular carcinoma (HCC), aiming to improve its poor prognosis.

Materials and Methods

Active compounds and disease targets of were retrieved from the TCMSP and CTD databases. A PROTEIN-PROTEIN INTERACTION (PPI) network was constructed using the STRING database, and functional enrichment was performed with the clusterProfiler package. A compound-target-pathway network was developed in Cytoscape. Immune infiltration was assessed via CIBERSORT and ESTIMATE algorithms, while ligand-target binding was evaluated by molecular docking and 100-ns molecular dynamics (MD) simulations. experiments were performed to explore the expression and functions of the key genes.

Results

We screened 9 active components, 87 putative targets, and 240 HCC-related genes.

20 overlapping targets were used to construct a PPI network. Network analysis identified baicalein and 4 core targets (, and ). Molecular docking and 100-ns MD simulations confirmed stable ligand-protein binding. Immune profiling showed that higher expression of the core targets was related to higher StromalScore, ImmuneScore, and lower tumor purity. Enrichment analysis revealed that these genes were involved in critical pathways, including angiogenesis, EMT, and inflammation response. Functionally, knockdown suppressed HCC cell proliferation, migration, and invasion.

Discussion

particularly through baicalein targeting FOS/MMP9/AKT1/ TP53/PTGS2, inhibited HCC development by modulating EMT/angiogenesis pathways and immune milieu. However, these findings required further verification.

Conclusion

Baicalein was identified as an active compound targeting 5 crucial genes to suppress HCC progression, uncovering a new anti-HCC mechanism of .

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073439548251029051037
2025-11-17
2025-11-29
Loading full text...

Full text loading...

