Skip to content
2000
image of Formononetin Alleviates MNNG-Triggered Chronic Atrophic Gastritis: Its Potential Mechanisms

Abstract

Introduction

Chronic atrophic gastritis (CAG) is the initial phase in the carcinogenesis of gastric cancer (GC). Therefore, effective treatment for CAG is important in reducing the risk of GC progression. As an isoflavone compound, formononetin (FMN) has been identified as a potential therapeutic agent for acute gastric ulcers and GC. However, no study has reported the protective effect of FMN against CAG and its underlying mechanism. This study aimed to explore the therapeutic effects of FMN on CAG and its underlying mechanisms

Methods

Network pharmacology was applied to predict the core targets of FMN therapy in CAG. The CAG cell model was developed using N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-triggered human gastric epithelial cells (GES-1). The CCK-8 assay was applied to estimate cellular viability. The expression of inflammatory cytokines in cell supernatant was detected by ELISA. The protein levels and localization of nuclear receptor coactivator 1 (NCOA1), c-Jun, and c-Fos were evaluated using western blotting and immunofluorescence staining. Cell apoptosis was measured using flow cytometry.

Results

Network pharmacology analysis identified c-Jun as the core target of FMN in the treatment of CAG, with biological processes primarily involving the regulation of apoptosis and inflammation. , MNNG exposure reduced GES-1 cell viability as well as increased inflammation and cellular apoptosis, and these effects were reversed by FMN treatment. In detail, FMN decreased the protein levels of NCOA1, c-Jun, and c-Fos in MNNG-triggered GES-1 cells. The activator protein-1 (AP-1) inhibitor T-5224 enhanced the effects of FMN treatment on cell viability, inflammatory response, and apoptosis in MNNG-triggered GES-1 cells.

Discussion

This study employed network pharmacology analysis to identify FMN's therapeutic targets for CAG and validated the underlying mechanisms in vitro. While these results are promising, in vivo validation is required to confirm the efficacy of FMN. A comparative pharmacological evaluation against existing therapeutic agents and bioactive compounds would further elucidate FMN's therapeutic potential for CAG treatment.

Conclusion

FMN ameliorated the cell damage that MNNG triggered in GES-1 cells. The mechanism involved the anti-inflammatory and anti-apoptotic effects of FMN modulation of the NCOA1/AP-1 signaling axis. The present preliminary study found FMN to exhibit a potential therapeutic effect against CAG.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073409559250618212035
2025-07-03
2025-09-14
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073409559250618212035/BMS-CCHTS-2025-276.html?itemId=/content/journals/cchts/10.2174/0113862073409559250618212035&mimeType=html&fmt=ahah

