Skip to content
2000
image of Network Pharmacology and Multi-omics Investigation of Yiqi Huoxue Formula’s Molecular Mechanisms in Treating Endometriosis

Abstract

Introduction

Endometriosis (EMs), a prevalent disorder characterized by pelvic pain and infertility, affects numerous bodily systems and markedly diminishes life quality. Yiqi Huoxue formula (YQHXF) has demonstrated promising therapeutic efficacy. However, its active substances and underlying mechanisms remain ambiguous.

Methods

An innovative methodological framework incorporating NP, transcriptomics, proteomics, and molecular biology was utilized to investigate the active components and mechanisms of YQHXF. A network pharmacological analysis was conducted to identify the targets, biological processes, and pathways associated with YQHXF’s effects on EMs. Additionally, transcriptomics, proteomics, and molecular biology techniques were applied for further mechanistic exploration at both the gene and protein levels.

Results

The findings suggest that YQHXF prevents EMs by modulating critical cellular processes—proliferation, invasiveness, adhesion, and apoptosis—within ectopic endometrial cells. The integration of network pharmacology, multi-omics, and molecular biology confirmed that this regulation occurs via key targets (, , , , ) and associated pathways.

Discussion

This study employed an integrated approach combining transcriptomics, proteomics, and molecular biology to analyze the effects of YQHXF on EMs. A total of 180 direct targets, 128 indirect targets, and 19 pathways related to YQHXF’s anti-EMs effects were preliminarily identified. Based on these findings, it is proposed that YQHXF potentially achieves its remedial outcomes by influencing the proliferation, invasiveness, adhesion, and apoptosis of ectopic endometrial cells through the regulation of , , , , and .

Conclusion

The findings suggest that YQHXF prevents EMs by regulating critical cellular processes, including the proliferation, invasiveness, adhesion, and apoptosis of ectopic endometrial cells.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073397046251115102803
2026-01-16
2026-01-29
Loading full text...

Full text loading...

