Skip to content
2000
image of Identification of Selected Genes Associated With the Prediction of Prognosis in Bladder Cancer

Abstract

Background

Bladder cancer (BC) is one of the most common urological malignancies, ranking as the eleventh most common cause of cancer-related deaths worldwide. The lack of specific and sensitive prognostic biomarkers presents a significant challenge in the early diagnosis and treatment of BC.

Methods

This study utilizes the Gene Expression Omnibus (GEO) dataset GSE13507 and the Cancer Genome Atlas (TCGA) database to screen differentially expressed genes related to BC. By using Weighted Gene Co-expression Network Analysis (WGCNA), two modules associated with BC were investigated in GSE13507 and TCGA. Hub genes were identified through Protein-Protein Interaction (PPI) network analysis, and their functions were validated through multiple approaches, including Gene Expression Profiling Interactive Analysis (GEPIA), Western Blotting (WB) assay, Human Protein Atlas (HPA), Oncomine analysis, and quantitative Real-Time PCR (qRT-PCR) analysis. Additionally, miRNAs associated with hub gene expression were identified using various databases to predict the progression and prognosis of BC.

Results

WGCNA and a differential gene expression analysis identified 171 common genes as target genes. Ten genes (MYH11, ACTA2, TPM2, ACTG2, CALD1, MYL9, TPM1, MYLK, SORBS1, and LMOD1) were identified using the PPI tool. The CALD1 and MYLK genes showed a significant prognostic value for overall survival and disease-free survival in patients with BC. CALD1 and MYLK expression levels were significantly lower in BC tissues than in normal tissues. Furthermore, miR-155 showed a significant positive correlation with MYLK.

Conclusion

This study established MYLK as a direct target gene of miR-155, functioning as an actionable survival-related gene correlated with BC development.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073352389250407104347
2025-05-13
2025-09-14
Loading full text...

Full text loading...

