Skip to content
2000
image of Profiles of Circulating Exosomal microRNAs in Female College Students with Qi Stagnation and Balanced Constitutions by High-Throughput

Abstract

Introduction

Individual constitutions are classified into nine types in traditional Chinese medicine (TCM), and qi stagnation constitution (QSC) manifests as disrupted Qi circulation and increased susceptibility to emotional disorders and cancers. However, as a pre-disease state mainly affecting women, the biological basis of QSC and its susceptible mechanism to related diseases are still unclear. Exosomal microRNAs (miRNAs) are the stable regulators of gene expression and intercellular communication, and analysis of miRNAs enables us to understand the QSC better. This study profiles plasma exosomal miRNAs in QSC and balanced constitution (BC) females via high-throughput sequencing, aiming to identify the potential biomarkers of QSC and reveal its biological basis and the mechanism of its susceptible disease.

Methods

In this cross-sectional observation, female college students were recruited according to the criterion of QSC and BC in . Exosomal miRNAs were isolated from peripheral blood plasma and then profiled using high-throughput sequencing. Differentially expressed miRNAs (DEMs) were identified with fold change > 2 and < 0.05, and screened as biomarkers to construct the receiver operating characteristic (ROC) curve. The diagnostic values of these biomarkers in different types of cancers were also validated based on the published data. Functional analysis were explored based on the predicted target genes.

Results

Subjects with QSC showed significantly higher concentrations of albumin (ALB) and alkaline phosphatase (ALP) compared to those with BC, while there was no significant difference in baseline information and other clinical indicators between groups. A total of 54 DEMs were identified, including 30 up-regulated and 24 down-regulated miRNAs in the QSC group. The area under the ROC curve (AUC) for 7 specific up-regulated DEMs was 1.0, as well as the AUCs for therein 6 DEMs in various cancers were all above 0.9. The enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways included “signal transduction,” “infectious disease,” and “cancers”, and the most associating systems included immune, endocrine, and nervous systems, while the GO (Gene Ontology) function was mainly enriched in “protein binding,” “nucleus” and “transcription, DNA-templated”.

Discussion

These 7 potential biomarkers of QSC have been confirmed to regulate oncogenic processes through epithelial-mesenchymal transition modulation and metabolic reprogramming, as well as therein 1 can also improve depression by lowering the expression of 5-hydroxytryptamine 1A receptor. The results of this study deepen the understanding of the constitutions in TCM. However, the small single-sex sample limits the application of the conclusion, and a large-scale clinical cohort including both sexes is still needed in future.

Conclusion

The expression of exosomal miRNAs in QSC showed unique features that have the potential to serve as biomarkers, and the related functional changes might be the biological basis for the susceptible diseases of QSC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073399668250612045822
2025-06-25
2025-09-14
Loading full text...

Full text loading...