References

  1. Allaire C. Bedaiwy M.A. Yong P.J. Diagnosis and management of endometriosis. CMAJ 2023 195 10 E363 E371 10.1503/cmaj.220637 36918177
    [Google Scholar]
  2. Taylor H.S. Kotlyar A.M. Flores V.A. Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet 2021 397 10276 839 852 10.1016/S0140‑6736(21)00389‑5 33640070
    [Google Scholar]
  3. Giudice L.C. Endometriosis. N. Engl. J. Med. 2010 362 25 2389 2398 10.1056/NEJMcp1000274 20573927
    [Google Scholar]
  4. Greene R. Stratton P. Cleary S.D. Ballweg M.L. Sinaii N. Diagnostic experience among 4,334 women reporting surgically diagnosed endometriosis. Fertil. Steril. 2009 91 1 32 39 10.1016/j.fertnstert.2007.11.020 18367178
    [Google Scholar]
  5. Levy A.R. Osenenko K.M. Lozano-Ortega G. Sambrook R. Jeddi M. Bélisle S. Reid R.L. Economic burden of surgically confirmed endometriosis in Canada. J. Obstet. Gynaecol. Can. 2011 33 8 830 837 10.1016/S1701‑2163(16)34986‑6 21846438
    [Google Scholar]
  6. Zondervan K.T. Becker C.M. Koga K. Missmer S.A. Taylor R.N. Viganò P. Endometriosis. Nat. Rev. Dis. Primers 2018 4 1 9 10.1038/s41572‑018‑0008‑5 30026507
    [Google Scholar]
  7. Salehi B. Carneiro J.N.P. Rocha J.E. Coutinho H.D.M. Morais Braga M.F.B. Sharifi-Rad J. Semwal P. Painuli S. Moujir L.M. de Zarate Machado V. Janakiram S. Anil Kumar N.V. Martorell M. Cruz-Martins N. El Beyrouthy M. Sadaka C. Astragalusspecies: Insights on its chemical composition toward pharmacological applications. Phytother. Res. 2021 35 5 2445 2476 10.1002/ptr.6974 33325585
    [Google Scholar]
  8. Chen G. Jiang N. Zheng J. Hu H. Yang H. Lin A. Hu B. Liu H. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus. Int. J. Biol. Macromol. 2023 241 124386 10.1016/j.ijbiomac.2023.124386 37054858
    [Google Scholar]
  9. Dar A.A. Abrol V. Singh N. Gashash E.A. Dar S.A. Recent bioanalytical methods for the isolation of bioactive natural products from genus Codonopsis. Phytochem. Anal. 2023 34 5 491 506 10.1002/pca.3253 37316180
    [Google Scholar]
  10. Liu M. Zhang G. Zhou K. Wen J. Zheng F. Sun L. Ren X. Structural characterization, antioxidant activity, and the effects of Codonopsis pilosula polysaccharides on the solubility and stability of flavonoids. J. Pharm. Biomed. Anal. 2023 229 115368 10.1016/j.jpba.2023.115368 37001273
    [Google Scholar]
  11. Meng Y. Xu Y. Chang C. Qiu Z. Hu J. Wu Y. Zhang B. Zheng G. Extraction, characterization and anti-inflammatory activities of an inulin-type fructan from Codonopsis pilosula. Int. J. Biol. Macromol. 2020 163 1677 1686 10.1016/j.ijbiomac.2020.09.117 32979437
    [Google Scholar]
  12. Xie Q. Sun Y. Cao L. Chen L. Chen J. Cheng X. Wang C. Antifatigue and antihypoxia activities of oligosaccharides and polysaccharides from Codonopsis pilosula in mice. Food Funct. 2020 11 7 6352 6362 10.1039/D0FO00468E 32608442
    [Google Scholar]
  13. Shi Q. Chen Z. Yang J. Liu X. Su Y. Wang M. Xi J. Yang F. Li F. Review of biological activities: A plant of traditional Chinese tonic. J. Ethnopharmacol. 2024 332 118334 10.1016/j.jep.2024.118334 38740108
    [Google Scholar]
  14. Yao C.M. Yang X.W. Bioactivity-guided isolation of polyacetylenes with inhibitory activity against NO production in LPS-activated RAW264.7 macrophages from the rhizomes of Atractylodes macrocephala. J. Ethnopharmacol. 2014 151 2 791 799 10.1016/j.jep.2013.10.005 24296088
    [Google Scholar]
  15. Huang H.L. Lin T.W. Huang Y.L. Huang R.L. Induction of apoptosis and differentiation by atractylenolide-1 isolated from Atractylodes macrocephala in human leukemia cells. Bioorg. Med. Chem. Lett. 2016 26 8 1905 1909 10.1016/j.bmcl.2016.03.021 26988300
    [Google Scholar]
  16. Zhang N. Liu C. Sun T.M. Ran X.K. Kang T.G. Dou D.Q. Two new compounds from Atractylodes macrocephala with neuroprotective activity. J. Asian Nat. Prod. Res. 2017 19 1 35 41 10.1080/10286020.2016.1247351 28027699