References

  1. Cui X. Wang S. Cao H. Guo H. Li Y. Xu F. Zheng M. Xi X. Han C. A review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides. Molecules 2018 23 5 1170 10.3390/molecules23051170 29757991
    [Google Scholar]
  2. Zhao P. Zhao C. Li X. Gao Q. Huang L. Xiao P. Gao W. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2018 214 274 291 10.1016/j.jep.2017.12.006 29246502
    [Google Scholar]
  3. Anbessa B. Lulekal E. Hymete A. Debella A. Debebe E. Abebe A. Degu S. Ethnomedicine, antibacterial activity, antioxidant potential and phytochemical screening of selected medicinal plants in Dibatie district, Metekel zone, western Ethiopia. BMC Complement. Med. Ther. 2024 24 1 199 10.1186/s12906‑024‑04499‑x 38773522
    [Google Scholar]
  4. Wang Y. Ji Y. Meng K. Zhang J. Zhong L. Zhan Q. Zhao L. Effects of different selenium biofortification methods on Pleurotus eryngii polysaccharides: Structural characteristics, antioxidant activity and binding capacity in vitro. Int. J. Biol. Macromol. 2024 275 Pt 1 133214 10.1016/j.ijbiomac.2024.133214 38897526
    [Google Scholar]
  5. Chang X. Zhou S. Liu J. Wang Y. Guan X. Wu Q. Liu Z. Liu R. Zishenhuoxue decoction-induced myocardial protection against ischemic injury through TMBIM6-VDAC1-mediated regulation of calcium homeostasis and mitochondrial quality surveillance. Phytomedicine 2024 132 155331 10.1016/j.phymed.2023.155331 38870748
    [Google Scholar]
  6. Liu D. Tang W. Han C. Nie S. Advances in Polygonatum sibiricum polysaccharides: Extraction, purification, structure, biosynthesis, and bioactivity. Front. Nutr. 2022 9 1074671 10.3389/fnut.2022.1074671 36545471
    [Google Scholar]
  7. Ha E. Hong H. Kim T.D. Hong G. Lee S. Kim S. Kim N. Jeon S.D. Ahn C.W. Kim H.J. Lee Y.J. Yoon S. Kim G.H. Kim J. Efficacy of Polygonatum sibiricum on mild insomnia: A randomized placebo-controlled trial. Nutrients 2019 11 8 1719 10.3390/nu11081719 31349690
    [Google Scholar]
  8. Shen F. Song Z. Xie P. Li L. Wang B. Peng D. Zhu G. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage. J. Ethnopharmacol. 2021 275 114164 10.1016/j.jep.2021.114164 33932516
    [Google Scholar]
  9. Chen Z. Luo J. Jia M. Chai Y. Bao Y. Polygonatum sibiricum saponin exerts beneficial hypoglycemic effects in type 2 diabetes mice by improving hepatic insulin resistance and glycogen synthesis-related proteins. Nutrients 2022 14 24 5222 10.3390/nu14245222 36558381
    [Google Scholar]
  10. Dong Y. Li C. Zhou Y. Yan X. Zhi W. Qian H. Han Y. Exploration of combinational therapeutic strategies for HCC based on TCGA HCC database. Oncologe 2022 24 1 101 111 10.32604/oncologie.2022.020357
    [Google Scholar]
  11. Chandarana C.V. Mithani N.T. Singh D.V. Kikani U.B. Vibrational spectrophotometry: A comprehensive review on the diagnosis of gastric and liver cancer. Curr. Pharm. Anal. 2024 20 7 453 465 10.2174/0115734129322567240821052326
    [Google Scholar]
  12. Nagaraju G.P. Dariya B. Kasa P. Peela S. El-Rayes B.F. Epigenetics in hepatocellular carcinoma. Semin. Cancer Biol. 2022 86 Pt 3 622 632 10.1016/j.semcancer.2021.07.017 34324953
    [Google Scholar]
  13. Vogel A. Meyer T. Sapisochin G. Salem R. Saborowski A. Hepatocellular carcinoma. Lancet 2022 400 10360 1345 1362 10.1016/S0140‑6736(22)01200‑4 36084663
    [Google Scholar]
  14. Ye W. Wang J. Zheng J. Jiang M. Zhou Y. Wu Z. Association between higher expression of vav1 in hepatocellular carcinoma and unfavourable clinicopathological features and prognosis. Protein Pept. Lett. 2024 31 9 706 713 10.2174/0109298665330781240830042601 39301900
    [Google Scholar]
