Skip to content
2000
image of The Potential Mechanisms of Total Flavonoids of Drynaria roosii Nakaike in the Treatment of Ovariectomized Osteoporotic Rats through the SDF-1/CXCR4 Axis and BMSCs

Abstract

Introduction

The aim of this study was to investigate the potential mechanisms and therapeutic effects of Total Flavonoids of Nakaike (TFRD) on osteoporotic rats following ovariectomy, through modulation of the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis.

Methods

Ovariectomized (OVX) osteoporotic rat models were established and treated with TFRD. The effects of TFRD on Bone Mineral Density (BMD), bone microarchitecture, and the expression of genes and proteins related to the SDF-1/CXCR4 axis in rat lumbar vertebrae were assessed using BMD measurement, bone histomorphology analysis, and molecular biology techniques.

Results

In the TFRD treatment group, lumbar spine BMD significantly increased, and trabecular structure improved. Further mechanistic studies revealed that TFRD regulated SDF-1 expression, thereby promoting its binding to the CXCR4 receptor and, in turn, enhancing migration, homing, and osteogenic differentiation of BMSCs. These changes ultimately led to increased bone formation and decreased bone resorption, improving symptoms of osteoporosis.

Discussion

This study provides novel insights into the molecular mechanism of TFRD gene therapy in OVX osteoporosis rats by elucidating its involvement through the SDF-1/CXCR4 axis and BMSCs-mediated osteogenic differentiation.

Conclusion

These findings serve as a solid experimental and theoretical foundation for developing new anti-osteoporosis drugs. Furthermore, due to its natural plant extract origin, TFRD shows promising clinical application potential and requires further comprehensive investigation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073393368251030051712
2026-01-16
2026-01-30
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073393368251030051712/BMS-CCHTS-2025-101.html?itemId=/content/journals/cchts/10.2174/0113862073393368251030051712&mimeType=html&fmt=ahah

