Skip to content
2000
image of Multi-Omics and Network Pharmacology Reveal Calycosin as a Candidate Metabolic Modulator in COPD

Abstract

Introduction

Despite the global burden of chronic obstructive pulmonary disease (COPD), its pathogenesis remains elusive, and current therapies fail to halt disease progression. Calycosin, a bioactive isoflavone from Traditional Chinese Medicine (TCM), exhibits anti-inflammatory and antioxidant properties, yet its therapeutic potential in COPD remains unexplored.

Methods

We integrated transcriptomic data of human lung tissue from the Gene Expression Omnibus (GEO) database (GSE8581) and human serum metabolomic data from a published research paper to identify COPD-associated pathways. Network pharmacology, including target screening, analysis, and molecule docking, was employed to elucidate the mechanisms of calycosin for COPD therapy.

Results

Multi-omics analysis revealed significant activation of the pyruvate metabolism pathway and glyoxylate/dicarboxylate metabolism pathway in COPD patients, with 590 differentially expressed genes (DEGs) and 116 differentially expressed metabolites (DEMs) identified. Calycosin targets six key regulators (NME1, ALDH2, PGAM1, LDHA, PCNA, RASD1) with binding affinities (−5.1 to −10.2 kcal/mol) validated molecular docking, implicated in these pathways.

Discussion

This study bridges TCM-derived natural products with modern omics-driven drug discovery, revealing calycosin as a promising COPD intervention by targeting metabolic hubs to mitigate inflammation and metabolic dysfunction, and pioneering an integrated multi-omics and network pharmacology framework for elucidating TCM mechanisms. However, the lack of direct experimental validation in COPD models and the use of data from different biological sources limit the extrapolation of the results. Further in vitro and in vivo experiments are needed.

Conclusions

This integrated analysis highlights distinct metabolic pathway perturbations, specifically in pyruvate and glyoxylate/dicarboxylate metabolism, as key components of COPD pathophysiology and proposes calycosin as a mechanistically grounded candidate for modulating these pathways. This work shifts focus towards metabolic dysregulation as a central therapeutic target, providing a foundation for developing novel strategies to manage COPD beyond symptom control.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073402760250516120303
2025-05-19
2026-01-29
Loading full text...

Full text loading...

References

  1. Venkatesan P. GOLD COPD report: 2024 update. Lancet Respir. Med. 2024 12 1 15 16 10.1016/S2213‑2600(23)00461‑7 38061380
    [Google Scholar]
  2. Christenson S.A. Smith B.M. Bafadhel M. Putcha N. Chronic obstructive pulmonary disease. Lancet 2022 399 10342 2227 2242 10.1016/S0140‑6736(22)00470‑6 35533707
    [Google Scholar]
  3. Kahnert K. Jörres R.A. Behr J. Welte T. The diagnosis and treatment of COPD and its comorbidities. Dtsch. Arztebl. Int. 2023 120 25 434 444 10.3238/arztebl.m2023.0027 36794439
    [Google Scholar]
  4. Boers E. Barrett M. Su J.G. Benjafield A.V. Sinha S. Kaye L. Zar H.J. Vuong V. Tellez D. Gondalia R. Rice M.B. Nunez C.M. Wedzicha J.A. Malhotra A. Global burden of chronic obstructive pulmonary disease through 2050. JAMA Netw. Open 2023 6 12 e2346598 10.1001/jamanetworkopen.2023.46598 38060225
    [Google Scholar]
  5. Zafari Z. Li S. Eakin M.N. Bellanger M. Reed R.M. Projecting long-term health and economic burden of COPD in the United States. Chest 2021 159 4 1400 1410 10.1016/j.chest.2020.09.255 33011203