  15. Ganesan P. Kulik L.M. Hepatocellular carcinoma: New developments. Clin. Liver Dis. 2023 27 1 85 102 10.1016/j.cld.2022.08.004 36400469
    [Google Scholar]
  16. Zhao P. Xu Y. Wu A. Hu Y. Cai A. Wang X. Wang F. Chen X. Circular RNA hsa_circ_0016863 regulates the proliferation, migration, invasion and apoptosis of hepatocellular carcinoma. Oncologie 2021 23 4 589 601 10.32604/oncologie.2021.018713
    [Google Scholar]
  17. Llovet J.M. Kelley R.K. Villanueva A. Singal A.G. Pikarsky E. Roayaie S. Lencioni R. Koike K. Zucman-Rossi J. Finn R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021 7 1 6 10.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  18. Hwang S.Y. Danpanichkul P. Agopian V. Mehta N. Parikh N.D. Abou-Alfa G.K. Singal A.G. Yang J.D. Hepatocellular carcinoma: Updates on epidemiology, surveillance, diagnosis and treatment. Clin. Mol. Hepatol. 2025 31 Suppl. S228 S254 10.3350/cmh.2024.0824 39722614
    [Google Scholar]
  19. Li M. Liu Y. Zhang H. Liu Y. Wang W. You S. Hu X. Song M. Wu R. Wu J. Anti-cancer potential of polysaccharide extracted From Polygonatum sibiricum on HepG2 cells via cell cycle arrest and apoptosis. Front. Nutr. 2022 9 938290 10.3389/fnut.2022.938290 35903453
    [Google Scholar]
  20. Long T. Liu Z. Shang J. Zhou X. Yu S. Tian H. Bao Y. Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways. Int. J. Biol. Macromol. 2018 111 813 821 10.1016/j.ijbiomac.2018.01.070 29343453
    [Google Scholar]
  21. Xia S. Tao H. Su S. Chen X. Ma L. Li J. Gao B. Liu X. Pi L. Feng J. Li F. Li J. Zhang Z. DNA methylation variation is identified in monozygotic twins discordant for congenital heart diseases. Congenit. Heart Dis. 2024 19 2 247 256 10.32604/chd.2024.052583
    [Google Scholar]
  22. Pei J. Peng J. Wu M. Zhan X. Wang D. Zhu G. Wang W. An N. Pan X. Analyzing the potential targets and mechanisms of chronic kidney disease induced by common synthetic Endocrine Disrupting Compounds (EDCs) in Chinese surface water environment using network toxicology and molecular docking techniques. Sci. Total Environ. 2025 958 177980 10.1016/j.scitotenv.2024.177980 39657341
    [Google Scholar]
  23. Rakhshani H. Dehghanian E. Rahati A. Enhanced GROMACS: Toward a better numerical simulation framework. J. Mol. Model. 2019 25 12 355 10.1007/s00894‑019‑4232‑z 31768713
    [Google Scholar]
  24. Chen D. Xu L. Xing H. Shen W. Song Z. Li H. Zhu X. Li X. Wu L. Jiao H. Li S. Yan J. He Y. Yan D. Sangerbox 2: Enhanced functionalities and update for a comprehensive clinical bioinformatics data analysis platform. iMeta 2024 3 5 238 10.1002/imt2.238 39429873
    [Google Scholar]
  25. Lee C.J. Jang T.Y. Jeon S.E. Yun H.J. Cho Y.H. Lim D.Y. Nam J.S. The dysadherin/MMP9 axis modifies the extracellular matrix to accelerate colorectal cancer progression. Nat. Commun. 2024 15 1 10422 10.1038/s41467‑024‑54920‑9 39613801
    [Google Scholar]
  26. Song P. Shen N. Wu Z. He S. Baicalein inhibits tumor property of hepatocellular carcinoma cells through the inactivation of the E2F transcription factor 1/mediator complex subunit 7 axis. Chem. Biol. Drug Des. 2025 105 2 70063 10.1111/cbdd.70063 39935236
    [Google Scholar]
  27. Qi J. Li J. Bie B. Shi M. Zhu M. Tian J. Zhu K. Sun J. Mu Y. Li Z. Guo Y. miR ‐3,178 contributes to the therapeutic action of baicalein against hepatocellular carcinoma cells via modulating HDAC10. Phytother. Res. 2023 37 1 295 309 10.1002/ptr.7613 36070933
    [Google Scholar]
  28. Liu R. Zhang X. Cai Y. Xu S. Xu Q. Ling C. Li X. Li W. Liu P. Liu W. Research progress on medicinal components and pharmacological activities of Polygonatum sibiricum. J. Ethnopharmacol. 2024 328 118024 10.1016/j.jep.2024.118024 38484952
    [Google Scholar]
