Skip to content
2000
image of Synergistic Interactions of Anthraquinones with Conventional Cancer Therapies

Abstract

Background

Cancer is a major public health concern, and conventional treatments like surgery, chemotherapy, and radiotherapy are associated with several disadvantages, including chemoresistance, toxicity, and economic burden to the family of cancer patients. Thus, discovery of novel agents of natural agents to reduce these side effects is crucial. A series of studies have shown anthraquinones as a promising adjuvant in enhancing the effectiveness of standard cancer therapies.

Objective

This review explores the anticancer potential of anthraquinones and their role in enhancing standard chemotherapy.

Methodology

Various freely available databases, including PubMed, Scopus, Google Scholar and Web of Science were searched for updated and relevant information on anthraquinones and their use as an adjuvant with standard chemotherapeutic agents.

Results

In this article, we looked at the recent developments in the utilization of anthraquinones as adjuvants in chemotherapy. Further, we have elaborated the mechanism of action that anthraquinones target to chemosensitize the drug-resistant cancer cells.

Conclusion

This review provides updated information on emerging role and their potential to be utilized as adjuvants in augmenting the efficacy of conventional cancer therapies.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073375723250505095935
2025-05-14
2025-10-31
Loading full text...

Full text loading...

References

  1. The top 10 causes of death 2020 Available from:https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  2. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  3. Sathishkumar K. Chaturvedi M. Das P. Stephen S. Mathur P. Cancer incidence estimates for 2022 projection for 2025. Indian J. Med. Res 2022 156 (4 and 5) 598 607 10.4103/ijmr.ijmr_1821_22 36510887
    [Google Scholar]
  4. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  5. Olver I. Carey M. Boyes A. Hall A. Noble N. Bryant J. Walsh J. Sanson-Fisher R. The timeliness of patients reporting the side effects of chemotherapy. Support. Care Cancer 2018 26 10 3579 3586 10.1007/s00520‑018‑4225‑y 29725799
    [Google Scholar]
  6. Khalifa S.A.M. Elias N. Farag M.A. Chen L. Saeed A. Hegazy M.E.F. Moustafa M.S. Abd El-Wahed A. Al-Mousawi S.M. Musharraf S.G. Chang F.R. Iwasaki A. Suenaga K. Alajlani M. Göransson U. El-Seedi H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019 17 9 491 10.3390/md17090491 31443597
    [Google Scholar]
  7. Kumar S. Padwad Y. Dietary antioxidants and their molecular targets in oxidative stress mediated cancer progression. In:Bentham Briefs in Biomedicine and Pharmacotherapy Oxidative Stress and Natural Antioxidants. Bentham Books 2021 238 275 10.2174/9789814998871121010012
    [Google Scholar]
  8. Law J.W.F. Law L.N.S. Letchumanan V. Tan L.T.H. Wong S.H. Chan K.G. Ab Mutalib N.S. Lee L.H. Anticancer drug discovery from microbial sources: The unique mangrove streptomycetes. Molecules 2020 25 22 5365 10.3390/molecules25225365 33212836
    [Google Scholar]
  9. Wang L. Dong C. Li X. Han W. Su X. Anticancer potential of bioactive peptides from animal sources. Oncol. Rep. 2017 38 2 637 651 10.3892/or.2017.5778 28677775
    [Google Scholar]
  10. Rajendran M. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Photodiagn. Photodyn. Ther. 2016 13 175 187 10.1016/j.pdpdt.2015.07.177 26241780
    [Google Scholar]
  11. Tian W. Wang C. Li D. Hou H. Novel anthraquinone compounds as anticancer agents and their potential mechanism. Future Med. Chem. 2020 12 7 627 644 10.4155/fmc‑2019‑0322 32175770