    [Google Scholar]
  6. Yin P. Wu J. Wang L. Luo C. Ouyang L. Tang X. Liu J. Liu Y. Qi J. Zhou M. Lai T. The Burden of COPD in China and its provinces: Findings from the global burden of disease Study 2019. Front. Public Health 2022 10 859499 10.3389/fpubh.2022.859499 35757649
    [Google Scholar]
  7. Chen S. Kuhn M. Prettner K. Yu F. Yang T. Bärnighausen T. Bloom D.E. Wang C. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020–50: A health-augmented macroeconomic modelling study. Lancet Glob. Health 2023 11 8 e1183 e1193 10.1016/S2214‑109X(23)00217‑6 37474226
    [Google Scholar]
  8. Mou K. Chan S.M.H. Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol. Ther. 2024 257 108635 10.1016/j.pharmthera.2024.108635 38508342
    [Google Scholar]
  9. Gunasekaran K. Murthi S. Elango K. Rahi M.S. Thilagar B. Ramalingam S. Voruganti D. Paramasivam V.K. Kolandaivel K.P. Arora A. Chandran A. The impact of diabetes mellitus in patients with chronic obstructive pulmonary disease (COPD) hospitalization. J. Clin. Med. 2021 10 2 235 10.3390/jcm10020235 33440707
    [Google Scholar]
  10. Papaioannou A.I. Hillas G. Loukides S. Vassilakopoulos T. Mortality prevention as the centre of COPD management. ERJ Open Res. 2024 10 3 00850 02023 10.1183/23120541.00850‑2023 38887682
    [Google Scholar]
  11. Xiang Y. Luo X. Extrapulmonary comorbidities associated with chronic obstructive pulmonary disease: A review. Int. J. Chron. Obstruct. Pulmon. Dis. 2024 19 567 578 10.2147/COPD.S447739 38476124
    [Google Scholar]
  12. Hogg J.C. Chu F. Utokaparch S. Woods R. Elliott W.M. Buzatu L. Cherniack R.M. Rogers R.M. Sciurba F.C. Coxson H.O. Paré P.D. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004 350 26 2645 2653 10.1056/NEJMoa032158 15215480
    [Google Scholar]
  13. Chung K.F. Adcock I.M. Multifaceted mechanisms in COPD: Inflammation, immunity, and tissue repair and destruction. Eur. Respir. J. 2008 31 6 1334 1356 10.1183/09031936.00018908 18515558
    [Google Scholar]
  14. Brandsma C.A. Van den Berge M. Hackett T.L. Brusselle G. Timens W. Recent advances in chronic obstructive pulmonary disease pathogenesis: From disease mechanisms to precision medicine. J. Pathol. 2020 250 5 624 635 10.1002/path.5364 31691283
    [Google Scholar]
  15. Guo P. Li R. Piao T.H. Wang C.L. Wu X.L. Cai H.Y. Pathological mechanism and targeted drugs of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2022 17 1565 1575 10.2147/COPD.S366126 35855746
    [Google Scholar]
  16. Lan C.C. Yang M.C. Su W.L. Huang K.L. Lin C.C. Huang Y.C. Huang C.Y. Chen H.Y. Wu C.W. Lee C. Jao L.Y. Wu Y.K. Unraveling the immune landscape of chronic obstructive pulmonary disease: Insights into inflammatory cell subtypes, pathogenesis, and treatment strategies. Int. J. Mol. Sci. 2025 26 7 3365 10.3390/ijms26073365 40244222
    [Google Scholar]
  17. Brightling C. Greening N. Airway inflammation in COPD: Progress to precision medicine. Eur. Respir. J. 2019 54 2 1900651 10.1183/13993003.00651‑2019 31073084
    [Google Scholar]
  18. Bu T. Wang L.F. Yin Y.Q. How do innate immune cells contribute to airway remodeling in COPD progression? Int. J. Chron. Obstruct. Pulmon. Dis. 2020 15 107 116 10.2147/COPD.S235054 32021149
    [Google Scholar]
  19. Barnes P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2008 8 3 183 192 10.1038/nri2254 18274560
    [Google Scholar]