References

  1. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001 285 6 785 795 10.1001/jama.285.6.785 11176917
    [Google Scholar]
  2. Lin K. Xia L. Li H. Jiang X. Pan H. Xu Y. Lu W.W. Zhang Z. Chang J. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials 2013 34 38 10028 10042 10.1016/j.biomaterials.2013.09.056 24095251
    [Google Scholar]
  3. Miller P.D. Management of severe osteoporosis. Expert Opin. Pharmacother. 2016 17 4 473 488 10.1517/14656566.2016.1124856 26605922
    [Google Scholar]
  4. Lane J.M. Russell L. Khan S.N. Osteoporosis. Clin. Orthop. Relat. Res. 2000 372 372 139 150 10.1097/00003086‑200003000‑00016 10738423
    [Google Scholar]
  5. Gardos G. Cole J.O. Maintenance antipsychotic therapy: is the cure worse than the disease? Am. J. Psychiatry 1976 133 1 32 36 10.1176/ajp.133.1.32 2021
    [Google Scholar]
  6. Jiang Y. Li Y. Zhou L. Zhang D. UPLC-MS metabolomics method provides valuable insights into the effect and underlying mechanisms of Rhizoma Drynariae protecting osteoporosis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020 1152 122262 10.1016/j.jchromb.2020.122262 32682315
    [Google Scholar]
  7. Jin H. Jiang N. Xu W. Zhang Z. Yang Y. Zhang J. Xu H. Effect of flavonoids from Rhizoma Drynariae on osteoporosis rats and osteocytes. Biomed. Pharmacother. 2022 153 113379 10.1016/j.biopha.2022.113379 36076521
    [Google Scholar]
  8. Xie Y. Yuwen Y. Dong F. Sun S. Wang H. Liu Q. Hua Z. Ma L. Liao X. Xu G. Zhi Y. Niu L. Wu C. Clinical practice guideline of traditional medicine for primary osteoporosis. Chin. J. Integr. Med. 2011 17 1 52 63 10.1007/s11655‑011‑0613‑6 21258898
    [Google Scholar]
  9. Zhang H. Li X. Li J. Zhong L. Chen X. Chen S. SDF-1 mediates mesenchymal stem cell recruitment and migration via the SDF-1/CXCR4 axis in bone defect. J. Bone Miner. Metab. 2021 39 2 126 138 10.1007/s00774‑020‑01122‑0 33079278
    [Google Scholar]
  10. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  11. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2023 update. Nucleic Acids Res. 2023 51 D1 D1373 D1380 10.1093/nar/gkac956 36305812
    [Google Scholar]
  12. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  13. Varet H. Brillet-Guéguen L. Coppée J.Y. Dillies M.A. SARTools: A DESeq2- and edger-based r pipeline for comprehensive differential analysis of rna-seq data. PLoS One 2016 11 6 e0157022 10.1371/journal.pone.0157022 27280887
    [Google Scholar]
  14. Love M.I. Huber W. Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014 15 12 550 10.1186/s13059‑014‑0550‑8 25516281
    [Google Scholar]
  15. Liao Y. Smyth G.K. Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014 30 7 923 930 10.1093/bioinformatics/btt656 24227677
    [Google Scholar]
  16. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  17. Srivastava M. Deal C. Osteoporosis in elderly: Prevention and treatment. Clin. Geriatr. Med. 2002 18 3 529 555 10.1016/S0749‑0690(02)00022‑8 12424871
    [Google Scholar]
  18. Khosla S. Hofbauer L.C. Osteoporosis treatment: Recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 2017 5 11 898 907 10.1016/S2213‑8587(17)30188‑2 28689769
    [Google Scholar]
  19. Mathavan N. Turunen M.J. Tägil M. Isaksson H. Characterising bone material composition and structure in the ovariectomized (OVX) rat model of osteoporosis. Calcif. Tissue Int. 2015 97 2 134 144 10.1007/s00223‑015‑9991‑7 25894067
    [Google Scholar]
  20. Xiong W. Guo X. Cai X. SDF-1/CXCR4 axis promotes osteogenic differentiation of BMSCs through the JAK2/STAT3 pathway. Folia Histochem. Cytobiol. 2021 59 3 187 194 10.5603/FHC.a2021.0020 34580847
    [Google Scholar]
  21. Cai B. Lin D. Li Y. Wang L. Xie J. Dai T. Liu F. Tang M. Tian L. Yuan Y. Kong L. Shen S.G.F. N2‐Polarized neutrophils guide bone mesenchymal stem cell recruitment and initiate bone regeneration: A missing piece of the bone regeneration puzzle. Adv. Sci. 2021 8 19 2100584 10.1002/advs.202100584 34382372
    [Google Scholar]
  22. Yang X.W. Huang H.X. Wang F. Zhou Q.L. Huang Y.Q. Qin R.Z. Elevated plasma CXCL12/SDF-1 levels are linked with disease severity of postmenopausal osteoporosis. Innate Immun. 2020 26 3 222 230 10.1177/1753425919883365 31640442
    [Google Scholar]
  23. Ullah T.R. The role of CXCR4 in multiple myeloma: Cells’ journey from bone marrow to beyond. J. Bone Oncol. 2019 17 100253 10.1016/j.jbo.2019.100253 31372333
    [Google Scholar]
  24. Gimble J.M. Robinson C.E. Wu X. Kelly K.A. The function of adipocytes in the bone marrow stroma: An update. Bone 1996 19 5 421 428 10.1016/S8756‑3282(96)00258‑X 8922639
    [Google Scholar]
  25. Durbin R.P. Letter: Acid secretion by gastric mucous membrane. Am. J. Physiol. 1975 229 6 1726 1726 10.1152/ajplegacy.1975.229.6.1726 2020
    [Google Scholar]
  26. Liu F. Yuan Y. Bai L. Yuan L. Li L. Liu J. Chen Y. Lu Y. Cheng J. Zhang J. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol. 2021 43 101963 10.1016/j.redox.2021.101963 33865167
    [Google Scholar]
  27. Hu M. Xing L. Zhang L. Liu F. Wang S. Xie Y. Wang J. Jiang H. Guo J. Li X. Wang J. Sui L. Li C. Liu D. Liu Z. NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation. Aging Cell 2022 21 2 e13551 10.1111/acel.13551 35032339
    [Google Scholar]
  28. Huang M. Xu S. Liu L. Zhang M. Guo J. Yuan Y. Xu J. Chen X. Zou J. m6A Methylation regulates osteoblastic differentiation and bone remodeling. Front. Cell Dev. Biol. 2021 9 783322 10.3389/fcell.2021.783322 34993198
    [Google Scholar]
  29. Zheng S. Zhou C. Yang H. Li J. Feng Z. Liao L. Li Y. Melatonin accelerates osteoporotic bone defect repair by promoting osteogenesis–angiogenesis coupling. Front. Endocrinol. 2022 13 826660 10.3389/fendo.2022.826660 35273570
    [Google Scholar]
  30. Lee Y.C. Chan Y.H. Hsieh S.C. Lew W.Z. Feng S.W. Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int. J. Mol. Sci. 2019 20 20 5015 10.3390/ijms20205015 31658685
    [Google Scholar]
  31. Su C. Wang H. Xu L. Zhang Y. Li Y. MALAT1/miR-320a in BMSC function may inform on mechanisms underlying osteoporosis. Arch. Med. Sci. 2021 10.5114/aoms/105838
    [Google Scholar]
  32. Wang Y. Chen W. Zhao L. Li Y. Liu Z. Gao H. Bai X. Wang B. Obesity regulates miR‐467/HoxA10 axis on osteogenic differentiation and fracture healing by BMSC‐derived exosome LncRNA H19. J. Cell. Mol. Med. 2021 25 3 1712 1724 10.1111/jcmm.16273 33471953
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073393368251030051712
Loading
/content/journals/cchts/10.2174/0113862073393368251030051712
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test