Skip to content
2000
image of Mechanisms and Therapeutic Implications of ncRNAs in Regulating the PD-1/PD-L1 Axis Across Cancers

Abstract

Cancer remains one of the most challenging health issues worldwide. Thus, there is an urgent need to discover effective treatments for cancer. Immune checkpoint blockade targeting the PD-1/PD-L1 axis has revolutionized cancer therapy, yet resistance and limited clinical efficacy remain significant challenges. Emerging evidence highlights ncRNAs as upstream regulators of PD-1/PD-L1, offering novel therapeutic opportunities. This review systematically examines the role of miRNAs, lncRNAs, and circRNAs in modulating PD-1/PD-L1 signaling across diverse cancers, emphasizing their mechanisms and clinical implications. We further discuss the potential of ncRNAs as biomarkers and therapeutic targets to overcome immune evasion and enhance immunotherapy efficacy.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073384743250617062430
2025-06-30
2025-09-14
Loading full text...

Full text loading...

References

  1. Jiang W. Pan S. Chen X. Wang Z. Zhu X. The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol. Cancer 2021 20 1 116 10.1186/s12943‑021‑01406‑7 34496886
    [Google Scholar]
  2. Abbott M. Ustoyev Y. Cancer and the immune system: The history and background of immunotherapy. Semin. Oncol. Nurs. 2019 35 5 150923 10.1016/j.soncn.2019.08.002 31526550
    [Google Scholar]
  3. Wang Y. Wu L. Tian C. Zhang Y. PD-1-PD-L1 immune-checkpoint blockade in malignant lymphomas. Ann. Hematol. 2018 97 2 229 237 10.1007/s00277‑017‑3176‑6 29128997
    [Google Scholar]
  4. Iwai Y. Ishida M. Tanaka Y. Okazaki T. Honjo T. Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA 2002 99 19 12293 12297 10.1073/pnas.192461099 12218188
    [Google Scholar]
  5. Wang F. Zheng A. Zhang D. Zou T. Xiao M. Chen J. Wen B. Wen Q. Wu X. Li M. Du F. Chen Y. Zhao Y. Shen J. Xiang S. Li J. Deng S. Zhang Z. Yi T. Xiao Z. Molecular profiling of core immune-escape genes highlights LCK as an immune-related prognostic biomarker in melanoma. Front. Immunol. 2022 13 1024931 10.3389/fimmu.2022.1024931 36341345
    [Google Scholar]
  6. Xiang S. Li J. Shen J. Zhao Y. Wu X. Li M. Yang X. Kaboli P.J. Du F. Zheng Y. Wen Q. Cho C.H. Yi T. Xiao Z. Identification of prognostic genes in the tumor microenvironment of hepatocellular carcinoma. Front. Immunol. 2021 12 653836 10.3389/fimmu.2021.653836 33897701
    [Google Scholar]
  7. Yang Q. Chen Y. Guo R. Dai Y. Tang L. Zhao Y. Wu X. Li M. Du F. Shen J. Yi T. Xiao Z. Wen Q. Interaction of ncRNA and epigenetic modifications in gastric cancer: Focus on histone modification. Front. Oncol. 2022 11 822745 10.3389/fonc.2021.822745 35155211
    [Google Scholar]
  8. Zhao Q. Jiang Y. Xiang S. Kaboli P.J. Shen J. Zhao Y. Wu X. Du F. Li M. Cho C.H. Li J. Wen Q. Liu T. Yi T. Xiao Z. Engineered TCR-T cell immunotherapy in anticancer precision medicine: Pros and cons. Front. Immunol. 2021 12 658753 10.3389/fimmu.2021.658753 33859650
    [Google Scholar]
  9. Jin J. Wu X. Yin J. Li M. Shen J. Li J. Zhao Y. Zhao Q. Wu J. Wen Q. Cho C.H. Yi T. Xiao Z. Qu L. Identification of genetic mutations in cancer: Challenge and opportunity in the new era of targeted therapy. Front. Oncol. 2019 9 263 [PMID: 31058077
    [Google Scholar]
  10. Ishida Y. Agata Y. Shibahara K. Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992 11 11 3887 3895 [PMID: 1396582
    [Google Scholar]