References

  1. Yin Y. Liang H. Wei N. Zheng Z. Prevalence of chronic atrophic gastritis worldwide from 2010 to 2020: An updated systematic review and meta-analysis. Ann. Palliat. Med. 2022 11 12 3697 3703 10.21037/apm‑21‑1464 36635994
    [Google Scholar]
  2. Kuang W. Xu J. Xu F. Huang W. Majid M. Shi H. Yuan X. Ruan Y. Hu X. Current study of pathogenetic mechanisms and therapeutics of chronic atrophic gastritis: A comprehensive review. Front. Cell Dev. Biol. 2024 12 1513426 10.3389/fcell.2024.1513426 39720008
    [Google Scholar]
  3. Liao W. Wang J. Li Y. Natural products based on Correa’s cascade for the treatment of gastric cancer trilogy: Current status and future perspective. J. Pharm. Anal. 2025 15 2 101075 10.1016/j.jpha.2024.101075 39957902
    [Google Scholar]
  4. Yang H. Yang W.J. Hu B. Gastric epithelial histology and precancerous conditions. World J. Gastrointest. Oncol. 2022 14 2 396 412 10.4251/wjgo.v14.i2.396 35317321
    [Google Scholar]
  5. Li J. Pan J. Xiao D. Shen N. Wang R. Miao H. Pu P. Zhang H. Yv X. Xing L. Chronic atrophic gastritis and risk of incident upper gastrointestinal cancers: a systematic review and meta-analysis. J. Transl. Med. 2024 22 1 429 10.1186/s12967‑023‑04736‑w 38711123
    [Google Scholar]
  6. Tian G. Wu C. Li J. Liang B. Zhang F. Fan X. Li Z. Wang Y. Li Z. Liu D. Lai-Han Leung E. Chen J. Network pharmacology based investigation into the effect and mechanism of Modified Sijunzi Decoction against the subtypes of chronic atrophic gastritis. Pharmacol. Res. 2019 144 158 166 10.1016/j.phrs.2019.04.012 30991106
    [Google Scholar]
  7. Chen L. Wei S. He Y. Wang X. He T. Zhang A. Jing M. Li H. Wang R. Zhao Y. Treatment of chronic gastritis with traditional chinese medicine: Pharmacological activities and mechanisms. Pharmaceuticals 2023 16 9 1308 10.3390/ph16091308 37765116
    [Google Scholar]
  8. Liu Y. Zhang J. Guo Y. Tian S. Wu Y. Liu C. Huang X. Zhang S. Dong W. Global burden and risk factors of gastritis and duodenitis: An observational trend study from 1990 to 2019. Sci. Rep. 2024 14 1 2697 10.1038/s41598‑024‑52936‑1 38302549
    [Google Scholar]
  9. Tay K.C. Tan L.T.H. Chan C.K. Hong S.L. Chan K.G. Yap W.H. Pusparajah P. Lee L.H. Goh B.H. Formononetin: A review of its anticancer potentials and mechanisms. Front. Pharmacol. 2019 10 820 10.3389/fphar.2019.00820 31402861
    [Google Scholar]
  10. Machado Dutra J. Espitia P.J.P. Andrade Batista R. Formononetin: Biological effects and uses: A review. Food Chem. 2021 359 129975 10.1016/j.foodchem.2021.129975 33962193
    [Google Scholar]
  11. Gautam A.K. Bhargavan B. Tyagi A.M. Srivastava K. Yadav D.K. Kumar M. Singh A. Mishra J.S. Singh A.B. Sanyal S. Maurya R. Manickavasagam L. Singh S.P. Wahajuddin W. Jain G.K. Chattopadhyay N. Singh D. Differential effects of formononetin and cladrin on osteoblast function, peak bone mass achievement and bioavailability in rats. J. Nutr. Biochem. 2011 22 4 318 327 10.1016/j.jnutbio.2010.02.010 20579866
    [Google Scholar]
  12. Tian Z. Liu S. Wang Y. Li X. Zheng L. Zhao M. Neuroprotective effects of formononetin against NMDA-induced apoptosis in cortical neurons. Phytother. Res. 2013 27 12 1770 1775 10.1002/ptr.4928 23362211
    [Google Scholar]
  13. Lauwaet T. Andersen Y. Van de Ven L. Eckmann L. Gillin F.D. Rapid detachment of Giardia lamblia trophozoites as a mechanism of antimicrobial action of the isoflavone formononetin. J. Antimicrob. Chemother. 2010 65 3 531 534 10.1093/jac/dkp501 20067984