  20. Vogelmeier C.F. Román-Rodríguez M. Singh D. Han M.K. Rodríguez-Roisin R. Ferguson G.T. Goals of COPD treatment: Focus on symptoms and exacerbations. Respir. Med. 2020 166 105938 10.1016/j.rmed.2020.105938 32250871
    [Google Scholar]
  21. Wang C. Zhou J. Wang J. Li S. Fukunaga A. Yodoi J. Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct. Target. Ther. 2020 5 1 248 10.1038/s41392‑020‑00345‑x 33110061
    [Google Scholar]
  22. Miravitlles M. Auladell-Rispau A. Monteagudo M. Vázquez-Niebla J.C. Mohammed J. Nuñez A. Urrútia G. Systematic review on long-term adverse effects of inhaled corticosteroids in the treatment of COPD. Eur. Respir. Rev. 2021 30 160 210075 10.1183/16000617.0075‑2021
    [Google Scholar]
  23. Agusti A. Fabbri L.M. Singh D. Vestbo J. Celli B. Franssen F.M.E. Rabe K.F. Papi A. Inhaled corticosteroids in COPD: Friend or foe? Eur. Respir. J. 2018 52 6 1801219 10.1183/13993003.01219‑2018 30190269
    [Google Scholar]
  24. Li L. Yao H. Wang J. Li Y. Wang Q. The role of chinese medicine in health maintenance and disease prevention: Application of constitution theory. Am. J. Chin. Med. 2019 47 3 495 506 10.1142/S0192415X19500253 31023059
    [Google Scholar]
  25. Luo Q.L. Nurahmat M. Li M.H. Sun J. Chen M.X. Liu F. Wei Y. Dong J.C. Pharmacological investigation of a HPLC/MS standardized three herbal extracts containing formulae (Bu-Shen-Yi-Qi-Tang) on airway inflammation and hypothalamic-pituitary-adrenal axis activity in asthmatic mice. Phytomedicine 2014 21 11 1439 1450 10.1016/j.phymed.2014.06.006 25022211
    [Google Scholar]
  26. Deng M. Chen H. Long J. Song J. Xie L. Li X. Calycosin: A review of its pharmacological effects and application prospects. Expert Rev. Anti Infect. Ther. 2021 19 7 911 925 10.1080/14787210.2021.1863145 33346681
    [Google Scholar]
  27. Kong X. Wang F. Niu Y. Wu X. Pan Y. A comparative study on the effect of promoting the osteogenic function of osteoblasts using isoflavones from R adix A stragalus. Phytother. Res. 2018 32 1 115 124 10.1002/ptr.5955 29044703
    [Google Scholar]
  28. Zhang B.T. Song X. Cho C.S.W. Wong C.K. Wang D. Deciphering anticancer mechanisms of calycosin in lung adenocarcinoma through multi-omics: Targeting smad3-mediated notch signaling in the tumor microenvironment. Cancers 2025 17 9 1455 10.3390/cancers17091455 40361382
    [Google Scholar]
  29. Xu H. Qin J. Qin L. Guo C. Yang B. Bioinformatics and In Silico findings uncover bio-targets of calycosin against heart failure and diabetes mellitus. Front. Endocrinol. 2022 13 790619 10.3389/fendo.2022.790619 35898453
    [Google Scholar]
  30. Yosri H. El-Kashef D.H. El-Sherbiny M. Said E. Salem H.A. Calycosin modulates NLRP3 and TXNIP-mediated pyroptotic signaling and attenuates diabetic nephropathy progression in diabetic rats; An insight. Biomed. Pharmacother. 2022 155 113758 10.1016/j.biopha.2022.113758 36271546
    [Google Scholar]
  31. Li Y. Hu S. Chen Y. Zhang X. Gao H. Tian J. Chen J. Calycosin inhibits triple-negative breast cancer progression through down-regulation of the novel estrogen receptor-α splice variant ER-α30-mediated PI3K/AKT signaling pathway. Phytomedicine 2023 118 154924 10.1016/j.phymed.2023.154924 37393829
    [Google Scholar]
  32. Xu S. Huang P. Yang J. Du H. Wan H. He Y. Calycosin alleviates cerebral ischemia/reperfusion injury by repressing autophagy via STAT3/FOXO3a signaling pathway. Phytomedicine 2023 115 154845 10.1016/j.phymed.2023.154845 37148714
    [Google Scholar]