References

  1. Li L. Yao H. Wang J. Li Y. Wang Q. The role of chinese medicine in health maintenance and disease prevention: Application of constitution theory. Am. J. Chin. Med. 2019 47 3 495 506 10.1142/S0192415X19500253 31023059
    [Google Scholar]
  2. Wang J. Wang T. Li Y.S. Zheng Y.F. Li L.R. Wang Q. Research on constitution of Chinese medicine and implementation of translational medicine. Chin. J. Integr. Med. 2015 21 5 389 393 10.1007/s11655‑014‑2019‑8 25519443
    [Google Scholar]
  3. Yu R. Zhao X. Li L. Ni C. Yang Y. Han Y. Wang J. Zhang Y. Wang Q. Consistency between traditional Chinese medicine constitution-based classification and genetic classification. J. Tradit Chin. Med. Sci. 2015 2 4 248 257 10.1016/j.jtcms.2016.01.012
    [Google Scholar]
  4. Qu X. Xiong H.Z. Qu D.Q. Liu H. Xu X.X. Sun R. Liu Y.Y. Correlation analysis of traditional chinese medicine constitution and metabolic indexes in general physical examination people. 10.2174/0118715303302433240918104124 39364874
    [Google Scholar]
  5. Bao Y. Hu J. Qin Y. Relationship between acute mastitis and constitution of traditional Chinese medicine in chinese breastfeeding mothers. Evid. Based Complement. Alternat. Med. 2021 2021 1 12 10.1155/2021/2255511 34691209
    [Google Scholar]
  6. Feng N. He J. Wang Q. Research on differential genes related with qi stagnation constitution. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 2011 31 1 48 51 [PMID: 21434344
    [Google Scholar]
  7. He Q. Yang Y.F. Wu C.L. A clinical trial of treatment of primary insomnia of patients with qi-stagnation constitution by shallow acupuncture combined with ear-acupoint pellet-pressing. Zhen Ci Yan Jiu 2019 44 4 293 296 10.13702/j.1000‑0607.170614 31056884
    [Google Scholar]
  8. Bian L. Liu Z. Li G. Promoting health wellness—The essentials of Chinese medicine. Chin. J. Integr. Med. 2015 21 8 563 568 10.1007/s11655‑015‑2100‑y 26224280
    [Google Scholar]
  9. Wang J. Zhang C. Zhang Y. Liu Y. Zhang J. Fang X. Protocol for a nested case-control study: Identifying neuroimaging biomarkers for the progression of subclinical depression and qi-stagnation constitution to major depressive disorder in adolescents. Front. Psychiatry 2025 15 1516846 10.3389/fpsyt.2024.1516846 39906680
    [Google Scholar]
  10. Jiang X.L. Zhang Y. Lei Y. Hu G.F. Zhang Z.G. Xiao Z.J. Case-control study on the association between qi-stagnation and insomnia. J. Chin. Integr. Med. 2012 10 6 655 662 10.3736/jcim20120609 22704414
    [Google Scholar]
  11. Huang H. Song Q. Chen J. Zeng Y. Wang W. Jiao B. The role of qi-stagnation constitution and emotion regulation in the association between childhood maltreatment and depression in chinese college students. Front. Psychiatry 2022 13 825198 10.3389/fpsyt.2022.825198 35599766
    [Google Scholar]
  12. Yang J.J. Wang Q. Jiang W. Harmonizing the mind and body: The interrelationship between traditional Chinese medicine body constitution, mental health and sleep quality. World J. Psychiatry 2025 15 3 103033 10.5498/wjp.v15.i3.103033 40110014
    [Google Scholar]
  13. Yap SY Ng FL Subramaniam M Lim YM Foo CN Traditional chinese medicine body constitutions as predictors for depression: A systematic review and meta-analysis. Behav. Sci. 2022 12 11 423 10.3390/bs12110423 36354400
    [Google Scholar]
  14. Wang Q. Zhu Y.B. Wu C.Y. Deng Q.W. Shen S.L. Cui Z.Z. Correlation between constitution in Chinese medicine and health-related quality of life. J. Clin. Rehabil. Tissue Eng. Res. 2007 11 49 9946 9950 10.3321/j.issn:1673‑8225.2007.49.035
    [Google Scholar]