    [Google Scholar]
  14. Sun T. Liu R. Cao Y. Vasorelaxant and antihypertensive effects of formononetin through endothelium-dependent and -independent mechanisms. Acta Pharmacol. Sin. 2011 32 8 1009 1018 10.1038/aps.2011.51 21818108
    [Google Scholar]
  15. Almatroodi S.A. Almatroudi A. Khan A.A. Rahmani A.H. Potential therapeutic targets of formononetin, a type of methoxylated isoflavone, and its role in cancer therapy through the modulation of signal transduction pathways. Int. J. Mol. Sci. 2023 24 11 9719 10.3390/ijms24119719 37298670
    [Google Scholar]
  16. Ding M. Bao Y. Liang H. Zhang X. Li B. Yang R. Zeng N. Potential mechanisms of formononetin against inflammation and oxidative stress: A review. Front. Pharmacol. 2024 15 1368765 10.3389/fphar.2024.1368765 38799172
    [Google Scholar]
  17. Mendonça M.A.A. Ribeiro A.R.S. Lima A.K. Bezerra G.B. Pinheiro M.S. Albuquerque-Júnior R.L.C. Gomes M.Z. Padilha F.F. Thomazzi S.M. Novellino E. Santini A. Severino P.B. Souto E. Cardoso J.C. Red propolis and its dyslipidemic regulator formononetin: Evaluation of antioxidant activity and gastroprotective effects in rat model of gastric ulcer. Nutrients 2020 12 10 2951 10.3390/nu12102951 32993069
    [Google Scholar]
  18. Yi L. Lu Y. Yu S. Cheng Q. Yi L. Formononetin inhibits inflammation and promotes gastric mucosal angiogenesis in gastric ulcer rats through regulating NF-B signaling pathway. J. Recept. Signal Transduct. Res. 2022 42 1 16 22 10.1080/10799893.2020.1837873 33100111
    [Google Scholar]
  19. Jing W. Feng L. Peng K. Zhang W. Wang B. Formononetin attenuates osteoclast differentiation and calcium loss by mediating transcription factor AP1 in type I diabetic mice. J. Biochem. Mol. Toxicol. 2022 36 6 e23042 10.1002/jbt.23042 35315182
    [Google Scholar]
  20. Xue X. Li Z. Zhao J. Zhao Z. Li Z. Li Y. Liu Y. He H. Advances in the relationship between AP-1 and tumorigenesis, development and therapy resistance. Discov Oncol. 2025 16 1 61 10.1007/s12672‑025‑01783‑1 39831917
    [Google Scholar]
  21. Wang X. Hu Y. Zhou X. Li S. Editorial: Network pharmacology and traditional medicine: Setting the new standards by combining In silico and experimental work. Front. Pharmacol. 2022 13 1002537 10.3389/fphar.2022.1002537 36339546
    [Google Scholar]
  22. Hopkins A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008 4 11 682 690 10.1038/nchembio.118 18936753
    [Google Scholar]
  23. Ye B. Chen P. Lin C. Liu X. Chen J. Zhang C. Li L. To reveal the potential mechanism of quercetin against nsclc based on network pharmacology and experimental validation. Comb. Chem. High Throughput Screen. 2024 28 1 15 [PMID: 39440778
    [Google Scholar]
  24. Qian L. Xu H. Yuan R. Yun W. Ma Y. Formononetin ameliorates isoproterenol induced cardiac fibrosis through improving mitochondrial dysfunction. Biomed. Pharmacother. 2024 170 116000 10.1016/j.biopha.2023.116000 38070245
    [Google Scholar]
  25. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  26. Tang Y. Li M. Wang J. Pan Y. Wu F.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 2015 127 67 72 10.1016/j.biosystems.2014.11.005 25451770
    [Google Scholar]
  27. Tong Y. Liu L. Wang R. Yang T. Wen J. Wei S. Jing M. Zou W. Zhao Y. Berberine attenuates chronic atrophic gastritis induced by MNNG and its potential mechanism. Front. Pharmacol. 2021 12 644638 10.3389/fphar.2021.644638 33841162