    [Google Scholar]
  17. Li X. Lin J. Han W. Mai W. Wang L. Li Q. Lin M. Bai M. Zhang L. Chen D. Antioxidant ability and mechanism of rhizoma Atractylodes macrocephala. Molecules 2012 17 11 13457 13472 10.3390/molecules171113457 23149564
    [Google Scholar]
  18. Han K.H. Park J.M. Jeong M. Hang Y.M. Go E.J. Park J. Heme oxygenase-1 induction and anti-inflammatory actions of and extracts prevented colitis and was more effective than sulfasalazine in preventing relapse. Gut Liver 2017 11 655 666 10.5009/gnl16496 28651306
    [Google Scholar]
  19. Ding Z. Chen K. Chen Y. Research on ACEI of low-molecular-weight peptides from Hirudo nipponia whitman. Molecules 2022 27 17 5421 10.3390/molecules27175421 36080189
    [Google Scholar]
  20. Jia J. Li X. Ren X. Liu X. Wang Y. Dong Y. Wang X. Sun S. Xu X. Li X. Song R. Ma J. Yu A. Fan Q. Wei J. Yan X. Wang X. She G. Sparganii Rhizoma: A review of traditional clinical application, processing, phytochemistry, pharmacology, and toxicity. J. Ethnopharmacol. 2021 268 113571 10.1016/j.jep.2020.113571 33181282
    [Google Scholar]
  21. Chen Y. Zhu Z. Chen J. Zheng Y. Limsila B. Lu M. Gao T. Yang Q. Fu C. Liao W. Terpenoids from Curcumae Rhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies. Biomed. Pharmacother. 2021 138 111350 10.1016/j.biopha.2021.111350 33721752
    [Google Scholar]
  22. Pan J. Wang H. Chen Y. Prunella vulgarisL. – A review of its ethnopharmacology, phytochemistry, quality control and pharmacological effects. Front. Pharmacol. 2022 13 903171 10.3389/fphar.2022.903171 35814234
    [Google Scholar]
  23. Lee S.Y. Kim H.J. Han J.S. Anti-inflammatory effect of oyster shell extract in LPS-stimulated Raw 264.7 cells. Prev. Nutr. Food Sci. 2013 18 1 23 29 10.3746/pnf.2013.18.1.023 24471106
    [Google Scholar]
  24. Xiong K. Zeng F. Lei X. Wei Y. Zhou X. Hou X. Modern pharmacological research and application of medicinal insect Coridius chinensis. Heliyon 2024 10 2 e24613 10.1016/j.heliyon.2024.e24613 38304792
    [Google Scholar]
  25. Chen X.M. Zhang S.Q. Cao M.L. Guo J.J. Luo R. Isolation of peptide inhibiting SGC-7901 cell proliferation from Aspongopus chinensis dallas. Int. J. Mol. Sci. 2022 23 20 12535 10.3390/ijms232012535 36293389
    [Google Scholar]
  26. Cai R. Chen X. Khan S. Li H. Tan J. Tian Y. Zhao S. Yin Z. Jin D. Guo J. Aspongopus chinensis Dallasinduces pro-apoptotic and cell cycle arresting effects in hepatocellular carcinoma cells by modulating miRNA and mRNA expression. Heliyon 2024 10 6 e27525 10.1016/j.heliyon.2024.e27525 38500987
    [Google Scholar]
  27. He X. Wang X. Fang J. Chang Y. Ning N. Guo H. Huang L. Huang X. The genus Achyranthes: A review on traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol. 2017 203 260 278 10.1016/j.jep.2017.03.035 28347832
    [Google Scholar]
  28. Liu Y. Zhang M. Cheng J. Zhang Y. Kong H. Zhao Y. Qu H. Novel carbon dots derived from Glycyrrhizae Radix et Rhizoma and their anti-gastric ulcer effect. Molecules 2021 26 6 1512 10.3390/molecules26061512 33802020
    [Google Scholar]
  29. Wang L. Yang R. Yuan B. Liu Y. Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B 2015 5 4 310 315 10.1016/j.apsb.2015.05.005 26579460
    [Google Scholar]
  30. Jiang M. Lu C. Zhang C. Yang J. Tan Y. Lu A. Chan K. Syndrome differentiation in modern research of traditional Chinese medicine. J. Ethnopharmacol. 2012 140 3 634 642 10.1016/j.jep.2012.01.033 22322251
    [Google Scholar]
  31. Huang T. Zhong L.L.D. Lin C.Y. Zhao L. Ning Z.W. Hu D.D. Zhang M. Tian K. Cheng C.W. Bian Z.X. Approaches in studying the pharmacology of Chinese Medicine formulas: Bottom-up, top-down—and meeting in the middle. Chin. Med. 2018 13 1 15 10.1186/s13020‑018‑0170‑4 29588653
    [Google Scholar]
  32. Muhammad J. Khan A. Ali A. Fang L. Yanjing W. Xu Q. Wei D.Q. Network pharmacology: Exploring the resources and methodologies. Curr. Top. Med. Chem. 2018 18 12 949 964 10.2174/1568026618666180330141351 29600765