  15. Liu M. Jiang Y. Wang X. Liu Q. Wu H. The role of rumination and stressful life events in the relationship between the qi stagnation constitution and depression in women: A moderated mediation model. Evid. Based Complement. Alternat. Med. 2017 2017 1 7605893 10.1155/2017/7605893 28757889
    [Google Scholar]
  16. Chen SL Liu YT Hsueh KC Tang PL Body constitution of traditional Chinese medicine caused a significant effect on depression in adult women. Complement. Ther. Clin. Pract. 2021 42 101288 10.1016/j.ctcp.2020.101288 33310625
    [Google Scholar]
  17. Chong T.F. Ser X.E. Ooi L.K. Wong L.S. Body constitution and dysmenorrhea: A study on university students in Malaysia. Orient. Pharm. Exp. Med. 2018 18 4 377 380 10.1007/s13596‑018‑0328‑8
    [Google Scholar]
  18. Arai M. Arai K. Hioki C. Takashi M. Matsumoto K. Honda M. Izumi S. Evaluation of medical students using the “qi, blood, and fluid” system of Kampo medicine. Tokai J. Exp. Clin. Med. 2013 38 1 37 41 [PMID: 23564575
    [Google Scholar]
  19. Xinzhu W. Yuanchun H. Qi stagnation and qi deficiency are associated with depression in college students. Front. Public Health 2024 12 1444237 10.3389/fpubh.2024.1444237 39220450
    [Google Scholar]
  20. Sun F. Ren Z. Jiang Y. Fang X. Wang N. Jin W. A placebo‐controlled study on the treatment of metabolic syndrome of Qi stagnation and dampness obstruction related to atypical antipsychotics with traditional chinese medicine (TCM). Evid. Based Complement. Alternat. Med. 2020 2020 1 5103046 10.1155/2020/5103046 32802127
    [Google Scholar]
  21. Yuan Y. Chen J. Exploration of TCM syndrome differentiation and treatment of chest Bi with yin deficiency and blood stasis. J. Contemp Med. Pract 2025 7 2 41 46 10.53469/jcmp.2025.07(02).08
    [Google Scholar]
  22. Chiu R.W.K. Circulating microRNAs: In a class of their own. Clin. Chem. 2020 66 1 257 258 10.1373/clinchem.2018.301051 30782594
    [Google Scholar]
  23. Antonazzo G. Gaudet P. Lovering R.C. Attrill H. Representation of non-coding RNA-mediated regulation of gene expression using the Gene Ontology. RNA Biol. 2024 21 1 981 993 10.1080/15476286.2024.2408523 39374113
    [Google Scholar]
  24. Chen H.S. Wang F. Chen J.G. Epigenetic mechanisms in depression: Implications for pathogenesis and treatment. Curr. Opin. Neurobiol. 2024 85 102854 10.1016/j.conb.2024.102854 38401316
    [Google Scholar]
  25. Bartel D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009 136 2 215 233 10.1016/j.cell.2009.01.002 19167326
    [Google Scholar]
  26. Mok E.T.Y. Chitty J.L. Cox T.R. miRNAs in pancreatic cancer progression and metastasis. Clin. Exp. Metastasis 2024 41 3 163 186 10.1007/s10585‑023‑10256‑0
    [Google Scholar]
  27. Catalanotto C. Cogoni C. Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int. J. Mol. Sci. 2016 17 10 1712 10.3390/ijms17101712 27754357
    [Google Scholar]
  28. Pandima Devi K. Rajavel T. Daglia M. Nabavi S.F. Bishayee A. Nabavi S.M. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Semin. Cancer Biol. 2017 46 146 157 10.1016/j.semcancer.2017.02.001 28185862
    [Google Scholar]
  29. Wallace S.R. Pagano P.J. Kračun D. MicroRNAs in the regulation of NADPH oxidases in vascular diabetic and ischemic pathologies: A case for alternate inhibitory strategies? Antioxidants 2022 12 1 70 10.3390/antiox12010070 36670932
    [Google Scholar]
  30. Goleij P. Pourali G. Raisi A. Ravaei F. Golestan S. Abed A. Razavi Z.S. Zarepour F. Taghavi S.P. Ahmadi Asouri S. Rafiei M. Mousavi S.M. Hamblin M.R. Talei S. Sheida A. Mirzaei H. Role of non-coding RNAs in the response of glioblastoma to temozolomide. Mol. Neurobiol. 2025 62 2 1726 1755 10.1007/s12035‑024‑04316‑z 39023794
    [Google Scholar]