    [Google Scholar]
  28. Liu M. Wang Y. Deng W. Xie J. He Y. Wang L. Zhang J. Cui M. Combining network pharmacology, machine learning, molecular docking and molecular dynamic to explore the mechanism of Chufeng Qingpi decoction in treating schistosomiasis. Front. Cell. Infect. Microbiol. 2024 14 1453529 10.3389/fcimb.2024.1453529 39310787
    [Google Scholar]
  29. Gillespie M. Jassal B. Stephan R. Milacic M. Rothfels K. Senff-Ribeiro A. Griss J. Sevilla C. Matthews L. Gong C. Deng C. Varusai T. Ragueneau E. Haider Y. May B. Shamovsky V. Weiser J. Brunson T. Sanati N. Beckman L. Shao X. Fabregat A. Sidiropoulos K. Murillo J. Viteri G. Cook J. Shorser S. Bader G. Demir E. Sander C. Haw R. Wu G. Stein L. Hermjakob H. D’Eustachio P. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022 50 D1 D687 D692 10.1093/nar/gkab1028 34788843
    [Google Scholar]
  30. Zhao X.J. You X.L. Huang C.J. Liu G.Y. Cheng Z.Y. Zhang H.T. Steroid Receptor Coactivator-1 (SRC-1) promoted cell metastasis of gastric cancer via VEGFC activator by NF-B. Crit. Rev. EukrGene 2022 32 322
    [Google Scholar]
  31. Chen Q. Guo P. Hong Y. Mo P. Yu C. The multifaceted therapeutic value of targeting steroid receptor coactivator-1 in tumorigenesis. Cell Biosci. 2024 14 1 41 10.1186/s13578‑024‑01222‑8 38553750
    [Google Scholar]
  32. Wang L. Lian Y.J. Dong J.S. Liu M.K. Liu H.L. Cao Z.M. Wang Q.N. Lyu W.L. Bai Y.N. Traditional Chinese medicine for chronic atrophic gastritis: Efficacy, mechanisms and targets. World J. Gastroenterol. 2025 31 9 102053 10.3748/wjg.v31.i9.102053 40061592
    [Google Scholar]
  33. Song D. Lian Y. Zhang L. The potential of activator protein 1 (AP-1) in cancer targeted therapy. Front. Immunol. 2023 14 1224892 10.3389/fimmu.2023.1224892 37483616
    [Google Scholar]
  34. Li Y. Xia R. Zhang B. Li C. Chronic atrophic gastritis: A review. J. Environ. Pathol. Toxicol. Oncol. 2018 37 3 241 259 10.1615/JEnvironPatholToxicolOncol.2018026839 30317974
    [Google Scholar]
  35. Niu Y.B. Velu P. Khalid A. Zyoud S.H. Kazi M. Li Y. Rosmanol triggers apoptosis against mnng-induced gastric carcinogenesis in rats through attenuation of the P13K/AKT/HMBG1 signaling pathway. Comb. Chem. High Throughput Screen. 2025 28 6 988 997 10.2174/0113862073297703240613073134 38910269
    [Google Scholar]
  36. Wang B.J. Zhang Z.Q. Ke Y. Conversion of cadherin isoforms in cultured human gastric carcinoma cells. World J. Gastroenterol. 2006 12 6 966 970 10.3748/wjg.v12.i6.966 16521229
    [Google Scholar]
  37. Lu L. Chen B. Zhang X. Xu Y. Jin L. Qian H. Liang Z. The effect of phytochemicals in N-methyl-N-nitro-N-nitroguanidine promoting the occurrence and development of gastric cancer. Front. Pharmacol. 2023 14 1203265 10.3389/fphar.2023.1203265 37456745
    [Google Scholar]
  38. Xie D. Wu C. Wang D. Nisma Lena B.A. Liu N. Ye G. Sun M. Wei-fu-chun tablet halted gastric intestinal metaplasia and dysplasia associated with inflammation by regulating the NF-κB pathway. J. Ethnopharmacol 2024 318 (PT B) 117020 10.1016/j.jep.2023.117020 37567428
    [Google Scholar]
  39. Jiang Q. Fan G. Wu K. Potential action mechanism of erianin in relieving MNNG-triggered chronic atrophic gastritis. Cell Biochem. Biophys. 2024 83 1 1035 1044 10.1007/s12013‑024‑01536‑x 39298066
    [Google Scholar]