  33. Zhang Z.H. Yuan C.Y. Xu M. Wang M.F. Feng T. Wang Y. Zheng S.F. Zhang H.L. Shi G.H. Cao D.L. Wang Z.L. Ye D.W. Calycosin inhibits the proliferation and metastasis of renal cell carcinoma through the MAZ / HAS2 signaling pathway. Phytother. Res. 2024 38 9 4774 4791 10.1002/ptr.8295 39120474
    [Google Scholar]
  34. Wang S. Yang X.X. Li T.J. Tian X.M. Wang Y.L. Bai G. Bao Y.R. Meng X.S. Metabolic regularity of bioactive compounds in Bufei Jianpi granule in rats using ultra‐high‐performance liquid chromatography coupled with triple quadrupole mass spectrometry analysis technology. Biomed. Chromatogr. 2023 37 12 e5740 10.1002/bmc.5740 37670539
    [Google Scholar]
  35. Ren H. Wu W. Chen J. Li Q. Wang H. Qian D. Guo S. Duan J. Integrated serum metabolomics and network pharmacology analysis on the bioactive metabolites and mechanism exploration of Bufei huoxue capsule on chronic obstructive pulmonary disease rats. J. Ethnopharmacol. 2024 324 117816 10.1016/j.jep.2024.117816 38286154
    [Google Scholar]
  36. Wu J. Cai B. Zhang A. Zhao P. Du Y. Liu X. Zhao D. Yang L. Liu X. Li J. Chemical identification and antioxidant screening of bufei yishen formula using an offline dpph ultrahigh-performance liquid chromatography q-extractive orbitrap MS/MS. Int. J. Anal. Chem. 2022 2022 1 19 10.1155/2022/1423801 36284795
    [Google Scholar]
  37. Baalbaki N. Slob E.M.A. Kazer S.W. Abdel-Aziz I. M.; Bogaard, H.J.; Golebski, K.; Maitland-van der Zee, A.H. The omics landscape of long covid —a comprehensive systematic review to advance biomarker, target and drug discovery. Allergy 2025 80 4 932 948 10.1111/all.16526 40084919
    [Google Scholar]
  38. Hunt G.P. Grassi L. Henkin R. Smeraldi F. Spargo T.P. Kabiljo R. Koks S. Ibrahim Z. Dobson R.J.B. Al-Chalabi A. Barnes M.R. Iacoangeli A. GEOexplorer: A webserver for gene expression analysis and visualisation. Nucleic Acids Res. 2022 50 W1 W367 W374 10.1093/nar/gkac364 35609980
    [Google Scholar]
  39. Tang D. Chen M. Huang X. Zhang G. Zeng L. Zhang G. Wu S. Wang Y. SRplot: A free online platform for data visualization and graphing. PLoS One 2023 18 11 e0294236 10.1371/journal.pone.0294236 37943830
    [Google Scholar]
  40. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  41. Pinto-Plata V. Casanova C. Divo M. Tesfaigzi Y. Calhoun V. Sui J. Polverino F. Priolo C. Petersen H. de Torres J.P. Marin J.M. Owen C.A. Baz R. Cordova E. Celli B. Plasma metabolomics and clinical predictors of survival differences in COPD patients. Respir. Res. 2019 20 1 219 10.1186/s12931‑019‑1167‑y 31615518
    [Google Scholar]
  42. Pang Z. Xu L. Viau C. Lu Y. Salavati R. Basu N. Xia J. MetaboAnalystR 4.0: A unified LC-MS workflow for global metabolomics. Nat. Commun. 2024 15 1 3675 10.1038/s41467‑024‑48009‑6 38693118
    [Google Scholar]
  43. Wu Y. Zhang F. Yang K. Fang S. Bu D. Li H. Sun L. Hu H. Gao K. Wang W. Zhou X. Zhao Y. Chen J. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2019 47 D1 D1110 D1117 10.1093/nar/gky1021 30380087
    [Google Scholar]
  44. Fang S. Dong L. Liu L. Guo J. Zhao L. Zhang J. Bu D. Liu X. Huo P. Cao W. Dong Q. Wu J. Zeng X. Wu Y. Zhao Y. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021 49 D1 D1197 D1206 10.1093/nar/gkaa1063 33264402
    [Google Scholar]
  45. Davis A.P. Wiegers T.C. Johnson R.J. Sciaky D. Wiegers J. Mattingly C.J. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Res. 2023 51 D1 D1257 D1262 10.1093/nar/gkac833 36169237
    [Google Scholar]