    [Google Scholar]
  33. Wang X. Wang Z.Y. Zheng J.H. Li S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021 19 1 1 11 10.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  34. Luo T. Lu Y. Yan S. Xiao X. Rong X. Guo J. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med. 2020 26 1 72 80 10.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  35. Li S. Zhang B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med. 2013 11 2 110 120 10.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  36. Xu F. Cai W. Ma T. Zeng H. Kuang X. Chen W. Liu B. Traditional uses, phytochemistry, pharmacology, quality control, industrial application, pharmacokinetics and network pharmacology of Pogostemon cablin: A comprehensive review. Am. J. Chin. Med. 2022 50 3 691 721 10.1142/S0192415X22500288 35282804
    [Google Scholar]
  37. Yuan Z. Pan Y. Leng T. Chu Y. Zhang H. Ma J. Ma X. Progress and prospects of research ideas and methods in the network pharmacology of traditional Chinese medicine. J. Pharm. Pharm. Sci. 2022 25 218 226 10.18433/jpps32911 35760072
    [Google Scholar]
  38. Panwei H. Huo-Ming L. Haibo X. Jing C. Yiting W. Hong Y. Effects of Yiqi Huoxue prescription on proliferation, adhesion and invasion of ectopic endometrium in rats with endometriosis. Chin J. Tradit Chin Med. Inf 2022 29 67 72 10.19879/j.cnki.1005‑5304.202203226
    [Google Scholar]
  39. Wei X. Yang D. Zhang B. Fan X. Du H. Zhu R. Sun X. Zhao M. Di Gu N. -(2-ethylhexyl) phthalate increases plasma glucose and induces lipid metabolic disorders via FoxO1 in adult mice. Sci. Total Environ. 2022 842 156815 10.1016/j.scitotenv.2022.156815 35750186
    [Google Scholar]
  40. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021 49 D1 D1388 D1395 10.1093/nar/gkaa971 33151290
    [Google Scholar]
  41. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chen L. Crichlow G.V. Christie C.H. Dalenberg K. Di Costanzo L. Duarte J.M. Dutta S. Feng Z. Ganesan S. Goodsell D.S. Ghosh S. Green R.K. Guranović V. Guzenko D. Hudson B.P. Lawson C.L. Liang Y. Lowe R. Namkoong H. Peisach E. Persikova I. Randle C. Rose A. Rose Y. Sali A. Segura J. Sekharan M. Shao C. Tao Y.P. Voigt M. Westbrook J.D. Young J.Y. Zardecki C. Zhuravleva M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021 49 D1 D437 D451 10.1093/nar/gkaa1038 33211854
    [Google Scholar]
  42. Tanchuk V.Y. Tanin V.O. Vovk A.I. Poda G. A new, improved hybrid scoring function for molecular docking and scoring based on AutoDock and AutoDock vina. Chem. Biol. Drug Des. 2016 87 4 618 625 10.1111/cbdd.12697 26643167
    [Google Scholar]
  43. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  44. Li T. Guo R. Zong Q. Ling G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr. Polym. 2022 276 118644 10.1016/j.carbpol.2021.118644 34823758
    [Google Scholar]
  45. Mooers B.H.M. Shortcuts for faster image creation in PyMOL. Protein Sci. 2020 29 1 268 276 10.1002/pro.3781 31710740
    [Google Scholar]
  46. Interdonato L. Marino Y. D’Amico R. Cordaro M. Siracusa R. Impellizzeri D. Macrì F. Fusco R. Cuzzocrea S. Di Paola R. Modulation of the proliferative pathway, neuroinflammation and pain in endometriosis. Int. J. Mol. Sci. 2023 24 14 11741 10.3390/ijms241411741 37511500
    [Google Scholar]
  47. Barcz E. Kamiński P. Marianowski L. Role of cytokines in pathogenesis of endometriosis. Med. Sci. Monit. 2000 6 5 1042 1046 11208452
    [Google Scholar]
  48. Bedaiwy M.A. Falcone T. Sharma R.K. Goldberg J.M. Attaran M. Nelson D.R. Agarwal A. Prediction of endometriosis with serum and peritoneal fluid markers: A prospective controlled trial. Hum. Reprod. 2002 17 2 426 431 10.1093/humrep/17.2.426 11821289
    [Google Scholar]