References

  1. Powles T. The development of immunotherapy in urothelial bladder cancer. Nat. Rev. Clin. Oncol. 2015 12 4 193 194 10.1038/nrclinonc.2015.51 25781573
    [Google Scholar]
  2. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 2020 70 1 7 30 10.3322/caac.21590 31912902
    [Google Scholar]
  3. Yuan J.M. Chan K.K. Coetzee G.A. Castelao J.E. Watson M.A. Bell D.A. Wang R. Yu M.C. Genetic determinants in the metabolism of bladder carcinogens in relation to risk of bladder cancer. Carcinogenesis 2008 29 7 1386 1393 10.1093/carcin/bgn136 18544563
    [Google Scholar]
  4. Cha K. Hadjiiski L. Chan H.P. Cohan R.H. Caoili E.M. Zhou C. Detection of urinary bladder mass in CT urography with SPAN. Med. Phys. 2015 42 7 4271 4284 10.1118/1.4922503 26133625
    [Google Scholar]
  5. Cai A. Bian K. Chen F. Tang Q. Carley R. Li D. Cho B.P. Probing the effect of bulky lesion-induced replication fork conformational heterogeneity using 4-aminobiphenyl-modified DNA. Molecules 2019 24 8 1566 10.3390/molecules24081566 31009995
    [Google Scholar]
  6. Hsu I. Chuang K.L. Slavin S. Da J. Lim W.X. Pang S.T. O’Brien J.H. Yeh S. Suppression of ERβ signaling via ERβ knockout or antagonist protects against bladder cancer development. Carcinogenesis 2014 35 3 651 661 10.1093/carcin/bgt348 24148819
    [Google Scholar]
  7. Cai Y. Yang X. Lin S. Xu Y. Zhu S. Fan D. Zhao M. Zhang Y. Yang X. Li X. Low-coverage sequencing of urine sediment DNA for detection of copy number aberrations in bladder cancer. Cancer Manag. Res. 2021 13 1943 1953 10.2147/CMAR.S295675 33664588
    [Google Scholar]
  8. Ascione C.M. Napolitano F. Esposito D. Servetto A. Belli S. Santaniello A. Scagliarini S. Crocetto F. Bianco R. Formisano L. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat. Rev. 2023 115 102530 10.1016/j.ctrv.2023.102530 36898352
    [Google Scholar]
  9. Fan N. Zhang L. Wang Z. Ding H. Yue Z. Ivermectin inhibits bladder cancer cell growth and induces oxidative stress and DNA damage. Anticancer. Agents Med. Chem. 2024 24 5 348 357 10.2174/0118715206274095231106042833 38375808
    [Google Scholar]
  10. Rehman H. Chandrashekar D.S. Balabhadrapatruni C. Nepal S. Balasubramanya S.A.H. Shelton A.K. Skinner K.R. Ma A.H. Rao T. Agarwal S. Eich M.L. Robinson A.D. Naik G. Manne U. Netto G.J. Miller C.R. Pan C. Sonpavde G. Varambally S. Ferguson J.E. III ARID1A-deficient bladder cancer is dependent on PI3K signaling and sensitive to EZH2 and PI3K inhibitors. JCI Insight 2022 7 16 e155899 10.1172/jci.insight.155899 35852858
    [Google Scholar]
  11. Xu N. Yao Z. Shang G. Ye D. Wang H. Zhang H. Qu Y. Xu F. Wang Y. Qin Z. Zhu J. Zhang F. Feng J. Tian S. Liu Y. Zhao J. Hou J. Guo J. Hou Y. Ding C. Integrated proteogenomic characterization of urothelial carcinoma of the bladder. J. Hematol. Oncol. 2022 15 1 76 10.1186/s13045‑022‑01291‑7 35659036
    [Google Scholar]
  12. Shen C. Chai W. Han J. Zhang Z. Liu X. Yang S. Wang Y. Wang D. Wan F. Fan Z. Hu H. Identification and validation of a dysregulated TME-related gene signature for predicting prognosis, and immunological properties in bladder cancer. Front. Immunol. 2023 14 1213947 10.3389/fimmu.2023.1213947 37965307
    [Google Scholar]
  13. Zhang B.H. Yang J. Jiang L. Lyu T. Kong L.X. Tan Y.F. Li B. Zhu Y.F. Xi A.Y. Xu X. Yan L.N. Yang J.Y. Development and validation of a 14-gene signature for prognosis prediction in hepatocellular carcinoma. Genomics 2020 112 4 2763 2771 10.1016/j.ygeno.2020.03.013 32198063
    [Google Scholar]
  14. Zhao B. Erwin A. Xue B. How many differentially expressed genes: A perspective from the comparison of genotypic and phenotypic distances. Genomics 2018 110 1 67 73 10.1016/j.ygeno.2017.08.007 28843784
    [Google Scholar]
  15. Liu X. Hu A.X. Zhao J.L. Chen F.L. Identification of key gene modules in human osteosarcoma by co‐expression analysis weighted gene co‐expression network analysis (WGCNA). J. Cell. Biochem. 2017 118 11 3953 3959 10.1002/jcb.26050 28398605
    [Google Scholar]
  16. Ren F. Zhao Q. Liu B. Sun X. Tang Y. Huang H. Mei L. Yu Y. Mo H. Dong H. Zheng P. Mi Y. Transcriptome analysis reveals GPNMB as a potential therapeutic target for gastric cancer. J. Cell. Physiol. 2020 235 3 2738 2752 10.1002/jcp.29177 31498430
    [Google Scholar]
  17. Shen S. Kong J. Qiu Y. Yang X. Wang W. Yan L. Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis. J. Cell. Biochem. 2019 120 6 10069 10081 10.1002/jcb.28290 30525236
    [Google Scholar]
  18. Wang M. Wang L. Pu L. Li K. Feng T. Zheng P. Li S. Sun M. Yao Y. Jin L. LncRNAs related key pathways and genes in ischemic stroke by weighted gene co-expression network analysis (WGCNA). Genomics 2020 112 3 2302 2308 10.1016/j.ygeno.2020.01.001 31923616
    [Google Scholar]
  19. Davis S. Meltzer P.S. GEOquery: A bridge between the gene expression omnibus (GEO) and bioconductor. Bioinformatics 2007 23 14 1846 1847 10.1093/bioinformatics/btm254 17496320
    [Google Scholar]
  20. Huang D.W. Sherman B.T. Lempicki R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009 37 1 1 13 10.1093/nar/gkn923 19033363
    [Google Scholar]
