Skip to content
2000
image of Exploring the Therapeutic Mechanism of Chai-hu Long-gu Mu-li Decoction for Treating Insomnia and Anxiety disorders based on Network pharmacology and Experimental Validation

Abstract

Introduction

Chai-hu Longgu Muli decoction (CLMD) is a classic traditional Chinese herbal formula that has achieved good curative effects in treating insomnia and anxiety disorders clinically. However, the dual-targeting mechanism of CLMD on these two distinct diseases remains unclear. This study aims to explore the potential therapeutic effects and underlying mechanism of CLMD on insomnia and anxiety through the integration of network pharmacology, molecular docking, and zebrafish experiments.

Methods

By combining network pharmacology and molecular docking, an integrative method was employed to analyze the potential molecular mechanism, and therapeutically effective components of CLMD on both insomnia and anxiety. In the verification experiment, the caffeine-induced insomnia and anxiety model of zebrafish was constructed to further verify the common mechanism underlying the dual-effects of CLMD.

Results

A total of 97 dual-effects active compounds and 118 common targets of CLMD were identified. The targets with a higher degree were identified through the PPI network, including IL6, AKT1, TNF, ALB, and TP53. KEGG pathway analysis demonstrated that these targets were correlated to Neuroactive ligand-receptor interaction, TNF signaling pathway, Dopaminergic synapse, and PI3K-Akt signaling pathway. Results of molecular docking indicated good binding affinity of CLMD to IL6, AKT1, and TNF. Animal experiments showed that CLMD markedly altered sleep/wake behavior, decreased thigmotaxis (an indicator of anxiety levels), and also significantly reduced the expression of TNF-α after treatment.

Discussion

The findings suggest that the dual therapeutic effects of CLMD on insomnia and anxiety were predominantly related to the regulation of neurotransmission and inflammatory response.

Conclusion

This study provides new insight into the molecular mechanisms underlying the homotherapy-for-heteropathy efficacy of CLMD in treating both insomnia and anxiety.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073388549250828182807
2025-09-18
2025-11-29
Loading full text...

Full text loading...