  29. Bie B. Sun J. Guo Y. Li J. Jiang W. Yang J. Huang C. Li Z. Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma. Biomed. Pharmacother. 2017 93 1285 1291 10.1016/j.biopha.2017.07.068 28747003
    [Google Scholar]
  30. Wang W. Tang Y. Zhuo X. Yang J. Gao Z. Li C. Wu C. Qian J. Xie F. Shen H. Wang D. Baicalein targets MAPK9 to induce apoptosis of hepatocellular carcinoma cells. Chem. Biol. Drug Des. 2024 104 3 14623 10.1111/cbdd.14623 39279715
    [Google Scholar]
  31. Zhang S. Yuan L. Danilova L. Mo G. Zhu Q. Deshpande A. Bell A.T.F. Elisseeff J. Popel A.S. Anders R.A. Jaffee E.M. Yarchoan M. Fertig E.J. Kagohara L.T. Spatial transcriptomics analysis of neoadjuvant cabozantinib and nivolumab in advanced hepatocellular carcinoma identifies independent mechanisms of resistance and recurrence. Genome Med. 2023 15 1 72 10.1186/s13073‑023‑01218‑y 37723590
    [Google Scholar]
  32. Chiu Y.T. Husain A. Sze K.M.F. Ho D.W.H. Suarez E.M.S. Wang X. Lee E. Ma H.T. Lee J.M.F. Chan L.K. Ng I.O.L. Midline 1 interacting protein 1 promotes cancer metastasis through FOS-like 1-mediated matrix metalloproteinase 9 signaling in HCC. Hepatology 2023 78 5 1368 1383 10.1097/HEP.0000000000000266 36632999
    [Google Scholar]
  33. Wang C. Yao B. Xu M. Zheng X. RIP1 upregulation promoted tumor progression by activating AKT/Bcl-2/BAX signaling and predicted poor postsurgical prognosis in HCC. Tumour Biol. 2016 37 11 15305 15313 10.1007/s13277‑016‑5342‑1 27699664
    [Google Scholar]
  34. Yu J. Ling S. Hong J. Zhang L. Zhou W. Yin L. Xu S. Que Q. Wu Y. Zhan Q. Bao J. Xu N. Liu Y. Chen K. Wei X. Liu Z. Feng T. Zhou L. Xie H. Wang S. Liu J. Zheng S. Xu X. TP53/mTORC1-mediated bidirectional regulation of PD-L1 modulates immune evasion in hepatocellular carcinoma. J. Immunother. Cancer 2023 11 11 007479 10.1136/jitc‑2023‑007479 38030304
    [Google Scholar]
  35. Wu L. Chen H.Y. Zhang J.T. Yang R.Y. Wang Z.B. Xue P.S. Peng W. Li K.X. Gao W.H. Zeng P.H. Chlorogenic acid induces hepatocellular carcinoma cell ferroptosis via PTGS2/AKR1C3/GPX4 axis-mediated reprogramming of arachidonic acid metabolism. World J. Gastrointest. Oncol. 2025 17 3 98844 10.4251/wjgo.v17.i3.98844 40092947
    [Google Scholar]
  36. Zhao L. Sun X. Chen L. Feng X. Yang X. Zou P. Wang X. Zhang R. Hepatitis C virus core protein promotes the metastasis of human hepatocytes by activating the MAPK/ERK/PEA3-SRF/c-Fos/MMPs axis. Arch. Med. Res. 2022 53 5 469 482 10.1016/j.arcmed.2022.06.004 35817647
    [Google Scholar]
  37. Zhao Y. Xu X. Wang Y. Wu L.D. Luo R.L. Xia R.P. Tumor purity–associated genes influence hepatocellular carcinoma prognosis and tumor microenvironment. Front. Oncol. 2023 13 1197898 10.3389/fonc.2023.1197898 37434985
    [Google Scholar]
  38. Naik A. Thomas R. Al-Khalifa A. Qasem H. Decock J. Immunomodulatory effects of tumor Lactate Dehydrogenase C (LDHC) in breast cancer. Cell Commun. Signal. 2025 23 1 145 10.1186/s12964‑025‑02139‑6 40108668
    [Google Scholar]
  39. Wang P. Tong K. Li Y. Li X. Zhang Y. Gu J. Lei P. Yan S. Hu P. The role and mechanism of HIF-1α-mediated glypican-3 secretion in hypoxia-induced tumor progression in hepatocellular carcinoma. Cell. Signal. 2024 114 111007 10.1016/j.cellsig.2023.111007 38081444
    [Google Scholar]
  40. Leslie J. Geh D. Elsharkawy A.M. Mann D.A. Vacca M. Metabolic dysfunction and cancer in HCV: Shared pathways and mutual interactions. J. Hepatol. 2022 77 1 219 236 10.1016/j.jhep.2022.01.029 35157957
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073439548251029051037
Loading
/content/journals/cchts/10.2174/0113862073439548251029051037
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test