  46. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  47. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  48. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  49. Varadi M. Anyango S. Deshpande M. Nair S. Natassia C. Yordanova G. Yuan D. Stroe O. Wood G. Laydon A. Žídek A. Green T. Tunyasuvunakool K. Petersen S. Jumper J. Clancy E. Green R. Vora A. Lutfi M. Figurnov M. Cowie A. Hobbs N. Kohli P. Kleywegt G. Birney E. Hassabis D. Velankar S. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 50 D1 D439 D444 10.1093/nar/gkab1061 34791371
    [Google Scholar]
  50. Jiménez J. Doerr S. Martínez-Rosell G. Rose A.S. De Fabritiis G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 2017 33 19 3036 3042 10.1093/bioinformatics/btx350 28575181
    [Google Scholar]
  51. Adasme M.F. Linnemann K.L. Bolz S.N. Kaiser F. Salentin S. Haupt V.J. Schroeder M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021 49 W1 W530 W534 10.1093/nar/gkab294 33950214
    [Google Scholar]
  52. Bennitt F.B. Wozniak S. Causey K. Spearman S. Okereke C. Garcia V. Hashmeh N. Ashbaugh C. Abdelkader A. Abdoun M. Abdurebi M.J. Abedi A. Abeldaño Zuñiga R.A. Aboagye R.G. Abubakar B. Abu-Zaid A. Adane M.M. Adegboye O.A. Adekanmbi V. Adepoju A.V. Adeyeoluwa T.E. Adeyomoye O.I. Adha R. Afzal M.S. Afzal S. Agide F.D. Ahmad A. Ahmad D. Ahmad M.M. Ahmad S. Ahmadi A. Ahmadi S. Ahmed A. Ahmed A. Ahmed H. Ajami M. Akinyemi R.O. Al Awaidy S. Al Hamad H. Alajlani M.M. Alemayohu M.A. Al-Gheethi A.A.S. Ali A. Ali W. Alif S.M. Almustanyir S. Alvis-Guzman N. Alvis-Zakzuk N.J. Aly H. Amu H. Amusa G.A. Anagaw T.F. Anuoluwa B.S. Anuoluwa I.A. Anvari S. Anyabolo E.E. Apostol G.L.C. Aravkin A.Y. Areda D. Aregawi B.B. Aremu O. Asgedom A.A. Ashemo M.Y. Ashraf T. Athari S.S. Azadnajafabad S. Azzam A.Y. Babu G.R. Bahramian S. Bam K. Banach M. Banik B. Baran M.F. Barone-Adesi F. Barteit S. Bashiru H.A. Baskaran P. Bastan M-M. Basu S. Basu S. Belay S.A. Belayneh M. Beloukas A. Bennett D.A. Bhagat D.S. Bhandari D. Bhardwaj P. Bhaskar S. Bhat A.N. Bhattacharjee P. Bhatti G.K. Bhatti M.S.S. Bilgin C. Boampong M.S. Boppana S.H. Bosoka S.A. Boudalia S. Cao F. Chandika R.M. Chanie G.S. Chattu V.K. Chaudhary A.A. Chaurasia A. Chen G. Chen Y. Chimoriya R. Chong B. Christopher D.J. Chukwu I.S. Cohen A.J. Cruz-Martins N. Dadras O. Dai X. Daikwo P.U. Darcho S.D. Das S. Delgado-Saborit J.M. Desye B. Dey S. Dhimal M. Diaz D. Do T.C. Doshi O.P. E’mar A.R. Ebrahimi A. Edinur H.A. Eftekharimehrabad A. Ekundayo T.C. El Bayoumy I.F. Emdadul Haque S. Emeto T.I. Enyew H.D. Fahim A. Fakunle A.G. Faridi S. Fazylov T. Feizkhah A. Fischer F. Folayan M.O. G, S.; Gadanya, M.A.; Gao, X.; Gebregergis, M.W.; Gebrehiwot, M.; Gebremeskel, T.G.; Ghasemzadeh, A.; Ghith, N.; Golechha, M.; Golinelli, D.; Guan, S-Y.; Guo, Z.; Gupta, B.; Gupta, L.; Halwani, R.; Hasaballah, A.I.; Hasnain, M.S.; Hay, S.I.; Heyi, D.Z.; Hezam, K.; Hoan, N.Q.; Holla, R.; Hosseinzadeh, H.; Hu, C.; Huynh, H-H.; Hwang, B-F.; Ibitoye, S.E.; Idowu, O.O.; Ikiroma, A.; Immurana, M.; Inok, A.; Iqhrammullah, M.; Islam, R.M.; Islam, S.M.S.; J, V.; Jairoun, A.A.; Jaiswal, A.; Jakovljevic, M.; Jalilzadeh Yengejeh, R.; Janodia, M.D.; Jayaram, S.; Jema, A.T.; Jha, R.P.; Jonas, J.B.; Joseph, N.; Kadashetti, V.; Kanmodi, K.K.; Kansal, S.K.; Karaye, I.M.; Kayode, G.A.; Khajuria, H.; Khalaji, A.; Khanal, V.; Khatab, K.; Kheirallah, K.A.; Khosla, A.A.; Khosravi, M.; Km, S.; Knibbs, L.D.; Koren, G.; Koul, P.A.; Krishan, K.; Kuate