  11. Canavan M. Floudas A. Veale D.J. Fearon U. The PD-1:PD-L1 axis in Inflammatory Arthritis. BMC Rheumatol. 2021 5 1 1 10.1186/s41927‑020‑00171‑2 33423684
    [Google Scholar]
  12. Dong H. Zhu G. Tamada K. Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999 5 12 1365 1369 10.1038/70932 10581077
    [Google Scholar]
  13. Scheffel T.B. Grave N. Vargas P. Diz F.M. Rockenbach L. Morrone F.B. Immunosuppression in gliomas via PD-1/PD-L1 axis and adenosine pathway. Front. Oncol. 2021 10 617385 10.3389/fonc.2020.617385 33659213
    [Google Scholar]
  14. Bastaki S. Irandoust M. Ahmadi A. Hojjat-Farsangi M. Ambrose P. Hallaj S. Edalati M. Ghalamfarsa G. Azizi G. Yousefi M. Chalajour H. Jadidi-Niaragh F. PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sci. 2020 247 117437 10.1016/j.lfs.2020.117437 32070710
    [Google Scholar]
  15. Khatoon E. Parama D. Kumar A. Alqahtani M.S. Abbas M. Girisa S. Sethi G. Kunnumakkara A.B. Targeting PD-1/PD-L1 axis as new horizon for ovarian cancer therapy. Life Sci. 2022 306 120827 10.1016/j.lfs.2022.120827 35907493
    [Google Scholar]
  16. Zhao Y. Qu Y. Hao C. Yao W. PD-1/PD-L1 axis in organ fibrosis. Front. Immunol. 2023 14 1145682 10.3389/fimmu.2023.1145682 37275876
    [Google Scholar]
  17. Zhang X. Schwartz J.C.D. Guo X. Bhatia S. Cao E. Chen L. Zhang Z-Y. Edidin M.A. Nathenson S.G. Almo S.C. Nathenson S.G. Almo S.C. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 2004 20 3 337 347 10.1016/S1074‑7613(04)00051‑2 15030777
    [Google Scholar]
  18. Okazaki T. Honjo T. PD-1 and PD-1 ligands: From discovery to clinical application. Int. Immunol. 2007 19 7 813 824 10.1093/intimm/dxm057 17606980
    [Google Scholar]
  19. Zak K.M. Grudnik P. Magiera K. Dömling A. Dubin G. Holak T.A. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure 2017 25 8 1163 1174 10.1016/j.str.2017.06.011 28768162
    [Google Scholar]
  20. Kim M.J. Kim K. Park H.J. Kim G.R. Hong K.H. Oh J.H. Son J. Park D.J. Kim D. Choi J.M. Lee I. Ha S.J. Deletion of PD-1 destabilizes the lineage identity and metabolic fitness of tumor-infiltrating regulatory T cells. Nat. Immunol. 2023 24 1 148 161 10.1038/s41590‑022‑01373‑1 36577929
    [Google Scholar]
  21. Lin X. Lu X. Luo G. Xiang H. Progress in PD-1/PD-L1 pathway inhibitors: From biomacromolecules to small molecules. Eur. J. Med. Chem. 2020 186 111876 10.1016/j.ejmech.2019.111876 31761384
    [Google Scholar]
  22. Staron M.M. Gray S.M. Marshall H.D. Parish I.A. Chen J.H. Perry C.J. Cui G. Li M.O. Kaech S.M. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 2014 41 5 802 814 10.1016/j.immuni.2014.10.013 25464856
    [Google Scholar]
  23. Li Y. Cong Y. Jia M. He Q. Zhong H. Zhao Y. Li H. Yan M. You J. Liu J. Chen L. Hang H. Wang S. Targeting IL-21 to tumor-reactive T cells enhances memory T cell responses and anti-PD-1 antibody therapy. Nat. Commun. 2021 12 1 951 10.1038/s41467‑021‑21241‑0 33574265
    [Google Scholar]
  24. Han Y. Liu D. Li L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020 10 3 727 742 [PMID: 32266087
    [Google Scholar]
  25. Qian J. Wang C. Wang B. Yang J. Wang Y. Luo F. Xu J. Zhao C. Liu R. Chu Y. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J. Neuroinflammation 2018 15 1 290 10.1186/s12974‑018‑1330‑2 30333036
    [Google Scholar]
  26. Hu X. Wang J. Chu M. Liu Y. Wang Z. Zhu X. Emerging role of ubiquitination in the regulation of PD-1/PD-L1 in cancer immunotherapy. Mol. Ther. 2021 29 3 908 919 10.1016/j.ymthe.2020.12.032 33388422