  40. Liu J. Li M. Chen G. Yang J. Jiang Y. Li F. Hua H. Jianwei Xiaoyan granule ameliorates chronic atrophic gastritis by regulating HIF-1-VEGF pathway. J. Ethnopharmacol. 2024 334 118591 10.1016/j.jep.2024.118591 39025161
    [Google Scholar]
  41. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  42. Goldenring J.R. Mills J.C. Cellular Plasticity, reprogramming, and regeneration: metaplasia in the stomach and beyond. Gastroenterology 2022 162 2 415 430 10.1053/j.gastro.2021.10.036 34728185
    [Google Scholar]
  43. Meyer A.R. Goldenring J.R. Injury, repair, inflammation and metaplasia in the stomach. J. Physiol. 2018 596 17 3861 3867 10.1113/JP275512 29427515
    [Google Scholar]
  44. Xie S.S. Zhi Y. Shao C.M. Zeng B.F. Yangyin Huowei mixture alleviates chronic atrophic gastritis by inhibiting the IL-10/JAK1/STAT3 pathway. World J. Gastrointest. Surg. 2024 16 7 2296 2307 10.4240/wjgs.v16.i7.2296 39087093
    [Google Scholar]
  45. Zhang Q. Zhang J. Study on the clinical efficacy and TCM syndrome nlm changes of modified Longgu Muli Decoction in the treatment of chronic atrophic gastritis. Medicine (Baltimore) 2025 104 14 e41828 10.1097/MD.0000000000041828 40193683
    [Google Scholar]
  46. Abbate J.M. Arfuso F. Riolo K. Giudice E. Brunetti B. Lanteri G. Upregulation of miR-21 and pro-inflammatory cytokine genes IL-6 and TNF- in promoting a pro-tumorigenic microenvironment in canine mammary carcinomas. Res. Vet. Sci. 2023 164 105014 10.1016/j.rvsc.2023.105014 37741040
    [Google Scholar]
  47. Jaroenlapnopparat A. Bhatia K. Coban S. Inflammation and gastric cancer. Diseases 2022 10 3 35 10.3390/diseases10030035 35892729
    [Google Scholar]
  48. Targa A.C. Cesar A. Cury P.M. Silva A.E. Apoptosis in different gastric lesions and gastric cancer: relationship with helicobacter pylori, overexpression of P53 and aneuploidy. Genet. Mol. Res. 2007 6 3 554 566
    [Google Scholar]
  49. van Grieken N.C.T. Meijer G.A. zur Hausen A. Meuwissen S.G. Baak J.P. Kuipers E.J. Increased apoptosis in gastric mucosa adjacent to intestinal metaplasia. J. Clin. Pathol. 2003 56 5 358 361 10.1136/jcp.56.5.358 12719456
    [Google Scholar]
  50. Cho I.A. Kim T.H. Lim H. Park J.H. Kang K.R. Lee S.Y. Kim C.S. Kim D.K. Kim H.J. Yu S.K. Kim S.G. Kim J.S. Formononetin antagonizes the interleukin-1-induced catabolic effects through suppressing inflammation in primary rat chondrocytes. Inflammation 2019 42 4 1426 1440 10.1007/s10753‑019‑01005‑1 30937838
    [Google Scholar]
  51. Luo J. Cai Y. Wei D. Cao L. He Q. Wu Y. Formononetin alleviates cerebral ischemia-reperfusion injury in rats by targeting the PARP-1/PARG/Iduna signaling pathway. Brain Res. 2024 1829 148845 10.1016/j.brainres.2024.148845 38452845
    [Google Scholar]
  52. Santos L.V.S. Galvão B.V.D. Souza L. Fernandes A.S. Araujo-Lima C.F. Felzenszwalb I. Heterocyclic phytometabolites formononetin and arbutin prevent in vitro oxidative and alkylation-induced mutagenicity. Toxicol. Rep. 2024 13 101753 10.1016/j.toxrep.2024.101753 39434863
    [Google Scholar]
  53. Meng Q. Xia Y. c-Jun, at the crossroad of the signaling network. Protein Cell 2011 2 11 889 898 10.1007/s13238‑011‑1113‑3 22180088
    [Google Scholar]
  54. Nateri A.S. Spencer-Dene B. Behrens A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 2005 437 7056 281 285 10.1038/nature03914 16007074
    [Google Scholar]
  55. de Groot R.P. Pals C. Kruijer W. Transcriptional control of c- jun by retinoic acid. Nucleic Acids Res. 1991 19 7 1585 1591 10.1093/nar/19.7.1585 1851295