  49. Seli E. Berkkanoglu M. Arici A. Pathogenesis of endometriosis. Obstet. Gynecol. Clin. North Am. 2003 30 1 41 61 10.1016/S0889‑8545(02)00052‑9 12699257
    [Google Scholar]
  50. Gu Y. Huang P. Cheng T. Yang J. Wu G. Sun Y. Liu A. Li H. Zhao J. Ye J. A multiomics and network pharmacological study reveals the neuroprotective efficacy of Fu-Fang-Dan-Zhi tablets against glutamate-induced oxidative cell death. Comput. Biol. Med. 2022 148 105873 10.1016/j.compbiomed.2022.105873 35868043
    [Google Scholar]
  51. Hong Y. Cong Q. Hua Z. Yiqi Huoxue decoction treated 118 cases of ovarian endometriosis cyst recurrence after operation (in Chinese). J. Tradit. Chin. Med. 2011 45 39 41
    [Google Scholar]
  52. Panwei H. Jing C. Yiting W. Hong Y. To explore the mechanism of Yiqi Huoxue prescription inhibiting the invasion and adhesion of ectopic human endometrial basal stem cells based on NF-κB signaling pathway (in Chinese). Lishizhen Med. Mater. Med. Res. 2022 33 1292 1295 10.3969/j.issn.1008‑0805.2022.06.04
    [Google Scholar]
  53. Liu Z. Yuan Y. Wang N. Yu P. Teng Y. Drug combinations of camptothecin derivatives promote the antitumor properties. Eur. J. Med. Chem. 2024 279 116872 10.1016/j.ejmech.2024.116872 39298971
    [Google Scholar]
  54. Xu M. Guo Y. Wang F. Lin C. Cao D. Yan Y. Chai S. Zhao Y. Deng S. Wei J. Kang X. Liu Y. Zhang Y. Luo L. Liu S.L. Liu H. Enterolactone combined with m6A Reader IGF2BP3 inhibits malignant angiogenesis and disease progression in ovarian cancer. Phytomedicine 2025 136 156343 10.1016/j.phymed.2024.156343 39765033
    [Google Scholar]
  55. Hu Y. Tao R. Chen L. Xiong Y. Xue H. Hu L. Yan C. Xie X. Lin Z. Panayi A.C. Mi B. Liu G. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J. Nanobiotechnology 2021 19 1 150 10.1186/s12951‑021‑00894‑5 34020670
    [Google Scholar]
  56. Pei Z. Chen Y. Zhang Y. Zhang S. Wen Z. Chang R. Ni B. Ni Q. Hirsutine mitigates ferroptosis in podocytes of diabetic kidney disease by downregulating the p53/GPX4 signaling pathway. Eur. J. Pharmacol. 2025 991 177289 10.1016/j.ejphar.2025.177289 39864575
    [Google Scholar]
  57. Meng J. Su R. Wang L. Yuan B. Li L. Inhibitory effect and mechanism of action (MOA) of hirsutine on the proliferation of T-cell leukemia Jurkat clone E6-1 cells. PeerJ 2021 9 e10692 10.7717/peerj.10692 33604171
    [Google Scholar]
  58. Alford A.S. Moreno H.L. Benjamin M.M. Dickinson C.F. Hamann M.T. Exploring the Therapeutic potential of mitragynine and corynoxeine: Kratom-derived indole and oxindole alkaloids for pain management. Pharmaceuticals 2025 18 2 222 10.3390/ph18020222 40006036
    [Google Scholar]
  59. Hung S.W. Zhang R. Tan Z. Chung J.P.W. Zhang T. Wang C.C. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review. Med. Res. Rev. 2021 41 4 2489 2564 10.1002/med.21802 33948974
    [Google Scholar]
  60. Levantini E. Maroni G. Del Re M. Tenen D.G. EGFR signaling pathway as therapeutic target in human cancers. Semin. Cancer Biol. 2022 85 253 275 10.1016/j.semcancer.2022.04.002 35427766
    [Google Scholar]
  61. Cheng W.L. Feng P.H. Lee K.Y. Chen K.Y. Sun W.L. Van Hiep N. Luo C.S. Wu S.M. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci. 2021 22 23 12828 10.3390/ijms222312828 34884633
    [Google Scholar]
  62. Hsieh Y.Y. Chang C.C. Tsai F.J. Lin C.C. Tsai C.H. T homozygote and allele of epidermal growth factor receptor 2073 gene polymorphism are associated with higher susceptibility to endometriosis and leiomyomas. Fertil. Steril. 2005 83 3 796 799 10.1016/j.fertnstert.2004.08.032 15749523
    [Google Scholar]
  63. Ejskjær K. Sorensen B.S. Poulsen S.S. Mogensen O. Forman A. Nexo E. Expression of the epidermal growth factor system in eutopic endometrium from women with endometriosis differs from that in endometrium from healthy women. Gynecol. Obstet. Invest. 2009 67 2 118 126 10.1159/000167798 18987482
    [Google Scholar]