    [Google Scholar]
  12. Halpern A.B. Buckley S.A. Othus M. Huebner E.M. Orlowski K.F. Scott B.L. Perdue A.M. Smith H.A. Becker P.S. Hendrie P.C. Cassone S. Chen T.L. Stirewalt D.L. Estey E.H. Walter R.B. Mitoxantrone, etoposide, and cytarabine (MEC) following epigenetic priming with decitabine in adults with relapsed/refractory acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS): Final results from a phase 1/2 study. Leukemia 2017 31 2560 2567 10.1038/leu.2017.165 28555084
    [Google Scholar]
  13. Xu J. Liu D. Niu H. Zhu G. Xu Y. Ye D. Li J. Zhang Q. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res. 2017 36 1 19 10.1186/s13046‑016‑0487‑8 28126034
    [Google Scholar]
  14. Gottlieb A.J. Weinberg V. Ellison R.R. Henderson E.S. Terebelo H. Rafla S. Cuttner J. Silver R.T. Carey R.W. Levy R.N. Efficacy of daunorubicin in the therapy of adult acute lymphocytic leukemia: A prospective randomized trial by cancer and leukemia group B. Blood 1984 64 1 267 274 10.1182/blood.V64.1.267.267 6375760
    [Google Scholar]
  15. Buzdar A.U. Legha S.S. Hortobagyi G.N. Yap H.Y. Wiseman C.L. Distefano A. Schell F.C. Barnes B.C. Campos L.T. Blumenschein G.R. Management of breast cancer patients failing adjuvant chemotherapy with adriamycin-containing regimens. Cancer 1981 47 12 2798 2802 10.1002/1097‑0142(19810615)47:12<2798:AID‑CNCR2820471207>3.0.CO;2‑T 7260870
    [Google Scholar]
  16. Malik M.S. Alsantali R.I. Jassas R.S. Alsimaree A.A. Syed R. Alsharif M.A. Kalpana K. Morad M. Althagafi I.I. Ahmed S.A. Journey of anthraquinones as anticancer agents - A systematic review of recent literature. RSC Advances 2021 11 57 35806 35827 10.1039/D1RA05686G 35492773
    [Google Scholar]
  17. Deitersen J. El-Kashef D.H. Proksch P. Stork B. Anthraquinones and autophagy - Three rings to rule them all? Bioorg. Med. Chem. 2019 27 20 115042 10.1016/j.bmc.2019.115042 31420258
    [Google Scholar]
  18. Şeker Karatoprak G. Küpeli Akkol E. Yücel Ç. Bahadır Acıkara Ö. Sobarzo-Sánchez E. Advances in understanding the role of aloe emodin and targeted drug delivery systems in cancer. Oxid. Med. Cell. Longev. 2022 2022 1 20 10.1155/2022/7928200 35087619
    [Google Scholar]
  19. Henamayee S. Banik K. Sailo B.L. Shabnam B. Harsha C. Srilakshmi S. Vgm N. Baek S.H. Ahn K.S. Kunnumakkara A.B. Therapeutic emergence of rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties. Molecules 2020 25 10 2278 10.3390/molecules25102278 32408623
    [Google Scholar]
  20. Hu Y. Yang L. Lai Y. Recent findings regarding the synergistic effects of emodin and its analogs with other bioactive compounds: Insights into new mechanisms. Biomed. Pharmacother. 2023 162 114585 10.1016/j.biopha.2023.114585 36989724
    [Google Scholar]
  21. Ramos A. Sadeghi S. Tabatabaeian H. Battling chemoresistance in cancer: Root causes and strategies to uproot them. Int. J. Mol. Sci. 2021 22 17 9451 10.3390/ijms22179451 34502361
    [Google Scholar]
  22. Marin J.J.G. Macias R.I.R. Monte M.J. Herraez E. Peleteiro-Vigil A. Blas B.S. Sanchon-Sanchez P. Temprano A.G. Espinosa-Escudero R.A. Lozano E. Briz O. Romero M.R. Cellular mechanisms accounting for the refractoriness of colorectal carcinoma to pharmacological treatment. Cancers 2020 12 9 2605 10.3390/cancers12092605 32933095
    [Google Scholar]
  23. Liang Y. Li S. Chen L. The physiological role of drug transporters. Protein Cell 2015 6 5 334 350 10.1007/s13238‑015‑0148‑2 25797421
    [Google Scholar]