  21. Szklarczyk D. Franceschini A. Wyder S. Forslund K. Heller D. Huerta-Cepas J. Simonovic M. Roth A. Santos A. Tsafou K.P. Kuhn M. Bork P. Jensen L.J. Mering V.C. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015 43 D1 D447 D452 10.1093/nar/gku1003 25352553
    [Google Scholar]
  22. Chin C.H. Chen S.H. Wu H.H. Ho C.W. Ko M.T. Lin C.Y. CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC syst. Biol. 8 Suppl 4 S11 2014 10.1186/1752‑0509‑8‑S4‑S11
    [Google Scholar]
  23. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  24. Thul PJ Lindskog C The human protein atlas: A spatial map of the human proteome. Prot. sci. 2018 27 1 233 244 10.1002/pro.3307
    [Google Scholar]
  25. Vasaikar S.V. Straub P. Wang J. Zhang B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018 46 D1 D956 D963 10.1093/nar/gkx1090 29136207
    [Google Scholar]
  26. Antoni S. Ferlay J. Soerjomataram I. Znaor A. Jemal A. Bray F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol. 2017 71 1 96 108 10.1016/j.eururo.2016.06.010 27370177
    [Google Scholar]
  27. Ding Y. Paonessa J.D. Randall K.L. Argoti D. Chen L. Vouros P. Zhang Y. Sulforaphane inhibits 4-aminobiphenyl-induced DNA damage in bladder cells and tissues. Carcinogenesis 2010 31 11 1999 2003 10.1093/carcin/bgq183 20810543
    [Google Scholar]
  28. Lim B. Park J.L. Kim H.J. Park Y.K. Kim J.H. Sohn H.A. Noh S.M. Song K.S. Kim W.H. Kim Y.S. Kim S.Y. Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer. Carcinogenesis 2014 35 5 1020 1027 10.1093/carcin/bgt409 24325916
    [Google Scholar]
  29. Yokota M. Kojima M. Higuchi Y. Nishizawa Y. Kobayashi A. Ito M. Saito N. Ochiai A. Gene expression profile in the activation of subperitoneal fibroblasts reflects prognosis of patients with colon cancer. Int. J. Cancer 2016 138 6 1422 1431 10.1002/ijc.29851 26370611
    [Google Scholar]
  30. Ning X. Deng Y. Identification of key pathways and genes influencing prognosis in bladder urothelial carcinoma. OncoTargets Ther. 2017 10 1673 1686 10.2147/OTT.S131386 28356754
    [Google Scholar]
  31. Xu L. Lee J.R. Hao S. Ling X.B. Brooks J.D. Wang S.X. Gambhir S.S. Improved detection of prostate cancer using a magneto-nanosensor assay for serum circulating autoantibodies. PLoS One 2019 14 8 e0221051 10.1371/journal.pone.0221051 31404106
    [Google Scholar]
  32. Liu J. Li H. Shen S. Sun L. Yuan Y. Xing C. Alternative splicing events implicated in carcinogenesis and prognosis of colorectal cancer. J. Cancer 2018 9 10 1754 1764 10.7150/jca.24569 29805701
    [Google Scholar]
  33. Chen R. Mao L. Shi R. Wang W. Cheng J. circRNA MYLK accelerates cervical cancer via up-regulation of RHEB and activation of mTOR signaling. Cancer Manag. Res. 2020 12 3611 3621 10.2147/CMAR.S238172 32547198
    [Google Scholar]
  34. Zhao Y. Hu Y. Shen Q. Chen Q. Zhu X.J. Jiang S.S. Zhang Q. CircRNA_MYLK promotes malignant progression of ovarian cancer through regulating microRNA-652. Eur. Rev. Med. Pharmacol. Sci. 2020 24 10 5281 5291 32495861
    [Google Scholar]
  35. Li J. Huang C. Zou Y. Yu J. Gui Y. Circular RNA MYLK promotes tumour growth and metastasis via modulating miR‐513a‐5p/VEGFC signalling in renal cell carcinoma. J. Cell. Mol. Med. 2020 24 12 6609 6621 10.1111/jcmm.15308 32342645
    [Google Scholar]
  36. Zhong Z. Huang M. Lv M. He Y. Duan C. Zhang L. Chen J. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 2017 403 305 317 10.1016/j.canlet.2017.06.027 28687357
    [Google Scholar]
  37. Huang M. Zhong Z. Lv M. Shu J. Tian Q. Chen J. Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma. Oncotarget 2016 7 30 47186 47200 10.18632/oncotarget.9706 27363013
    [Google Scholar]
  38. Sciacovelli M. Gonçalves E. Johnson T.I. Zecchini V.R. Costa D.A.S.H. Gaude E. Drubbel A.V. Theobald S.J. Abbo S.R. Tran M.G.B. Rajeeve V. Cardaci S. Foster S. Yun H. Cutillas P. Warren A. Gnanapragasam V. Gottlieb E. Franze K. Huntly B. Maher E.R. Maxwell P.H. Saez-Rodriguez J. Frezza C. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 2016 537 7621 544 547 10.1038/nature19353 27580029
    [Google Scholar]
  39. Sur S. Steele R. Shi X. Ray R.B. miRNA-29b inhibits prostate tumor growth and induces apoptosis by increasing bim expression. Cells 2019 8 11 1455 10.3390/cells8111455 31752117
    [Google Scholar]
  40. Hermyt E. Zmarzły N. Grabarek B. Kruszniewska-Rajs C. Gola J. Jęda-Golonka A. Szczepanek K. Mazurek U. Witek A. Interplay between miRNAs and Genes Associated with Cell Proliferation in Endometrial Cancer. Int. J. Mol. Sci. 2019 20 23 6011 10.3390/ijms20236011 31795319
    [Google Scholar]
  41. Wang X. Ye X. Ji J. Wang J. Xu B. Zhang Q. Ming J. Liu X. MicroRNA 155 targets myosin light chain kinase to inhibit the migration of human bone marrow derived mesenchymal stem cells. Int. J. Mol. Med. 2018 42 3 1585 1592 10.3892/ijmm.2018.3718 29901087
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073352389250407104347
Loading
/content/journals/cchts/10.2174/0113862073352389250407104347
Loading

Data & Media loading...

Supplements

Supplementary material is accessible on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Weighted gene co-expression network ; hub genes ; bladder cancer ; MYLK ; miR-155
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test