References

  1. Dopheide J.A. Insomnia overview: Epidemiology, pathophysiology, diagnosis and monitoring, and nonpharmacologic therapy. Am. J. Manag. Care 2020 26 4 S76 S84 [PMID: 32282177
    [Google Scholar]
  2. Palagini L. Hertenstein E. Riemann D. Nissen C. Sleep, insomnia and mental health. J. Sleep Res. 2022 31 4 e13628 10.1111/jsr.13628 35506356
    [Google Scholar]
  3. Lim D.C. Najafi A. Afifi L. Bassetti C.L.A. Buysse D.J. Han F. Högl B. Melaku Y.A. Morin C.M. Pack A.I. Poyares D. Somers V.K. Eastwood P.R. Zee P.C. Jackson C.L. The need to promote sleep health in public health agendas across the globe. Lancet Public Health 2023 8 10 e820 e826 10.1016/S2468‑2667(23)00182‑2 37777291
    [Google Scholar]
  4. Bollu P.C. Kaur H. Sleep Medicine: Insomnia and Sleep. Mo. Med. 2019 116 1 68 75 [PMID: 30862990
    [Google Scholar]
  5. Meyer N. Lok R. Schmidt C. Kyle S.D. McClung C.A. Cajochen C. Scheer F.A.J.L. Jones M.W. Chellappa S.L. The sleep–circadian interface: A window into mental disorders. Proc. Natl. Acad. Sci. USA 2024 121 9 e2214756121 10.1073/pnas.2214756121 38394243
    [Google Scholar]
  6. Liu H.L. Jin Z.X. Su K.L. Wang P.Q. Xiong X.J. Clinical application of Chaihu Jia Longgu Muli Decoction based on modern pathophysiology mechanism. Zhongguo Zhongyao Zazhi 2023 48 10 2620 2624 [Clinical application of Chaihu Jia Longgu Muli Decoction based on modern pathophysiology mechanism 37282922
    [Google Scholar]
  7. Zhou Y. Tian T. Pan J. He P. Hong R. Meta-analysis of Chaihu plus longgu muli decoction in the treatment of coronary heart disease complicated with anxiety and depression. Trad. Chin. Drug Res. Clin. Pharmacol. 2022 33 10 1435 1444 10.19378/j.issn.1003‑9783.2022.10.019
    [Google Scholar]
  8. Wang X. Ju J. Li J. Fan Y. Xu H. Chaihu Longgu Muli decoction, a Chinese herbal formula, for the treatment of insomnia. Medicine (Baltimore) 2020 99 40 e22462 10.1097/MD.0000000000022462 33019437
    [Google Scholar]
  9. Jin X. Zhang W. Zhang D. To explore the mechanism of Chaihu plus Longgu Muli decoction in the treatment of insomnia rats based on MEK/ERK pathway. Pharmacol. Clin. Tradit. Chin. Med. 2020 36 51 54
    [Google Scholar]
  10. Cao X. Peng X. Li G. Ding W. Wang K. Wang X. Xiong Y. Xiong W. Li F. Song M. Chaihu-Longgu-Muli decoction improves sleep disorders by restoring orexin-A function in CKD mice. Front. Endocrinol. 2023 14 1206353 10.3389/fendo.2023.1206353 37441503
    [Google Scholar]
  11. Wu T. Dong H. Liu Y. Cao Z. Sun, L Combination of UPLC-Q-TOF/MS and network pharmacology to reveal the mechanism of Chaihu jia Longgu Muli decoction for treating vertigo with anxiety disorder. Biomed. Chromatogr. 2024 38 7 e5881 10.1002/bmc.5881 38763770
    [Google Scholar]
  12. Berman H.M. Battistuz T. Bhat T.N. Bluhm W.F. Bourne P.E. Burkhardt K. Feng Z. Gilliland G.L. Iype L. Jain S. Fagan P. Marvin J. Padilla D. Ravichandran V. Schneider B. Thanki N. Weissig H. Westbrook J.D. Zardecki C. The Protein Data Bank Acta. Crystallogr. D. Biol. Crystallogr. 2002 58 Pt 6 No 1 899 907 10.1107/S0907444902003451 12037327
    [Google Scholar]
  13. Bateman A. Martin M-J. Orchard S. Magrane M. Agivetova R. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bursteinas B. Bye-A-Jee H. Coetzee R. Cukura A. Da Silva A. Denny P. Dogan T. Ebenezer T.G. Fan J. Castro L.G. Garmiri P. Georghiou G. Gonzales L. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Jokinen P. Joshi V. Jyothi D. Lock A. Lopez R. Luciani A. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Menchi M. Mishra A. Moulang K. Nightingale A. Oliveira C.S. Pundir S. Qi G. Raj S. Rice D. Lopez M.R. Saidi R. Sampson J. Sawford T. Speretta E. Turner E. Tyagi N. Vasudev P. Volynkin V. Warner K. Watkins X. Zaru R. Zellner H. Bridge A. Poux S. Redaschi N. Aimo L. Argoud-Puy G. Auchincloss A. Axelsen K. Bansal P. Baratin D. Blatter M-C. Bolleman J. Boutet E. Breuza L. Casals-Casas C. de Castro E. Echioukh K.C. Coudert E. Cuche B. Doche M. Dornevil D. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gehant S. Gerritsen V. Gos A. Gruaz-Gumowski N. Hinz U. Hulo C. Hyka-Nouspikel N. Jungo F. Keller G. Kerhornou A. Lara V. Le Mercier P. Lieberherr D. Lombardot T. Martin X. Masson P. Morgat A. Neto T.B. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Pozzato M. Pruess M. Rivoire C. Sigrist C. Sonesson K. Stutz A. Sundaram S. Tognolli M. Verbregue L. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Garavelli J.S. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Yeh L-S. Zhang J. Ruch P. Teodoro D. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 49 D1 D480 D489 10.1093/nar/gkaa1100 33237286