  31. Tkach M. Théry C. Communication by extracellular vesicles: Where we are and where we need to go. Cell 2016 164 6 1226 1232 10.1016/j.cell.2016.01.043 26967288
    [Google Scholar]
  32. Zhou X. Jia Y. Mao C. Liu S. Small extracellular vesicles: Non-negligible vesicles in tumor progression, diagnosis, and therapy. Cancer Lett. 2024 580 216481 10.1016/j.canlet.2023.216481 37972701
    [Google Scholar]
  33. Jaiswal R. Sedger L.M. Intercellular vesicular transfer by exosomes, microparticles and oncosomes - Implications for cancer biology and treatments. Front. Oncol. 2019 9 125 10.3389/fonc.2019.00125
    [Google Scholar]
  34. Ma X. Chen Z. Chen W. Chen Z. Meng X. Exosome subpopulations: The isolation and the functions in diseases. Gene 2024 893 147905 10.1016/j.gene.2023.147905 37844851
    [Google Scholar]
  35. Chen Y.F. Luh F. Ho Y.S. Yen Y. Exosomes: A review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J. Biomed. Sci. 2024 31 1 67 10.1186/s12929‑024‑01055‑0 38992695
    [Google Scholar]
  36. Wang X. Tian L. Lu J. Ng I.O-L. Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 2022 11 1 54 10.1038/s41389‑022‑00431‑5
    [Google Scholar]
  37. Templeton E.M. Cameron V.A. Pickering J.W. Richards A.M. Pilbrow A.P. Emerging microRNA biomarkers for acute kidney injury in acute decompensated heart failure. Heart Fail. Rev. 2021 26 5 1203 1217 10.1007/s10741‑020‑09928‑w 32062825
    [Google Scholar]
  38. Jin K. Shen S. Shi R. Xu X. Hu M. Exosomal miRNAs in prenatal diagnosis: Recent advances. Medicine (Baltimore) 2024 103 28 e38717 10.1097/MD.0000000000038717 38996168
    [Google Scholar]
  39. Li C. Ni Y.Q. Xu H. Xiang Q.Y. Zhao Y. Zhan J.K. He J.Y. Li S. Liu Y.S. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct. Target. Ther. 2021 6 1 383 10.1038/s41392‑021‑00779‑x 34753929
    [Google Scholar]
  40. Li J. Jiang X. Wang K. Exosomal miRNA: An alternative mediator of cell-to-cell communication. ExRNA 2019 1 1 31 10.1186/s41544‑019‑0025‑x
    [Google Scholar]
  41. Ahadi A. The significance of microRNA deregulation in colorectal cancer development and the clinical uses as a diagnostic and prognostic biomarker and therapeutic agent. Noncoding RNA Res. 2020 5 3 125 134 10.1016/j.ncrna.2020.08.003 32954092
    [Google Scholar]
  42. Sheng H. You L. Sang X. Gao X. Liu A. Li T. Li K. Zhang S. Huang G. Wang T. Xu A. Screening for blood leukocyte microRNA biomarkers responsible for association between qi deficiency constitution and Pi-qi-deficiency syndrome of chronic superficial gastritis. J. Tradit Chin. Med. Sci. 2018 5 4 335 343 10.1016/j.jtcms.2018.11.003
    [Google Scholar]
  43. Zhang Y. Yin C. Wei C. Xia S. Qiao Z. Zhang X.W. Yu B. Zhou J. Wang R. Exosomal miR-625-3p secreted by cancer-associated fibroblasts in colorectal cancer promotes EMT and chemotherapeutic resistance by blocking the CELF2/WWOX pathway. Pharmacol. Res. 2022 186 106534 10.1016/j.phrs.2022.106534 36336217
    [Google Scholar]
  44. China Association of Chinese Medicine Classification and Determination of Constitution in TCM: ZYYXH/T157-2009.[S]. Beijing: S Beijing China Press of Chinese Medicine 2009
    [Google Scholar]
  45. Wagner G.P. Kin K. Lynch, VJ Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012 131 4 281 285 10.1007/s12064‑012‑0162‑3 22872506
    [Google Scholar]
  46. Zhang N. Zhang H. Liu Y. Su P. Zhang J. Wang X. Sun M. Chen B. Zhao W. Wang L. Wang H. Moran M.S. Haffty B.G. Yang Q. SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2. Cell Death Differ. 2019 26 5 843 859 10.1038/s41418‑018‑0158‑8 29988076
    [Google Scholar]