    [Google Scholar]
  56. de los Reyes Corrales T. Losada-Pérez M. Casas-Tintó S. JNK pathway in CNS pathologies. Int. J. Mol. Sci. 2021 22 8 3883 10.3390/ijms22083883 33918666
    [Google Scholar]
  57. Herdegen T. Skene P. Bähr M. The c-Jun transcription factor – bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci. 1997 20 5 227 231 10.1016/S0166‑2236(96)01000‑4 9141200
    [Google Scholar]
  58. Karin M. Liu Z. Zandi E. AP-1 function and regulation. Curr. Opin. Cell Biol. 1997 9 2 240 246 10.1016/S0955‑0674(97)80068‑3 9069263
    [Google Scholar]
  59. Eferl R. Wagner E.F. AP-1: A double-edged sword in tumorigenesis. Nat. Rev. Cancer 2003 3 11 859 868 10.1038/nrc1209 14668816
    [Google Scholar]
  60. Schonthaler H.B. Guinea-Viniegra J. Wagner E.F. Targeting inflammation by modulating the Jun/AP-1 pathway. Ann Rheum Dis 2011 70 i109 i112 (Suppl. 1) 10.1136/ard.2010.140533 21339212
    [Google Scholar]
  61. Li F. Tian J. Zhang L. He H. Song D. A multi-omics approach to reveal critical mechanisms of activator protein 1 (AP-1). Biomed. Pharmacother. 2024 178 117225 10.1016/j.biopha.2024.117225 39084078
    [Google Scholar]
  62. Park J.M. Han Y.M. Park Y.J. Hahm K.B. Dietary intake of walnut prevented Helicobacter pylori-associated gastric cancer through rejuvenation of chronic atrophic gastritis. J. Clin. Biochem. Nutr. 2021 68 1 37 50 10.3164/jcbn.20‑103 33536711
    [Google Scholar]
  63. Ito N. Tsujimoto H. Ueno H. Xie Q. Shinomiya N. Helicobacter pylori-Mediated immunity and signaling transduction in gastric cancer. J. Clin. Med. 2020 9 11 3699 10.3390/jcm9113699 33217986
    [Google Scholar]
  64. Jiang F. Xu X.R. Li W.M. Xia K. Wang L.F. Yang X.C. Monotropein alleviates H2O2 induced inflammation, oxidative stress and apoptosis via NF B/AP 1 signaling. Mol. Med. Rep. 2020 22 6 4828 4836 10.3892/mmr.2020.11548 33173962
    [Google Scholar]
  65. Hill C. Würfel A. Heger J. Meyering B. Schlüter K.D. Weber M. Ferdinandy P. Aronheim A. Schulz R. Euler G. Inhibition of AP-1 signaling by JDP2 overexpression protects cardiomyocytes against hypertrophy and apoptosis induction. Cardiovasc. Res. 2013 99 1 121 128 10.1093/cvr/cvt094 23612584
    [Google Scholar]
  66. Wang L. Li W. Li K. Guo Y. Liu D. Yao Z. Lin X. Li S. Jiang Z. Liu Q. Jiang Y. Zhang B. Chen L. Zhou F. Ren H. Lin D. Zhang D. Yeung S.C.J. Zhang H. The oncogenic roles of nuclear receptor coactivator 1 in human esophageal carcinoma. Cancer Med. 2018 7 10 5205 5216 10.1002/cam4.1786 30270520
    [Google Scholar]
  67. Qin L. Wu Y.L. Toneff M.J. Li D. Liao L. Gao X. Bane F.T. Tien J.C.Y. Xu Y. Feng Z. Yang Z. Xu Y. Theissen S.M. Li Y. Young L. Xu J. NCOA1 Directly Targets M-CSF1 expression to promote breast cancer metastasis. Cancer Res. 2014 74 13 3477 3488 10.1158/0008‑5472.CAN‑13‑2639 24769444
    [Google Scholar]
  68. Hong Y. Chen Q. Wang Z. Zhang Y. Li B. Guo H. Huang C. Kong X. Mo P. Xiao N. Xu J. Ye Y. Yu C. Targeting Nuclear Receptor Coactivator SRC1 Prevents Colorectal Cancer Immune Escape by Reducing Transcription and Protein Stability of PDL1. Adv. Sci. (Weinh.) 2024 11 33 2310037 10.1002/advs.202310037 38953362
    [Google Scholar]
  69. Dosch J. Kaina B. Induction of c-fos, c-jun, junB and junD mRNA and AP-1 by alkylating mutagens in cells deficient and proficient for the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) and its relationship to cell death, mutation induction and chromosomal instability. Oncogene 1996 13 9 1927 1935 [PMID: 8934539