    [Google Scholar]
  14. Safran M. Chalifa-Caspi V. Shmueli O. Olender T. Lapidot M. Rosen N. Shmoish M. Peter Y. Glusman G. Feldmesser E. Adato A. Peter I. Khen M. Atarot T. Groner Y. Lancet D. Human gene-centric databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Res. 2003 31 1 142 146 10.1093/nar/gkg050 12519968
    [Google Scholar]
  15. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  16. Doncheva N.T. Morris J.H. Gorodkin J. Jensen L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res. 2019 18 2 623 632 10.1021/acs.jproteome.8b00702 30450911
    [Google Scholar]
  17. Udhaya Kumar S. Madhana Priya N. Thirumal Kumar D. Anu Preethi V. Kumar V. Nagarajan D. Magesh R. Younes S. Zayed H. George Priya Doss C. An integrative analysis to distinguish between emphysema (EML) and alpha-1 antitrypsin deficiency-related emphysema (ADL)—A systems biology approach. Adv. Protein Chem. Struct. Biol. 2021 127 315 342 10.1016/bs.apcsb.2021.02.004 34340772
    [Google Scholar]
  18. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211 19131956
    [Google Scholar]
  19. Hung K.S. Hsiao C.C. Pai T.W. Hu C.H. Tzou W.S. Wang W.D. Chen Y.R. Functional enrichment analysis based on long noncoding RNA associations. BMC Syst. Biol. 2018 12 S4 45 10.1186/s12918‑018‑0571‑0 29745842
    [Google Scholar]
  20. Acta Crystallogr 2002
    [Google Scholar]
  21. Aho V. Vainikka M. Puttonen H.A.J. Ikonen H.M.K. Salminen T. Panula P. Porkka-Heiskanen T. Wigren H.K. Homeostatic response to sleep/rest deprivation by constant water flow in larval zebrafish in both dark and light conditions. J. Sleep Res. 2017 26 3 394 400 10.1111/jsr.12508 28251715
    [Google Scholar]
  22. Richendrfer H. Pelkowski S.D. Colwill R.M. Creton R. On the edge: Pharmacological evidence for anxiety-related behavior in zebrafish larvae. Behav. Brain Res. 2012 228 1 99 106 10.1016/j.bbr.2011.11.041 22155488
    [Google Scholar]
  23. Yehuda H. Madrer N. Goldberg D. Soreq H. Meerson A. Inversely regulated inflammation-related processes mediate anxiety–obesity links in zebrafish larvae and adults. Cells 2023 12 13 1794 10.3390/cells12131794 37443828
    [Google Scholar]
  24. Ricarte M. Prats E. Bedrossiantz J. Raldúa D. Analysis of sleep/wake cycles in zebrafish larvae. MethodsX 2024 12 102492 10.1016/j.mex.2023.102492 38089153
    [Google Scholar]
  25. Rihel J. Prober D.A. Arvanites A. Lam K. Zimmerman S. Jang S. Haggarty S.J. Kokel D. Rubin L.L. Peterson R.T. Schier A.F. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 2010 327 5963 348 351 10.1126/science.1183090 20075256
    [Google Scholar]
  26. Lucon-Xiccato T. Loosli F. Conti F. Foulkes N.S. Bertolucci C. Comparison of anxiety-like and social behaviour in medaka and zebrafish. Sci. Rep. 2022 12 1 10926 10.1038/s41598‑022‑14978‑1 35764691
    [Google Scholar]
  27. Connaughton V.P. Clayman C.L. Neurochemical and behavioral consequences of ethanol and/or caffeine exposure: Effects in zebrafish and rodents. Curr. Neuropharmacol. 2022 20 3 560 578 10.2174/1570159X19666211111142027 34766897
    [Google Scholar]
  28. Johnson E.O. Roth T. Breslau N. The association of insomnia with anxiety disorders and depression: Exploration of the direction of risk. J. Psychiatr. Res. 2006 40 8 700 708 10.1016/j.jpsychires.2006.07.008 16978649
    [Google Scholar]
  29. Seo J. Pace-Schott E.F. Milad M.R. Song H. Germain A. Partial and total sleep deprivation interferes with neural correlates of consolidation of fear extinction memory. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021 6 3 299 309 [PMID: 33279459
    [Google Scholar]
  30. Chellappa S.L. Aeschbach D. Sleep and anxiety: From mechanisms to interventions. Sleep Med. Rev. 2022 61 101583 10.1016/j.smrv.2021.101583 34979437