  24. To K.K.W. Wu M. Tong C.W.S. Yan W. Drug transporters in the development of multidrug resistance in colorectal cancer. In:Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies. Cambridge, Massachusetts Academic Press 2020 35 55 10.1016/B978‑0‑12‑819937‑4.00002‑9
    [Google Scholar]
  25. Kumar S. Bhandari C. Sharma P. Agnihotri N. Role of piperine in chemoresistance. In:Role of Nutraceuticals in Cancer Chemosensitization. Cambridge, Massachusetts Academic Press 2017 259 286 10.1016/B978‑0‑12‑812373‑7.00013‑9
    [Google Scholar]
  26. Kumar S. Goel A. Padwad Y.S. Natural products as immunomodulatory and chemosensitizing agents in colon cancer treatment. Colon Cancer Diagnosis and Therapy. Cham Springer 2021 187 207 10.1007/978‑3‑030‑64668‑4_9
    [Google Scholar]
  27. Tuli H.S. Aggarwal V. Tuorkey M. Aggarwal D. Parashar N.C. Varol M. Savla R. Kaur G. Mittal S. Sak K. Emodin: A metabolite that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Toxicol. In Vitro 2021 73 105142 10.1016/j.tiv.2021.105142 33722736
    [Google Scholar]
  28. Izhaki I. Emodin - A secondary metabolite with multiple ecological functions in higher plants. New Phytol. 2002 155 2 205 217 10.1046/j.1469‑8137.2002.00459.x
    [Google Scholar]
  29. Zheng Q. Li S. Li X. Liu R. Advances in the study of emodin: An update on pharmacological properties and mechanistic basis. Chin. Med. 2021 16 1 102 10.1186/s13020‑021‑00509‑z 34629100
    [Google Scholar]
  30. Saraon P. Pathmanathan S. Snider J. Lyakisheva A. Wong V. Stagljar I. Receptor tyrosine kinases and cancer: Oncogenic mechanisms and therapeutic approaches. Oncogene 2021 40 24 4079 4093 10.1038/s41388‑021‑01841‑2 34079087
    [Google Scholar]
  31. Llovet J.M. Ricci S. Mazzaferro V. Hilgard P. Gane E. Blanc J.F. de Oliveira A.C. Santoro A. Raoul J.L. Forner A. Schwartz M. Porta C. Zeuzem S. Bolondi L. Greten T.F. Galle P.R. Seitz J.F. Borbath I. Häussinger D. Giannaris T. Shan M. Moscovici M. Voliotis D. Bruix J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008 359 4 378 390 10.1056/NEJMoa0708857 18650514
    [Google Scholar]
  32. Tang W. Chen Z. Zhang W. Cheng Y. Zhang B. Wu F. Wang Q. Wang S. Rong D. Reiter F.P. De Toni E.N. Wang X. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects. Signal Transduct. Target. Ther. 2020 5 1 87 10.1038/s41392‑020‑0187‑x 32532960
    [Google Scholar]
  33. Kim Y.S. Lee Y.M. Oh T.I. Shin D.H. Kim G.H. Kan S.Y. Kang H. Kim J.H. Kim B.M. Yim W.J. Lim J.H. Emodin sensitizes hepatocellular carcinoma cells to the anti-cancer effect of sorafenib through suppression of cholesterol metabolism. Int. J. Mol. Sci. 2018 19 10 3127 10.3390/ijms19103127 30321984
    [Google Scholar]
  34. Agnihotri N. Rani I. Kumar S. Targeting mitochondria: A powerhouse approach to cancer treatment. Multi-Targeted Approach to Treatment of Cancer. Springer International Publishing 2014 263 276 10.1007/978‑3‑319‑12253‑3_16
    [Google Scholar]
  35. Chen S. Zhang Z. Zhang J. Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo. Drug Des. Devel. Ther. 2019 13 1145 1153 10.2147/DDDT.S196319 31114158
    [Google Scholar]
  36. Di Pietro A. Dayan G. Conseil G. Steinfels E. Krell T. Trompier D. Baubichon-Cortay H. Jault J.M. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: Using recombinant cytosolic domains to establish structure-function relationships. Braz. J. Med. Biol. Res. 1999 32 8 925 939 10.1590/S0100‑879X1999000800001 10454753
    [Google Scholar]
  37. Peng S. Wang J. Lu C. Xu Z. Chai J.J. Ke Q. Deng X.Z. Emodin enhances cisplatin sensitivity in non-small cell lung cancer through Pgp downregulation. Oncol. Lett. 2021 21 3 230 10.3892/ol.2021.12491 33613719
    [Google Scholar]