  64. Zhan H. Peng B. Ma J. Lin K. Xu K. Lin J. Yong P.J. Leung P.C.K. Bedaiwy M.A. Lin J. Epidermal growth factor promotes stromal cells migration and invasion via up-regulation of hyaluronate synthase 2 and hyaluronan in endometriosis. Fertil. Steril. 2020 114 4 888 898 10.1016/j.fertnstert.2020.05.005 32762950
    [Google Scholar]
  65. Leconte M. Nicco C. Ngô C. Chéreau C. Chouzenoux S. Marut W. Guibourdenche J. Arkwright S. Weill B. Chapron C. Dousset B. Batteux F. The mTOR/AKT inhibitor temsirolimus prevents deep infiltrating endometriosis in mice. Am. J. Pathol. 2011 179 2 880 889 10.1016/j.ajpath.2011.04.020 21718677
    [Google Scholar]
  66. Kim T.H. Yu Y. Luo L. Lydon J.P. Jeong J.W. Kim J.J. Activated AKT pathway promotes establishment of endometriosis. Endocrinology 2014 155 5 1921 1930 10.1210/en.2013‑1951 24605828
    [Google Scholar]
  67. Zhang Y. Kong R. Yang W. Hu K. Zhao Z. Li L. Geng X. Liu L. Chen H. Xiao P. Liu D. Luo Y. Chen H. Hu J. Sun B. DUSP2 recruits CSNK2A1 to suppress AKT1-mediated apoptosis resistance under hypoxic microenvironment in pancreatic cancer. Cancer Lett. 2023 568 216288 10.1016/j.canlet.2023.216288 37390887
    [Google Scholar]
  68. Lei S.T. Lai Z.Z. Hou S.H. Liu Y.K. Li M.Q. Zhao D. Abnormal HCK/glutamine/autophagy axis promotes endometriosis development by impairing macrophage phagocytosis. Cell Prolif. 2024 57 11 e13702 10.1111/cpr.13702 38956970
    [Google Scholar]
  69. Zhao X. Luo D. Liu T. Zhang H. Xie Y. Kong W. BIBR1532 affects endometrial cell proliferation, migration, and invasion in endometriosis via telomerase inhibition and MAPK signaling. Gynecol. Obstet. Invest. 2023 88 4 226 239 10.1159/000530460 37429261
    [Google Scholar]
  70. Park W. Jang H. Kim H.S. Park S.J. Lim W. Song G. Park S. Therapeutic efficacy and anti-inflammatory mechanism of baicalein on endometriosis progression in patient-derived cell line and mouse model. Phytomedicine 2024 130 155469 10.1016/j.phymed.2024.155469 38824821
    [Google Scholar]
  71. Liu Y. Wang J. Zhang X. An update on the multifaceted role of NF-kappaB in endometriosis. Int. J. Biol. Sci. 2022 18 11 4400 4413 10.7150/ijbs.72707 35864971
    [Google Scholar]
  72. Gou Y. Li X. Li P. Zhang H. Xu T. Wang H. Wang B. Ma X. Jiang X. Zhang Z. Estrogen receptor β upregulates CCL2 via NF-κB signaling in endometriotic stromal cells and recruits macrophages to promote the pathogenesis of endometriosis. Hum. Reprod. 2019 34 4 646 658 10.1093/humrep/dez019 30838396
    [Google Scholar]
  73. Chowdhury I. Banerjee S. Driss A. Xu W. Mehrabi S. Nezhat C. Sidell N. Taylor R.N. Thompson W.E. Curcumin attenuates proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells through the NF‐κB signaling pathway. J. Cell. Physiol. 2019 234 5 6298 6312 10.1002/jcp.27360 30259980
    [Google Scholar]
  74. González-Ramos R. Defrère S. Devoto L. Nuclear factor–kappaB: A main regulator of inflammation and cell survival in endometriosis pathophysiology. Fertil. Steril. 2012 98 3 520 528 10.1016/j.fertnstert.2012.06.021 22771029
    [Google Scholar]
  75. Ponce C. Torres M. Galleguillos C. Sovino H. Boric M.A. Fuentes A. Johnson M.C. Nuclear factor κB pathway and interleukin-6 are affected in eutopic endometrium of women with endometriosis. Reproduction 2009 137 4 727 737 10.1530/REP‑08‑0407 19129371
    [Google Scholar]
  76. González-Ramos R. Donnez J. Defrère S. Leclercq I. Squifflet J. Lousse J.C. Van Langendonckt A. Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis. Mol. Hum. Reprod. 2007 13 7 503 509 10.1093/molehr/gam033 17483545
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073397046251115102803
Loading
/content/journals/cchts/10.2174/0113862073397046251115102803
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: endometriosis ; Network pharmacology ; treat ; pelvic pain ; molecular mechanisms ; multi-omics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test