  47. Gee H.E. Camps C. Buffa F.M. Patiar S. Winter S.C. Betts G. Homer J. Corbridge R. Cox G. West C.M.L. Ragoussis J. Harris A.L. hsa‐miR‐210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 2010 116 9 2148 2158 10.1002/cncr.25009 20187102
    [Google Scholar]
  48. Hou Y. Zhang Q. Pang W. Hou L. Liang Y. Han X. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ. 2021 28 11 3105 3124 10.1038/s41418‑021‑00804‑0 34021267
    [Google Scholar]
  49. Saffari M. Ghaderian SMH. Omrani M.D. Afsharpad M. Shankaie K. Samadaian N. The association of miR-let 7b and miR-548 with PTEN in prostate cancer. Urol. J. 2019 16 3 267 273 10.22037/uj.v0i0.4564 30318571
    [Google Scholar]
  50. Zhao W. Cao L. Zeng S. Qin H. Men T. Upregulation of miR-556-5p promoted prostate cancer cell proliferation by suppressing PPP2R2A expression. Biomed. Pharmacother. 2015 75 142 147 10.1016/j.biopha.2015.07.015 26297546
    [Google Scholar]
  51. Liu C. Min L. Kuang J. Zhu C. Qiu X. Wu, X Comprehensive analysis of hsa-miR-654-5p’s tumor-suppressing functions. Int. J. Mol. Sci. 2022 23 12 6411 10.3390/ijms23126411
    [Google Scholar]
  52. Zhou Y. Wang G. Cai J. Du Y. Li H. Duan L. Zhao G. Huang Y. Exosomal transfer of miR-195-5p restrains lung adenocarcinoma progression. Exp. Cell Res. 2023 424 1 113485 10.1016/j.yexcr.2023.113485 36657657
    [Google Scholar]
  53. Lohajová Behulová R. Bugalová A. Bugala J. Struhárňanská E. Šafranek M. Juráš I. Circulating exosomal miRNAs as a promising diagnostic biomarker in cancer. Physiol. Res. 2023 72 S3 S193 S207 10.33549/physiolres.935153 37888964
    [Google Scholar]
  54. Zabeti Touchaei A. Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: Targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int. 2024 24 1 102 10.1186/s12935‑024‑03293‑6 38462628
    [Google Scholar]
  55. Zhou R. Luo Z. Yin G. Yu L. Zhong H. MiR-556-5p modulates migration, invasion, and epithelial-mesenchymal transition in breast cancer cells via targeting PTHrP. J. Mol. Histol. 2022 53 2 297 308 10.1007/s10735‑021‑10056‑4 35000027
    [Google Scholar]
  56. Camps C. Buffa F.M. Colella S. Moore J. Sotiriou C. Sheldon H. Harris A.L. Gleadle J.M. Ragoussis J. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res. 2008 14 5 1340 1348 10.1158/1078‑0432.CCR‑07‑1755 18316553
    [Google Scholar]
  57. Serocki M. Bartoszewska S. Janaszak-Jasiecka A. Ochocka R.J. Collawn J.F. Bartoszewski, R miRNAs regulate the HIF switch during hypoxia: A novel therapeutic target. Angiogenesis 2018 21 2 183 202 10.1007/s10456‑018‑9600‑2 29383635
    [Google Scholar]
  58. Ivan M. Huang X. miR-210: Fine-tuning the hypoxic response. Adv. Exp. Med. Biol. 2014 772 205 227 10.1007/978‑1‑4614‑5915‑6_10 24272361
    [Google Scholar]
  59. Wang L. Song Y. Wang H. Liu K. Shao Z. Shang Z. MiR‐210‐3p‐EphrinA3‐PI3K/AKT axis regulates the progression of oral cancer. J. Cell. Mol. Med. 2020 24 7 4011 4022 10.1111/jcmm.15036 32180353
    [Google Scholar]
  60. Chuanyang L. Lu M. Jingyu K. Chu-shu Z. Xinyuan Q. Xiaomin W. Comprehensive analysis of hsa-miR-654-5p’s tumor-suppressing functions. bioRxiv 2020 1 5 10.1101/2020.12.20.423719
    [Google Scholar]
  61. Xu X. Zong K. Wang X. Dou D. Lv P. Zhang Z. Li H. miR-30d suppresses proliferation and invasiveness of pancreatic cancer by targeting the SOX4/PI3K-AKT axis and predicts poor outcome. Cell Death Dis. 2021 12 4 350 10.1038/s41419‑021‑03576‑0
    [Google Scholar]
  62. Jiang J. Xia Y. Liang Y. Yang M. Zeng W. Zeng X. miR-190a-5p participates in the regulation of hypoxia-induced pulmonary hypertension by targeting KLF15 and can serve as a biomarker of diagnosis and prognosis in chronic obstructive pulmonary disease complicated with pulmonary hypertension. Int. J. Chron. Obstruct. Pulmon. Dis. 2018 13 3777 3790 10.2147/COPD.S182504 30538440