  38. Li X. Wang H. Wang J. Chen Y. Yin X. Shi G. Li H. Hu Z. Liang X. Emodin enhances cisplatin-induced cytotoxicity in human bladder cancer cells through ROS elevation and MRP1 downregulation. BMC Cancer 2016 16 1 578 10.1186/s12885‑016‑2640‑3 27485374
    [Google Scholar]
  39. Xiao Y.F. Yong X. Tang B. Qin Y. Zhang J.W. Zhang D. Xie R. Yang S.M. Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets. Int. J. Oncol. 2016 48 2 437 449 10.3892/ijo.2015.3280 26648421
    [Google Scholar]
  40. Zu C. Qin G. Yang C. Liu N. He A. Zhang M. Zheng X. Low dose Emodin induces tumor senescence for boosting breast cancer chemotherapy via silencing NRARP. Biochem. Biophys. Res. Commun. 2018 505 4 973 978 10.1016/j.bbrc.2018.09.045 30274778
    [Google Scholar]
  41. Nagano T. Tachihara M. Nishimura Y. Mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and a potential treatment strategy. Cells 2018 7 11 212 10.3390/cells7110212 30445769
    [Google Scholar]
  42. Wang Z. Chen H. Chen J. Hong Z. Liao Y. Zhang Q. Tong H. Emodin sensitizes human pancreatic cancer cells to EGFR inhibitor through suppressing Stat3 signaling pathway. Cancer Manag. Res. 2019 11 8463 8473 10.2147/CMAR.S221877 31572001
    [Google Scholar]
  43. McGuirk S. Audet-Delage Y. Annis M.G. Xue Y. Vernier M. Zhao K. St-Louis C. Minarrieta L. Patten D.A. Morin G. Greenwood C.M.T. Giguère V. Huang S. Siegel P.M. St-Pierre J. Resistance to different anthracycline chemotherapeutics elicits distinct and actionable primary metabolic dependencies in breast cancer. eLife 2021 10 e65150 10.7554/eLife.65150 34181531
    [Google Scholar]
  44. Hintzpeter J. Seliger J.M. Hofman J. Martin H.J. Wsol V. Maser E. Inhibition of human anthracycline reductases by emodin — A possible remedy for anthracycline resistance. Toxicol. Appl. Pharmacol. 2016 293 21 29 10.1016/j.taap.2016.01.003 26773812
    [Google Scholar]
  45. Iyer V.V. Priya P.Y. Kangeyavelu J. Effects of increased accumulation of doxorubicin due to emodin on efflux transporter and LRP1 expression in lung adenocarcinoma and colorectal carcinoma cells. Mol. Cell. Biochem. 2018 449 1-2 91 104 10.1007/s11010‑018‑3346‑4 29644529
    [Google Scholar]
  46. Yang J. Zhu A. Xiao S. Zhang T. Wang L. Wang Q. Han L. Anthraquinones in the aqueous extract of Cassiae semen cause liver injury in rats through lipid metabolism disorder. Phytomedicine 2019 64 153059 10.1016/j.phymed.2019.153059 31401496
    [Google Scholar]
  47. Pandith S.A. Hussain A. Bhat W.W. Dhar N. Qazi A.K. Rana S. Razdan S. Wani T.A. Shah M.A. Bedi Y.S. Hamid A. Lattoo S.K. Evaluation of anthraquinones from Himalayan rhubarb (Rheum emodi Wall. ex Meissn.) as antiproliferative agents. S. Afr. J. Bot. 2014 95 1 8 10.1016/j.sajb.2014.07.012
    [Google Scholar]
  48. Huang Q. Lu G. Shen H.M. Chung M.C.M. Ong C.N. Anti‐cancer properties of anthraquinones from rhubarb. Med. Res. Rev. 2007 27 5 609 630 10.1002/med.20094 17022020
    [Google Scholar]
  49. Panigrahi G.K. Ch R. Mudiam M.K.R. Vashishtha V.M. Raisuddin S. Das M. Activity-guided chemo toxic profiling of Cassia occidentalis (CO) seeds: Detection of toxic compounds in body fluids of CO-exposed patients and experimental rats. Chem. Res. Toxicol. 2015 28 6 1120 1132 10.1021/acs.chemrestox.5b00056 25915165
    [Google Scholar]
  50. Sánchez M. González-Burgos E. Iglesias I. Gómez-Serranillos M.P. Pharmacological update properties of aloe vera and its major active constituents. Molecules 2020 25 6 1324 10.3390/molecules25061324 32183224
    [Google Scholar]
  51. Özenver N. Saeed M. Demirezer L.Ö. Efferth T. Aloe-emodin as drug candidate for cancer therapy. Oncotarget 2018 9 25 17770 17796 10.18632/oncotarget.24880