Defo, B.; Kuddus, M.; Kulimbet, M.; Kulkarni, V.; Kumar, A.; Kumar, D.; Kumar, N.; Kurmi, O.P.; Lahariya, C.; Lai, H.; Lan, T.; Lauriola, P.; Le, N.H.H.; Lee, M.; Lee, S.W.; Lim, S.S.; Liu, G.; Liu, S.; Liu, W.; López-Gil, J.F.; Lusk, J.B.; Maharaj, S.B.; Malhotra, K.; Malik, A.A.; Malik, I.; Malinga, L.A.; Mathioudakis, A.G.; Mattiello, R.; Maugeri, A.; Mekene Meto, T.; Meles, H.N.; Menezes, R.G.; Meo, S.A.; Mereta, S.T.; Meretoja, T.J.; Mestrovic, T.; Mhlanga, L.; Miller, T.R.; Mirica, A.; Mirrakhimov, E.M.; Mirza, M.; Misganaw, A.; Mithra, P.; Mohamed, J.; Mohamed, N.S.; Mohammadian-Hafshejani, A.; Mohammed, M.; Mohammed, S.; Mokdad, A.H.; Momani, S.; Mondal, H.; Morawska, L.; Motappa, R.; Mubarik, S.; Munjal, K.; Munkhsaikhan, Y.; Murray, C.J.L.; Myung, W.; Nair, S.; Nangia, V.; Naveed, M.; Nawsherwan; Ndejjo, R.; Nguyen, D.; Nguyen, H.Q.; Nguyen, V.T.; Nikolouzakis, T.K.; Niranjan, V.; Noman, E.A.; Noor, S.T.A.; Norouzian Baghani, A.; Noubiap, J.J.; Nzoputam, O.J.; Oancea, B.; Odetokun, I.A.; Odo, D.B.; Ofakunrin, A.O.D.; Oghenetega, O.B.; Okonji, O.C.; Olagunju, A.T.; Olasehinde, T.A.; Olufadewa, I.I.; Oluwatunase, G.O.; Omar Bali, A.; Ommati, M.M.; Omotayo, A.O.; Ondayo, M.A.; Otoiu, A.; Owolabi, M.O.; P A, M.P.; Padubidri, J.R.; Pantazopoulos, I.; Pardhan, S.; Parija, P.P.; Parikh, R.R.; Park, E-K.; Parthasarathi, A.; Patel, J.; Pati, S.; Pawar, S.; Peprah, P.; Pereira, G.; Perianayagam, A.; Pham, H.T.; Poluru, R.; Pourshams, A.; Pradhan, J.; Prates, E.J.S.; Pribadi, D.R.A.; Puvvula, J.; Rafiee, A.; Raghav, P.; Rahim, F.; Rahman, M.H.U.; Rahman, M.; Rahman, M.A.; Rahmani, A.M.; Rahmanian, M.; Rajaa, S.; Rajabi, R.; Rajput, P.; Ramadan, M.M.; Rana, J.; Rana, K.; Ranabhat, C.L.; Rasali, D.P.; Rauniyar, S.K.; Rawaf, S.; Redwan, E.M.M.M.; Rezaei, N.; Rodriguez, J.A.B.; Röhr, S.; Roshandel, G.; Rout, H.S.; Roy, P.; Russo, M.; Sabet, C.J.; Saddik, B.A.; Saeed, U.; Saheb Sharif-Askari, N.; Sahebkar, A.; Sahoo, P.M.; Salami, A.A.; Salihu, D.; Samy, A.M.; Santric-Milicevic, M.M.; Sarkar, T.; Satpathy, M.; Saya, G.K.; Sayeed, M.A.; Schumacher, A.E.; Sergindo, M.T.; Sethi, Y.; Seylani, A.; Shahid, S.; Sham, S.; Shamim, M.A.; Shamsi, A.; Sheikh, A.; Shetty, P.H.; Shittu, A.; Shiue, I.; Siddig, E.E.; Singh, P.; Singh, S.; Siraj, M.S.; Stanaway, J.D.; Stockfelt, L.; Straif, K.; Swain, C.K.; Swami Vetha, B.S.; Tabatabaei, S.M.; Tampa, M.; Tang, H.; Tanwar, M.; Tarkang, E.E.; Tefera, Y.M.; Temsah, M-H.; Temsah, R.M.H.; Thakur, R.; Thienemann, F.; Tibebu, N.S.; Tiwari, K.; Tovani-Palone, M.R.; Tripathy, J.P.; Tsatsakis, A.; Tumurkhuu, M.; Udoakang, A.J.; Ullah, S.; Vahdati, S.; Vaziri, S.; Verma, M.; Vidale, S.; Villani, S.; Vohra, K.; Vos, T.; Wassie, G.T.; Weldetinsaa, H.L.; Werkneh, A.A.; Wickramasinghe, N.D.; Wojewodzic, M.W.; Wonde, T.E.; Wu, F.; Wu, Z.; Xiao, H.; Xu, S.; Yadav, M.K.; Yahoo Syed, S.; Yaya, S.; Yiğit, A.; Yiğit, V.; Yin, D.; Yon, D.K.; Yonemoto, N.; Yu, C.; Zaki, L.; Zeariya, M.G.M.; Zeng, Y.; Zhai, C.; Zhang, H.; Zhang, Z.; Zhu, B.; Zyoud, S.H.; Zyoud, S.H.; Brauer, M.; Burkart, K. Global, regional, and national burden of household air pollution, 1990–2021: A systematic analysis for the global burden of disease study 2021. Lancet 2025 405 10485 1167 1181 10.1016/S0140‑6736(24)02840‑X 40118081
    [Google Scholar]
  53. Celli B.R. Locantore N. Tal-Singer R. Riley J. Miller B. Vestbo J. Yates J.C. Silverman E.K. Owen C.A. Divo M. Pinto-Plata V. Wouters E.F.M. Faner R. Agusti A. Emphysema and extrapulmonary tissue loss in COPD: A multi-organ loss of tissue phenotype. Eur. Respir. J. 2018 51 2 1702146 10.1183/13993003.02146‑2017 29437944