    [Google Scholar]
  70. Wang G.L. Wang Z. Yang J. Yu Y.N. (Activation of transcription factors induced by low concentration of N-methyl-N'-nitro-N-nitrosoguanidine). J. Zhejiang Univ. Med. Sci. 2003 32 5 390 392 [PMID: 14610736
    [Google Scholar]
  71. Luo M. Chen Y.J. Xie Y. Wang Q.R. Xiang Y.N. Long N.Y. Yang W.X. Zhao Y. Zhou J.J. Dickkopf-related protein 1/cytoskeleton-associated protein 4 signaling activation by Helicobacter pylori -induced activator protein-1 promotes gastric tumorigenesis via the PI3K/AKT/mTOR pathway. World J. Gastroenterol. 2022 28 47 6769 6787 10.3748/wjg.v28.i47.6769 36620343
    [Google Scholar]
  72. Meng X. Zhao Y. Liu J. Wang L. Dong Z. Zhang T. Gu X. Zheng Z. Comprehensive analysis of histone modification associated genes on differential gene expression and prognosis in gastric cancer. Exp. Ther. Med. 2019 18 3 2219 2230 10.3892/etm.2019.7808 31452712
    [Google Scholar]
  73. Ni K. Ye L. Zhang Y. Fang J. Yang T. Pan W. Hu X. Lai H. Pan B. Lou C. He D. Formononetin improves the inflammatory response and bone destruction in knee joint lesions by regulating the NFkB and MAPK signaling pathways. Phytother. Res. 2023 37 8 3363 3379 10.1002/ptr.7810 37002905
    [Google Scholar]
  74. Lee S.K. Kim H.J. Na S.Y. Kim T.S. Choi H.S. Im, S.Y.; Lee, J.W. Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J. Biol. Chem. 1998 273 27 16651 16654 10.1074/jbc.273.27.16651 9642216
    [Google Scholar]
  75. Qin L. Chen X. Wu Y. Feng Z. He T. Wang L. Liao L. Xu J. Steroid receptor coactivator-1 upregulates integrin α₂ expression to promote breast cancer cell adhesion and migration. Cancer Res. 2011 71 5 1742 1751 10.1158/0008‑5472.CAN‑10‑3453 21343398
    [Google Scholar]
  76. Tong Z. Zhang Y. Guo P. Wang W. Chen Q. Jin J. Liu S. Yu C. Mo P. Zhang L. Huang J. Steroid receptor coactivator 1 promotes human hepatocellular carcinoma invasiveness through enhancing MMP9. J. Cell. Mol. Med. 2024 28 7 e18171 10.1111/jcmm.18171 38506084
    [Google Scholar]
  77. Liu Y. Huang T. Wang L. Wang Y. Liu Y. Bai J. Wen X. Li Y. Long K. Zhang H. Traditional Chinese Medicine in the treatment of chronic atrophic gastritis, precancerous lesions and gastric cancer. J. Ethnopharmacol. 2025 337 Pt 1 118812 10.1016/j.jep.2024.118812 39260710
    [Google Scholar]
  78. Yang T. Wang R. Liu H. Wang L. Li J. Wu S. Chen X. Yang X. Zhao Y. Berberine regulates macrophage polarization through IL-4-STAT6 signaling pathway in Helicobacter pylori-induced chronic atrophic gastritis. Life Sci. 2021 266 118903 10.1016/j.lfs.2020.118903 33340526
    [Google Scholar]
  79. Chen L. Wang X. Li J. Zhang L. Wu W. Wei S. Zou W. Zhao Y. Elucidation of the mechanism of berberine against gastric mucosa injury in a rat model with chronic atrophic gastritis based on a combined strategy of multi-omics and molecular biology. Front. Pharmacol. 2025 15 1499753 10.3389/fphar.2024.1499753 39834822
    [Google Scholar]
  80. Abate M. Festa A. Falco M. Lombardi A. Luce A. Grimaldi A. Zappavigna S. Sperlongano P. Irace C. Caraglia M. Misso G. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin. Cell Dev. Biol. 2020 98 139 153 10.1016/j.semcdb.2019.05.022 31154010
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073409559250618212035
Loading
/content/journals/cchts/10.2174/0113862073409559250618212035
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test