    [Google Scholar]
  52. Dong X. Zeng Y. Liu Y. You L. Yin X. Fu J. Ni J. Aloe‐emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res. 2020 34 2 270 281 10.1002/ptr.6532 31680350
    [Google Scholar]
  53. Punekar S.R. Velcheti V. Neel B.G. Wong K.K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 2022 19 10 637 655 10.1038/s41571‑022‑00671‑9 36028717
    [Google Scholar]
  54. Wang Y-F. Chan Y. Lin H-Y. Chen D-R. Aloe-emodin enhances cytotoxicity of tamoxifen through suppressing ras/erk and pi3k/mtor pathways in breast cancer cells. Am. J. Chin. Med. 2017 5 337 350 10.1093/annonc/mdv472.162
    [Google Scholar]
  55. Peng M. Zheng Z. Chen S. Fang L. Feng R. Zhang L. Tang Q. Liu X. Sensitization of non-small cell lung cancer cells to gefitinib and reversal of epithelial-mesenchymal transition by aloe-emodin via PI3K/Akt/TWIS1 signal blockage. Front. Oncol. 2022 12 908031 10.3389/fonc.2022.908031 35677158
    [Google Scholar]
  56. Cheng G. Pi Z. Zhuang X. Zheng Z. Liu S. Liu Z. Song F. The effects and mechanisms of aloe‐emodin on reversing adriamycin‐induced resistance of MCF ‐7/ ADR cells. Phytother. Res. 2021 35 7 3886 3897 10.1002/ptr.7096 33792091
    [Google Scholar]
  57. Zou T. Lan M. Liu F. Li L. Cai T. Tian H. Cai Y. Emodin-loaded polymer-lipid hybrid nanoparticles enhance the sensitivity of breast cancer to doxorubicin by inhibiting epithelial-mesenchymal transition. Cancer Nanotechnol. 2021 12 1 22 10.1186/s12645‑021‑00093‑9
    [Google Scholar]
  58. Lee S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016 3 3 198 210 10.1016/j.gendis.2016.04.007 30258889
    [Google Scholar]
  59. Staffieri S. Russo V. Oliva M.A. Alborghetti M. Russo M. Arcella A. Aloe-emodin overcomes anti-cancer drug resistance to temozolomide and prevents colony formation and migration in primary human glioblastoma cell lines NULU and ZAR. Molecules 2023 28 16 6024 10.3390/molecules28166024 37630276
    [Google Scholar]
  60. Xu X. Xu H. Shang Y. Zhu R. Hong X. Song Z. Yang Z. Development of the general chapters of the Chinese Pharmacopoeia 2020 edition: A review. J. Pharm. Anal. 2021 11 4 398 404 10.1016/j.jpha.2021.05.001 34513116
    [Google Scholar]
  61. Kunnumakkara A.B. Banik K. Bordoloi D. Harsha C. Sailo B.L. Padmavathi G. Roy N.K. Gupta S.C. Aggarwal B.B. Googling the guggul (Commiphora and Boswellia) for prevention of chronic diseases. Front. Pharmacol. 2018 9 686 10.3389/fphar.2018.00686 30127736
    [Google Scholar]
  62. Cheng L. Chen Q. Pi R. Chen J. A research update on the therapeutic potential of rhein and its derivatives. Eur. J. Pharmacol. 2021 899 173908 10.1016/j.ejphar.2021.173908 33515540
    [Google Scholar]
  63. Sun H. Luo G. Chen D. Xiang Z. A comprehensive and system review for the pharmacological mechanism of action of rhein, an active anthraquinone ingredient. Front. Pharmacol. 2016 7 247 10.3389/fphar.2016.00247 27582705
    [Google Scholar]
  64. Zhou Y.X. Xia W. Yue W. Peng C. Rahman K. Zhang H. Rhein: A review of pharmacological activities. Evid. Based Complement. Alternat. Med. 2015 2015 1 10 10.1155/2015/578107 26185519
    [Google Scholar]
  65. Liu Y. Shi C. He Z. Zhu F. Wang M. He R. Zhao C. Shi X. Zhou M. Pan S. Gao Y. Li X. Qin R. Inhibition of PI3K/AKT signaling via ROS regulation is involved in Rhein-induced apoptosis and enhancement of oxaliplatin sensitivity in pancreatic cancer cells. Int. J. Biol. Sci. 2021 17 2 589 602 10.7150/ijbs.49514 33613115
    [Google Scholar]
  66. Yang L. Lin S. Kang Y. Xiang Y. Xu L. Li J. Dai X. Liang G. Huang X. Zhao C. Rhein sensitizes human pancreatic cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. J. Exp. Clin. Cancer Res. 2019 38 1 31 10.1186/s13046‑018‑1015‑9 30674340