    [Google Scholar]
  54. Cavaillès A. Brinchault-Rabin G. Dixmier A. Goupil F. Gut-Gobert C. Marchand-Adam S. Meurice J.C. Morel H. Person-Tacnet C. Leroyer C. Diot, P Comorbidities of COPD. Eur. Respir. Rev. 2013 22 130 454 475 10.1183/09059180.00008612
    [Google Scholar]
  55. Chen L. Deng S. Fang Y. Zhong Y. Wang Y. Tang W. Zhang B. Du M. Yu C. Serum metabonomic study of the effects of Huofeitong tablet on rats with COPD. Anal. Biochem. 2021 620 114150 10.1016/j.ab.2021.114150 33636158
    [Google Scholar]
  56. Gray L.R. Tompkins S.C. Taylor E.B. Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci. 2014 71 14 2577 2604 10.1007/s00018‑013‑1539‑2 24363178
    [Google Scholar]
  57. Kao C.C. Hsu J.W. Bandi V. Hanania N.A. Kheradmand F. Jahoor F. Glucose and pyruvate metabolism in severe chronic obstructive pulmonary disease. J. Appl. Physiol. 2012 112 1 42 47 10.1152/japplphysiol.00599.2011
    [Google Scholar]
  58. Gan P.X.L. Zhang S. Fred Wong W.S. Targeting reprogrammed metabolism as a therapeutic approach for respiratory diseases. Biochem. Pharmacol. 2024 228 116187 10.1016/j.bcp.2024.116187 38561090
    [Google Scholar]
  59. Li Y. He Y. Zheng Q. Zhang J. Pan X. Zhang X. Yuan H. Wang G. Liu X. Zhou X. Zhu X. Ren T. Sui P. Mitochondrial pyruvate carriers control airway basal progenitor cell function through glycolytic-epigenetic reprogramming. Cell Stem Cell 2025 32 1 105 120.e6 10.1016/j.stem.2024.09.015 39426380
    [Google Scholar]
  60. Wei Y. Guo H. Chen S. Tang X.X. Regulation of macrophage activation by lactylation in lung disease. Front. Immunol. 2024 15 1427739 10.3389/fimmu.2024.1427739 39026681
    [Google Scholar]
  61. Zhou Z. Li Y. Jiang W. Wang Z. Molecular mechanism of calycosin inhibited vascular calcification. Nutrients 2023 16 1 99 10.3390/nu16010099 38201929
    [Google Scholar]
  62. Tong W. Leng L. Wang Y. Guo J. Owusu F.B. Zhang Y. Wang F. Li R. Li Y. Chang Y. Wang Y. Wang Q. Buyang huanwu decoction inhibits diabetes-accelerated atherosclerosis via reduction of AMPK-Drp1-mitochondrial fission axis. J. Ethnopharmacol. 2023 312 116432 10.1016/j.jep.2023.116432 37003404
    [Google Scholar]
  63. Qu N. Qu J. Huang N. Zhang K. Ye T. Shi J. Chen B. Kan C. Zhang J. Han F. Hou N. Sun X. Pan R. Calycosin induces autophagy and apoptosis via Sestrin2/AMPK/mTOR in human papillary thyroid cancer cells. Front. Pharmacol. 2022 13 1056687 10.3389/fphar.2022.1056687 36588732
    [Google Scholar]
  64. Xu W. Zhou F. Zhu Q. Bai M. Luo T. Zhou L. Deng R. Calycosin-7-O-β-D-glucoside attenuates palmitate-induced lipid accumulation in hepatocytes through AMPK activation. Eur. J. Pharmacol. 2022 925 174988 10.1016/j.ejphar.2022.174988 35490724
    [Google Scholar]
  65. Han F. Li K. Pan R. Xu W. Han X. Hou N. Sun X. Calycosin directly improves perivascular adipose tissue dysfunction by upregulating the adiponectin/AMPK/eNOS pathway in obese mice. Food Funct. 2018 9 4 2409 2415 10.1039/C8FO00328A 29595858
    [Google Scholar]
  66. Hu R. Wang M. Liu L. You H. Wu X. Liu Y. Wang Y. Lu L. Xiao W. Wei L. Calycosin inhibited autophagy and oxidative stress in chronic kidney disease skeletal muscle atrophy by regulating AMPK/SKP2/CARM1 signalling pathway. J. Cell. Mol. Med. 2020 24 19 11084 11099 10.1111/jcmm.15514 32910538
    [Google Scholar]
  67. Zhou P. Wang N. Lu S. Xiong J. Zhang Y. Jiang Q. Qian Q. Zhou Q. Liu J. Chen S. Dihydrolipoamide S-acetyltransferase activation alleviates diabetic kidney disease via AMPK-autophagy axis and mitochondrial protection. Transl. Res. 2024 274 81 100 10.1016/j.trsl.2024.09.005 39389296