    [Google Scholar]
  31. Van Someren E.J.W. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol. Rev. 2021 101 3 995 1046 10.1152/physrev.00046.2019 32790576
    [Google Scholar]
  32. Riemann D. Benz F. Dressle R.J. Espie C.A. Johann A.F. Blanken T.F. Leerssen J. Wassing R. Henry A.L. Kyle S.D. Spiegelhalder K. Van Someren E.J.W. Insomnia disorder: State of the science and challenges for the future. J. Sleep Res. 2022 31 4 e13604 10.1111/jsr.13604 35460140
    [Google Scholar]
  33. Jia X. Chen J. Huang R. Wang D. Wang X. Effect-enhancing and toxicity-reducing effects of Chaihu Jia Longgu Muli decoction in the treatment of multimorbidity with depression: A systematic review and meta-analysis. Pharm. Biol. 2023 61 1 1094 1106 10.1080/13880209.2023.2228356 37439185
    [Google Scholar]
  34. Wu J. Zhang F. Li Z. Jin W. Shi Y. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review. J. Tradit. Chin. Med. 2022 42 3 479 486 10.19852/j.cnki.jtcm.20220408.003 35610020
    [Google Scholar]
  35. Zhao L. Zhang H. Li N. Chen J. Xu H. Wang Y. Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  36. Bappi M.H. Mia M.N. Ansari S.A. Ansari I.A. Prottay A.A.S. Akbor M.S. El-Nashar H.A.S. El-Shazly M. Mubarak M.S. Torequl Islam M. Quercetin increases the antidepressant-like effects of sclareol and antagonizes diazepam in thiopental sodium-induced sleeping mice: A possible GABAergic transmission intervention. Phytother. Res. 2024 38 5 2198 2214 10.1002/ptr.8139 38414297
    [Google Scholar]
  37. Hossain R. Al-Khafaji K. Khan R.A. Sarkar C. Islam M.S. Dey D. Jain D. Faria F. Akbor R. Atolani O. Oliveira S.M.R. Siyadatpanah A. Pereira M.L. Islam M.T. Quercetin and/or ascorbic acid modulatory effect on phenobarbital-induced sleeping mice possibly through GABAA and GABAB receptor interaction pathway. Pharmaceuticals 2021 14 8 721 10.3390/ph14080721 34451819
    [Google Scholar]
  38. Liu W.L. Wu B.F. Shang J.H. Zhao Y.L. Huang A.X. Moringa oleifera lam seed oil augments pentobarbital-induced sleeping behaviors in mice via GABAergic systems. J. Agric. Food Chem. 2020 68 10 3149 3162 10.1021/acs.jafc.0c00037 32062961
    [Google Scholar]
  39. Chiang M.C. Tsai T.Y. Wang C.J. The potential benefits of quercetin for brain health: A review of anti-inflammatory and neuroprotective mechanisms. Int. J. Mol. Sci. 2023 24 7 6328 10.3390/ijms24076328 37047299
    [Google Scholar]
  40. Panayotis N. Freund P.A. Marvaldi L. Shalit T. Brandis A. Mehlman T. Tsoory M.M. Fainzilber M. β-sitosterol reduces anxiety and synergizes with established anxiolytic drugs in mice. Cell Rep. Med. 2021 2 5 100281 10.1016/j.xcrm.2021.100281 34095883
    [Google Scholar]
  41. Vafaei A. Vafaeian A. Iranmehr A. Nassireslami E. Hasannezhad B. Hosseini Y. Effects of β-sitosterol on anxiety in migraine-induced rats: The role of oxidative/nitrosative stress and mitochondrial function. CNS Neurosci. Ther. 2024 30 9 e14892 10.1111/cns.14892 39301958
    [Google Scholar]
  42. Yadav M. Parle M. Jindal D.K. Dhingra S. Protective effects of stigmasterol against ketamine-induced psychotic symptoms: Possible behavioral, biochemical and histopathological changes in mice. Pharmacol. Rep. 2018 70 3 591 599 10.1016/j.pharep.2018.01.001 29679883
    [Google Scholar]
  43. Niraula A. Witcher K.G. Sheridan J.F. Godbout J.P. Interleukin-6 induced by social stress promotes a unique transcriptional signature in the monocytes that facilitate anxiety. Biol. Psychiatry 2019 85 8 679 689 10.1016/j.biopsych.2018.09.030 30447911
    [Google Scholar]
  44. Veler H. Sleep and Inflammation. Sleep Med. Clin. 2023 18 2 213 218 10.1016/j.jsmc.2023.02.003 37120163
    [Google Scholar]
  45. Fernandes G.L. Araujo P. Tufik S. Andersen M.L. The role of IL-6 and STAT in sleep and neuroinflammation. Clin. Immunol. 2017 180 58 59 10.1016/j.clim.2017.04.004 28396237
    [Google Scholar]
  46. Chen F. Sun J. Chen C. Zhang Y. Zou L. Zhang Z. Chen M. Wu H. Tian W. Liu Y. Xu Y. Luo H. Zhu M. Yu J. Wang Q. Wang K. Quercetin mitigates methamphetamine-induced anxiety-like behavior through ameliorating mitochondrial dysfunction and neuroinflammation. Front. Mol. Neurosci. 2022 15 829886 10.3389/fnmol.2022.829886 35295707