    [Google Scholar]
  67. Gao F. Li R. Wei P.F. Ou L. Li M. Bai Y. Luo W.J. Fan Z. Synergistic anticancer effects of everolimus (RAD001) and Rhein on gastric cancer cells via phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. Bioengineered 2022 13 3 6332 6342 10.1080/21655979.2021.2005988 35209807
    [Google Scholar]
  68. Bu T. Wang C. Jin H. Meng Q. Huo X. Sun H. Sun P. Wu J. Ma X. Liu Z. Liu K. Organic anion transporters and PI3K-AKT-mTOR pathway mediate the synergistic anticancer effect of pemetrexed and rhein. J. Cell. Physiol. 2020 235 4 3309 3319 10.1002/jcp.29218 31587272
    [Google Scholar]
  69. Mahbub A. Le Maitre C. Haywood-Small S. Cross N. Jordan-Mahy N. Dietary polyphenols influence antimetabolite agents: Methotrexate, 6-mercaptopurine and 5-fluorouracil in leukemia cell lines. Oncotarget 2017 8 62 104877 104893 10.18632/oncotarget.20501 29285220
    [Google Scholar]
  70. Zhen Y.Z. Lin Y.A.J.U.N. Gao J.L. Zhao Y.F. Xu A.I.J.U.N. Rhein lysinate inhibits cell growth by modulating various mitogen-activated protein kinases in cervical cancer cells. Oncol. Lett. 2011 2 1 129 133 10.3892/ol.2010.200 22870141
    [Google Scholar]
  71. Lin Y.J. Zhen Y.S. Rhein lysinate suppresses the growth of breast cancer cells and potentiates the inhibitory effect of Taxol in athymic mice. Anticancer Drugs 2009 20 1 65 72 10.1097/CAD.0b013e3283182913 19343002
    [Google Scholar]
  72. Zhen Y.Z. Hu G. Zhao Y.F. Yan F. Li R. Gao J.L. Lin Y.J. Synergy of Taxol and rhein lysinate associated with the downregulation of ERK activation in lung carcinoma cells. Oncol. Lett. 2013 6 2 525 528 10.3892/ol.2013.1398 24137360
    [Google Scholar]
  73. Sharma S. Agnihotri N. Kumar S. Targeting fuel pocket of cancer cell metabolism: A focus on glutaminolysis. Biochem. Pharmacol. 2022 198 114943 10.1016/j.bcp.2022.114943 35131295
    [Google Scholar]
  74. Wang M.M. Xu F.J. Su Y. Geng Y. Qian X.T. Xue X.L. Kong Y.Q. Yu Z.H. Liu H.K. Su Z. A new strategy to fight metallodrug resistance: Mitochondria-relevant treatment through mitophagy to inhibit metabolic adaptations of cancer cells. Angew. Chem. Int. Ed. 2022 61 27 e202203843 10.1002/anie.202203843 35384194
    [Google Scholar]
  75. Yang M. Zhang D. Liu J. Zheng J. A molecular marker that is specific to medicinal rhubarb based on chloroplast trnL/trnF sequences. Planta Med. 2001 67 8 784 786 10.1055/s‑2001‑18341 11731933
    [Google Scholar]
  76. Nowak-Perlak M. Ziółkowski P. Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. Phytomedicine 2023 119 155035 10.1016/j.phymed.2023.155035 37603973
    [Google Scholar]
  77. Liu W. Zheng Z. Liu X. Gao S. Ye L. Yang Z. Hu M. Liu Z. Sensitive and robust UPLC-MS/MS method to determine the gender-dependent pharmacokinetics in rats of emodin and its glucuronide. J. Pharm. Biomed. Anal. 2011 54 5 1157 1162 10.1016/j.jpba.2010.12.004 21195574
    [Google Scholar]
  78. Liu W. Feng Q. Li Y. Ye L. Hu M. Liu Z. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Toxicol. Appl. Pharmacol. 2012 265 3 316 324 10.1016/j.taap.2012.08.032 22982073
    [Google Scholar]
  79. Di X. Wang X. Di X. Liu Y. Effect of piperine on the bioavailability and pharmacokinetics of emodin in rats. J. Pharm. Biomed. Anal. 2015 115 144 149 10.1016/j.jpba.2015.06.027 26201645
    [Google Scholar]
  80. Zhou L. Hu X. Han C. Niu X. Han L. Yu H. Pan G. Fu Z. Comprehensive investigation on the metabolism of emodin both in vivo and in vitro. J. Pharm. Biomed. Anal. 2023 223 115122 10.1016/j.jpba.2022.115122 36327583