    [Google Scholar]
  68. Huang S. Liang H. Chen Y. Liu C. Luo P. Wang H. Du Q. Hypoxanthine ameliorates diet-induced insulin resistance by improving hepatic lipid metabolism and gluconeogenesis via AMPK/mTOR/PPARα pathway. Life Sci. 2024 357 123096 10.1016/j.lfs.2024.123096 39369847
    [Google Scholar]
  69. Li X. Zhu Q. Yang Z. Zhu M. Xie Z. Fan Y. Zhao T. The Jieduquyuziyin prescription alleviates systemic lupus erythematosus by modulating B cell metabolic reprogramming via the AMPK/PKM2 signaling pathway. J. Ethnopharmacol. 2025 345 119626 10.1016/j.jep.2025.119626 40081513
    [Google Scholar]
  70. Wu C. Zhang H. Lin X. Zeng Y. Zhang Y. Ma X. Xue Y. Guan M. Role of PDK4 in insulin signaling pathway in periadrenal adipose tissue of pheochromocytoma patients. Endocr. Relat. Cancer 2020 27 10 583 589 10.1530/ERC‑20‑0293 32856615
    [Google Scholar]
  71. Kuroda A. Hegab A.E. Jingtao G. Yamashita S. Hizawa N. Sakamoto T. Yamada H. Suzuki S. Ishii M. Namkoong H. Asakura T. Ozaki M. Yasuda H. Hamamoto J. Kagawa S. Soejima K. Betsuyaku T. Effects of the common polymorphism in the human aldehyde dehydrogenase 2 (ALDH2) gene on the lung. Respir. Res. 2017 18 1 69 10.1186/s12931‑017‑0554‑5 28431562
    [Google Scholar]
  72. Jang A.J. Lee J.H. Yotsu-Yamashita M. Park J. Kye S. Benza R.L. Passineau M.J. Jeon Y.J. Nyunoya T. A Novel Compound, “FA-1” Isolated from Prunus mume, Protects Human Bronchial Epithelial Cells and Keratinocytes from Cigarette Smoke Extract-Induced Damage. Sci. Rep. 2018 8 1 11504 10.1038/s41598‑018‑29701‑2 30065307
    [Google Scholar]
  73. Tu C. Mammen M.J. Li J. Shen X. Jiang X. Hu Q. Wang J. Sethi S. Qu J. Large-scale, ion-current-based proteomics investigation of bronchoalveolar lavage fluid in chronic obstructive pulmonary disease patients. J. Proteome Res. 2014 13 2 627 639 10.1021/pr4007602 24188068
    [Google Scholar]
  74. Sheppard S. Santosa E.K. Lau C.M. Violante S. Giovanelli P. Kim H. Cross J.R. Li M.O. Sun J.C. Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep. 2021 35 9 109210 10.1016/j.celrep.2021.109210 34077737
    [Google Scholar]
  75. Sharma D. Singh M. Rani R. Role of LDH in tumor glycolysis: Regulation of LDHA by small molecules for cancer therapeutics. Semin. Cancer Biol. 2022 87 184 195 10.1016/j.semcancer.2022.11.007 36371026
    [Google Scholar]
  76. Liu Y. Zhang J. Han Q. Li Y. Xue Y. Liu X. Identification of biomarkers associated with macrophage polarization in diabetic cardiomyopathy based on bioinformatics and machine learning approaches. Life Sci. 2025 364 123443 10.1016/j.lfs.2025.123443 39914590
    [Google Scholar]
  77. Wei J. Chen X. Wang Z. Li X. Zhang M. Sun T. Zhang X. Wang D. Hou C. Meng X. Galloflavin mitigates acute kidney injury by suppressing LDHA-dependent macrophage glycolysis. Int. Immunopharmacol. 2025 150 114265 10.1016/j.intimp.2025.114265 39955920
    [Google Scholar]
  78. Chen F. Wang N. Liao J. Jin M. Qu F. Wang C. Lin M. Cui H. Wen W. Chen F. Esculetin rebalances M1 / M2 macrophage polarization to treat sepsis‐induced acute lung injury through regulating metabolic reprogramming. J. Cell. Mol. Med. 2024 28 21 e70178 10.1111/jcmm.70178 39535339
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073402760250516120303
Loading
/content/journals/cchts/10.2174/0113862073402760250516120303
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test