    [Google Scholar]
  63. Fan C. Deng Y. Liu Y. Liu X. Ke X. Zhou C. Wu X. mir-556-3p promotes the progression of breast cancer through targeting disabled gene homolog 2 interacting protein (DAB2IP). J. Biomater. Tissue Eng. 2021 11 12 2472 2477 10.1166/jbt.2021.2848
    [Google Scholar]
  64. Zurawek D. Gruca P. Antkiewicz-Michaluk L. Dziedzicka-Wasylewska M. Resilient phenotype in chronic mild stress paradigm is associated with altered expression levels of mir-18a-5p and serotonin 5-HT1a receptor in dorsal part of the hippocampus. Mol. Neurobiol. 2019 56 11 7680 7693 10.1007/s12035‑019‑1622‑2 31098953
    [Google Scholar]
  65. Zhang Q. Ye H. Xiang F. Song L.J. Zhou L.L. Cai P.C. Zhang J.C. Yu F. Shi H.Z. Su Y. Xin J.B. Ma W.L. miR-18a-5p inhibits sub-pleural pulmonary fibrosis by targeting TGF-β receptor II. Mol. Ther. 2017 25 3 728 738 10.1016/j.ymthe.2016.12.017 28131417
    [Google Scholar]
  66. Cui M. Qu F. Wang L. Cheng D. Liu X. MiR-18a-5p facilitates progression of hepatocellular carcinoma by targeting CPEB3. Technol. Cancer Res. Treat. 2021 20 15330338211043976 10.1177/15330338211043976
    [Google Scholar]
  67. Wang X-L. Gao J. Wang X-Y. Mu X-F. Wei S. Xue L. Qiao M-Q. Treatment with Shuyu capsule increases 5-HT1AR level and activation of cAMP-PKA-CREB pathway in hippocampal neurons treated with serum from a rat model of depression. Mol. Med. Rep. 2017 10.3892/mmr.2017.8339 29286104
    [Google Scholar]
  68. Srivastava A. Singh P. Gupta H. Kaur H. Kanojia N. Guin D. Sood M. Chadda R.K. Yadav J. Vohora D. Saso L. Kukreti R. Systems approach to identify common genes and pathways associated with response to selective serotonin reuptake inhibitors and major depression risk. Int. J. Mol. Sci. 2019 20 8 1993 10.3390/ijms20081993 31018568
    [Google Scholar]
  69. Smith A.L.W. Harmer C.J. Cowen P.J. Murphy S.E. The serotonin 1A (5-HT1A) receptor as a pharmacological target in depression. CNS Drugs 2023 37 7 571 585 10.1007/s40263‑023‑01014‑7 37386328
    [Google Scholar]
  70. Gao Y. Li X. Zhao H. Ling-hu T. Zhou Y. Tian J. Qin X. Comprehensive analysis strategy of nervous–endocrine–immune-related metabolites to evaluate arachidonic acid as a novel diagnostic biomarker in depression. J. Proteome Res. 2021 20 5 2477 2486 10.1021/acs.jproteome.0c00940 33797260
    [Google Scholar]
  71. Chen T.S. Chen P.S. The liver in traditional Chinese medicine. J. Gastroenterol. Hepatol. 1998 13 4 437 442 10.1111/j.1440‑1746.1998.tb00662.x 9641312
    [Google Scholar]
  72. Agrawal Archna Agrawal Avantika Yin yang, qi and five element theory as life energy givers. Pharm. Biosci J., 2023 01 07 10.20510/pbj/11/i3/2332
    [Google Scholar]
  73. Wang Q. Classification and diagnosis basis of nine basic constitutions in Chinese medicine. J. Beij Univer Tradit Chin Med. 2005 28 4 1 8 10.3321/j.issn:1006‑2157.2005.04.001
    [Google Scholar]
  74. Ning B. Ge T. Zhao Q.Q. Feng L.S. Wu Y.Q. Chen H. Lian K. Zhao M.J. Research status of pathogenesis of anxiety or depression after percutaneous coronary intervention and Traditional Chinese Medicine intervention. J. Ethnopharmacol. 2024 327 118017 10.1016/j.jep.2024.118017 38462028
    [Google Scholar]
  75. Lam So R.W. Wong H.S. Ko K.M. A traditional chinese medicine approach in treating depression by promoting liver Qi circulation: A western medicine perspective. Chin. Med. 2015 6 4 187 195 10.4236/cm.2015.64021
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073399668250612045822
Loading
/content/journals/cchts/10.2174/0113862073399668250612045822
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test