    [Google Scholar]
  81. Bai J. Su H. Liao B. Huang J. Zhang D. Gong L. Shi X. Huang Z. Qiu X. In-vivo metabolic profiling of the Natural products Emodin and Emodin-8-O-β-D-glucoside in rats using liquid chromatography quadrupole Orbitrap mass spectrometry. Arab. J. Chem. 2024 17 9 105905 10.1016/j.arabjc.2024.105905
    [Google Scholar]
  82. Qin Y. Wang J. Kong W. Zhao Y. Yang H. Dai C. Fang F. Zhang L. Li B. Jin C. Xiao X. The diarrhoeogenic and antidiarrhoeal bidirectional effects of rhubarb and its potential mechanism. J. Ethnopharmacol. 2011 133 3 1096 1102 10.1016/j.jep.2010.11.041 21112382
    [Google Scholar]
  83. Wang Y. Zhao M. Li B. Geng X. Advances in the mechanism of emodin-induced hepatotoxicity. Heliyon 2024 10 13 e33631 10.1016/j.heliyon.2024.e33631 39027614
    [Google Scholar]
  84. Cheng W. Wu S. Yuan Z. Hu W. Yu X. Kang N. Wang Q. Zhu M. Xia K. Yang W. Kang C. Zhang S. Li Y. pharmacokinetics, tissue distribution, and excretion characteristics of a Radix Polygoni Multiflori extract in rats. Front. Pharmacol. 2022 13 827668 10.3389/fphar.2022.827668 35264960
    [Google Scholar]
  85. Chang M.H. Huang F.J. Chan W.H. Emodin induces embryonic toxicity in mouse blastocysts through apoptosis. Toxicology 2012 299 1 25 32 10.1016/j.tox.2012.05.006 22609528
    [Google Scholar]
  86. Luo T. Li N. He Y. Weng S. Wang T. Zou Q. Zeng X. Emodin inhibits human sperm functions by reducing sperm [Ca2+]i and tyrosine phosphorylation. Reprod. Toxicol. 2015 51 14 21 10.1016/j.reprotox.2014.11.007 25463531
    [Google Scholar]
  87. Ai Z. Liu B. Chen J. Zeng X. Wang K. Tao C. Chen J. Yang L. Ding Q. Zhou M. Advances in nano drug delivery systems for enhanced efficacy of emodin in cancer therapy. Int. J. Pharm. X 2025 9 100314 10.1016/j.ijpx.2024.100314 39834843
    [Google Scholar]
  88. Cao X. Deng T. Zhu Q. Wang J. Shi W. Liu Q. Yu Q. Deng W. Yu J. Wang Q. Xiao G. Xu X. Photothermal therapy mediated hybrid membrane derived nano-formulation for enhanced cancer therapy. AAPS PharmSciTech 2023 24 6 146 10.1208/s12249‑023‑02594‑9 37380936
    [Google Scholar]
  89. Srinivasarao M. Low P.S. Ligand-targeted drug delivery. Chem. Rev. 2017 117 19 12133 12164 10.1021/acs.chemrev.7b00013 28898067
    [Google Scholar]
  90. Liu H. Xu H. Zhang C. Gao M. Gao X. Ma C. Lv L. Gao D. Deng S. Wang C. Tian Y. Emodin-loaded PLGA-TPGS nanoparticles combined with heparin sodium-loaded PLGA-TPGS nanoparticles to enhance chemotherapeutic efficacy against liver cancer. Pharm. Res. 2016 33 11 2828 2843 10.1007/s11095‑016‑2010‑5 27511028
    [Google Scholar]
  91. Wang S. Chen T. Chen R. Hu Y. Chen M. Wang Y. Emodin loaded solid lipid nanoparticles: Preparation, characterization and antitumor activity studies. Int. J. Pharm. 2012 430 1-2 238 246 10.1016/j.ijpharm.2012.03.027 22465546
    [Google Scholar]
  92. Muhamad N. Plengsuriyakarn T. Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int. J. Nanomedicine 2018 13 3921 3935 10.2147/IJN.S165210 30013345
    [Google Scholar]
  93. Tang L. Liu X.X. Yang X.D. Tan S. Zou Z.W. A compound formulation of EGF-modified paclitaxel micelles and EGF-modified emodin micelles enhance the therapeutic effect of ovarian cancer. J. Liposome Res. 2023 33 1 89 101 10.1080/08982104.2022.2086568 35706398
    [Google Scholar]
  94. Barber H.M. Pater A.A. Gagnon K.T. Damha M.J. O’Reilly D. Chemical engineering of CRISPR-Cas systems for therapeutic application. Nat. Rev. Drug Discov. 2025 24 3 209 230 10.1038/s41573‑024‑01086‑0 39690326
    [Google Scholar]