    [Google Scholar]
  47. Yang D.F. Huang W.C. Wu C.W. Huang C.Y. Yang Y.C.S.H. Tung Y.T. Acute sleep deprivation exacerbates systemic inflammation and psychiatry disorders through gut microbiota dysbiosis and disruption of circadian rhythms. Microbiol. Res. 2023 268 127292 10.1016/j.micres.2022.127292 36608535
    [Google Scholar]
  48. Kemp G.M. Altimimi H.F. Nho Y. Heir R. Klyczek A. Stellwagen D. Sustained TNF signaling is required for the synaptic and anxiety-like behavioral response to acute stress. Mol. Psychiatry 2022 27 11 4474 4484 10.1038/s41380‑022‑01737‑x 36104437
    [Google Scholar]
  49. Tsimberidou A.M. Skliris A. Valentine A. Shaw J. Hering U. Vo H.H. Chan T.O. Armen R.S. Cottrell J.R. Pan J.Q. Tsichlis P.N. AKT inhibition in the central nervous system induces signaling defects resulting in psychiatric symptomatology. Cell Biosci. 2022 12 1 56 10.1186/s13578‑022‑00793‑8 35525984
    [Google Scholar]
  50. Prather A.A. Vogelzangs N. Penninx B.W.J.H. Sleep duration, insomnia, and markers of systemic inflammation: Results from the Netherlands Study of Depression and Anxiety (NESDA). J. Psychiatr. Res. 2015 60 95 102 10.1016/j.jpsychires.2014.09.018 25307717
    [Google Scholar]
  51. Chan K.L. Poller W.C. Swirski F.K. Russo S.J. Central regulation of stress-evoked peripheral immune responses. Nat. Rev. Neurosci. 2023 24 10 591 604 10.1038/s41583‑023‑00729‑2 37626176
    [Google Scholar]
  52. Guo B. Zhang M. Hao W. Wang Y. Zhang T. Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl. Psychiatry 2023 13 1 5 10.1038/s41398‑022‑02297‑y 36624089
    [Google Scholar]
  53. Wu H.B. Xiao Y.G. Chen J.S. Qiu Z.K. The potential mechanism of Bupleurum against anxiety was predicted by network pharmacology study and molecular docking. Metab. Brain Dis. 2022 37 5 1609 1639 10.1007/s11011‑022‑00970‑1 35366129
    [Google Scholar]
  54. Kim R.E. Mabunga D.F. Kim H.J. Han S.H. Kim H.Y. Shin C.Y. Kwon K.J. Novel Therapeutics for Treating Sleep Disorders: New Perspectives on Maydis stigma. Int. J. Mol. Sci. 2022 23 23 14612 10.3390/ijms232314612 36498940
    [Google Scholar]
  55. Giménez-Llort L. Santana-Santana M. Bayascas J.R. The impact of the PI3K/Akt signaling pathway in anxiety and working memory in young and middle-aged PDK1 K465E knock-in mice. Front. Behav. Neurosci. 2020 14 61 10.3389/fnbeh.2020.00061 32457586
    [Google Scholar]
  56. Sánchez-Alegría K. Flores-León M. Avila-Muñoz E. Rodríguez-Corona N. Arias C. PI3K signaling in neurons: A central node for the control of multiple functions. Int. J. Mol. Sci. 2018 19 12 3725 10.3390/ijms19123725 30477115
    [Google Scholar]
  57. Kumar M. Bansal N. Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer’s Disease. Mol. Neurobiol. 2022 59 1 354 385 10.1007/s12035‑021‑02611‑7 34699027
    [Google Scholar]
  58. Ma Q. Zhou J. Yang Z. Xue Y. Xie X. Li T. Yang Y. Mingmu Xiaoyao granules regulate the PI3K/Akt/mTOR signaling pathway to reduce anxiety and depression and reverse retinal abnormalities in rats. Front. Pharmacol. 2022 13 1003614 10.3389/fphar.2022.1003614 36278192
    [Google Scholar]
  59. Zhao Y. Xu D. Wang J. Zhou D. Liu A. Sun Y. Yuan Y. Li J. Guo W. The pharmacological mechanism of chaihu-jia-longgu-muli-tang for treating depression: Integrated meta-analysis and network pharmacology analysis. Front. Pharmacol. 2023 14 1257617 10.3389/fphar.2023.1257617 37808199
    [Google Scholar]
  60. Liu Y. Liu D. Wang Z. Zhao C. Miao J. Baicalein alleviates TNF-α-induced apoptosis of human nucleus pulposus cells through PI3K/AKT signaling pathway. J. Orthop. Surg. Res. 2023 18 1 292 10.1186/s13018‑023‑03759‑9 37041597
    [Google Scholar]
  61. Xu C. Feng C. Huang P. Li Y. Liu R. Liu C. Han Y. Chen L. Ding Y. Shao C. Shi Y. TNFα and IFNγ rapidly activate PI3K-AKT signaling to drive glycolysis that confers mesenchymal stem cells enhanced anti-inflammatory property. Stem Cell Res. Ther. 2022 13 1 491 10.1186/s13287‑022‑03178‑3 36195887
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073388549250828182807
Loading
/content/journals/cchts/10.2174/0113862073388549250828182807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test