  95. Chehelgerdi M. Chehelgerdi M. Khorramian-Ghahfarokhi M. Shafieizadeh M. Mahmoudi E. Eskandari F. Rashidi M. Arshi A. Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy. Mol. Cancer 2024 23 1 9 10.1186/s12943‑023‑01925‑5 38195537
    [Google Scholar]
  96. Zhan T. Rindtorff N. Betge J. Ebert M.P. Boutros M. CRISPR/Cas9 for cancer research and therapy. Semin. Cancer Biol. 2019 55 106 119 10.1016/j.semcancer.2018.04.001 29673923
    [Google Scholar]
  97. Zhang T. Ding J. Lv Q. Zhao M. Liu Y. Wang Q. Chen Y. Zhao H. Ren H. Jiang W. Zhang L. Guo B. Strategies for organic nanoparticles delivering CRISPR/Cas9 for cancer therapy: Challenges and breakthroughs. Mater. Des. 2024 244 113097 10.1016/j.matdes.2024.113097
    [Google Scholar]
  98. Zhang B.C. Wu P.Y. Zou J.J. Jiang J.L. Zhao R.R. Luo B.Y. Liao Y.Q. Shao J.W. Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect. Chem. Eng. J. 2020 393 124688 10.1016/j.cej.2020.124688
    [Google Scholar]
  99. Li Q. Lv X. Tang C. Yin C. Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy. Carbohydr. Polym. 2022 287 119315 10.1016/j.carbpol.2022.119315 35422284
    [Google Scholar]
  100. Li F. Song N. Dong Y. Li S. Li L. Liu Y. Li Z. Yang D. A proton-activatable DNA-based nanosystem enables co-delivery of CRISPR/Cas9 and DNAzyme for combined gene therapy. Angew. Chem. Int. Ed. 2022 61 9 e202116569 10.1002/anie.202116569 34982495
    [Google Scholar]
  101. Rautio J. Meanwell N.A. Di L. Hageman M.J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 2018 17 8 559 587 10.1038/nrd.2018.46 29700501
    [Google Scholar]
  102. Xie A. Hanif S. Ouyang J. Tang Z. Kong N. Kim N.Y. Qi B. Patel D. Shi B. Tao W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine 2020 56 102821 10.1016/j.ebiom.2020.102821 32505922
    [Google Scholar]
  103. de Visser K.E. Joyce J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023 41 3 374 403 10.1016/j.ccell.2023.02.016 36917948
    [Google Scholar]
  104. Barker H.E. Paget J.T.E. Khan A.A. Harrington K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015 15 7 409 425 10.1038/nrc3958 26105538
    [Google Scholar]
  105. Wang Q. Guan J. Wan J. Li Z. Disulfide based prodrugs for cancer therapy. RSC Advances 2020 10 41 24397 24409 10.1039/D0RA04155F 35516223
    [Google Scholar]
  106. Wang Y. Wang X. Deng F. Zheng N. Liang Y. Zhang H. He B. Dai W. Wang X. Zhang Q. The effect of linkers on the self-assembling and anti-tumor efficacy of disulfide-linked doxorubicin drug-drug conjugate nanoparticles. J. Control. Release 2018 279 136 146 10.1016/j.jconrel.2018.04.019 29655991
    [Google Scholar]
  107. Stringaro A. Serra S. Gori A. Calcabrini A. Colone M. Dupuis M.L. Spadaro F. Cecchetti S. Vitali A. Peptide-mediated targeted delivery of aloe-emodin as anticancer drug. Molecules 2022 27 14 4615 10.3390/molecules27144615 35889487
    [Google Scholar]
  108. Liang W. Fan Y. Liu Y. Fang T. Zhang J. Xu Y. Li J. Wang D. ROS/pH dual-sensitive emodin-chlorambucil co-loaded micelles enhance anti-tumor effect through combining oxidative damage and chemotherapy. Int. J. Pharm. 2023 647 123537 10.1016/j.ijpharm.2023.123537 37866554
    [Google Scholar]
  109. Wu L. Liu X. Cao K.X. Ni Z. Li W.D. Chen Z.P. Synergistic antitumor effects of rhein and doxorubicin in hepatocellular carcinoma cells. J. Cell. Biochem. 2020 121 10 4009 4021 10.1002/jcb.27514 30378155
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073375723250505095935
Loading
/content/journals/cchts/10.2174/0113862073375723250505095935
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Cancer ; chemotherapy ; anthraquinone ; adjuvant ; natural compounds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test