    [Google Scholar]
  27. Akbar S. Raza A. Mohsin R. Kanbour A. Qadri S. Parray A. Zar Gul A.R. Philip A. Vijayakumar S. Merhi M. Hydrose S. Inchakalody V.P. Al-Abdulla R. Abualainin W. Sirriya S.A. Al-Bozom I. Uddin S. Khan O.M. Mohamed Ibrahim M.I. Al Homsi U. Dermime S. Circulating exosomal immuno-oncological checkpoints and cytokines are potential biomarkers to monitor tumor response to anti-PD-1/PD-L1 therapy in non-small cell lung cancer patients. Front. Immunol. 2023 13 1097117 10.3389/fimmu.2022.1097117 36741391
    [Google Scholar]
  28. Cai J. Qi Q. Qian X. Han J. Zhu X. Zhang Q. Xia R. The role of PD-1/PD-L1 axis and macrophage in the progression and treatment of cancer. J. Cancer Res. Clin. Oncol. 2019 145 6 1377 1385 10.1007/s00432‑019‑02879‑2 30963235
    [Google Scholar]
  29. Wu Q. Jiang L. Li S. He Q. Yang B. Cao J. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacol. Sin. 2021 42 1 1 9 10.1038/s41401‑020‑0366‑x 32152439
    [Google Scholar]
  30. Boussiotis V.A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med. 2016 375 18 1767 1778 10.1056/NEJMra1514296 27806234
    [Google Scholar]
  31. Deng L. Han X. Wang Z. Nie X. Bian J. The landscape of noncoding RNA in pulmonary hypertension. Biomolecules 2022 12 6 796 10.3390/biom12060796 35740920
    [Google Scholar]
  32. Li Y. Li G. Guo X. Yao H. Wang G. Li C. Non-coding RNA in bladder cancer. Cancer Lett. 2020 485 38 44 10.1016/j.canlet.2020.04.023 32437725
    [Google Scholar]
  33. Ali S.A. Peffers M.J. Ormseth M.J. Jurisica I. Kapoor M. The non-coding RNA interactome in joint health and disease. Nat. Rev. Rheumatol. 2021 17 11 692 705 10.1038/s41584‑021‑00687‑y 34588660
    [Google Scholar]
  34. Yan H. Bu P. Non-coding RNA in cancer. Essays Biochem. 2021 65 4 625 639 10.1042/EBC20200032 33860799
    [Google Scholar]
  35. Asim M.N. Ibrahim M.A. Imran Malik M. Dengel A. Ahmed S. Advances in computational methodologies for classification and sub-cellular locality prediction of non-coding RNAs. Int. J. Mol. Sci. 2021 22 16 8719 10.3390/ijms22168719 34445436
    [Google Scholar]
  36. Cha J.H. Chan L.C. Li C.W. Hsu J.L. Hung M.C. Mechanisms controlling PD-L1 expression in cancer. Mol. Cell 2019 76 3 359 370 10.1016/j.molcel.2019.09.030 31668929
    [Google Scholar]
  37. Zhang Y. Yang P. Wang X-F. Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol. 2014 24 3 153 160 10.1016/j.tcb.2013.09.007 24125906
    [Google Scholar]
  38. Zheng X. Dong L. Wang K. Zou H. Zhao S. Wang Y. Wang G. MiR-21 participates in the PD-1/PD-L1 pathway-mediated imbalance of Th17/Treg cells in patients after gastric cancer resection. Ann. Surg. Oncol. 2019 26 3 884 893 10.1245/s10434‑018‑07117‑6 30565043
    [Google Scholar]
  39. Miliotis C. Slack F.J. miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer. Cancer Lett. 2021 518 115 126 10.1016/j.canlet.2021.05.037 34098061
    [Google Scholar]
  40. Wang Q. Lin W. Tang X. Li S. Guo L. Lin Y. Kwok H.F. The roles of microRNAs in regulating the expression of PD-1/PD-L1 immune checkpoint. Int. J. Mol. Sci. 2017 18 12 2540 10.3390/ijms18122540 29186904
    [Google Scholar]
  41. Zhai R. Kan X. Wang B. Du H. Long Y. Wu H. Tao K. Wang G. Bao L. Li F. Zhang W. miR-152 suppresses gastric cancer cell proliferation and motility by targeting CD151. Tumour Biol. 2014 35 11 11367 11373 10.1007/s13277‑014‑2471‑2 25119599
    [Google Scholar]
  42. Fan F. Chen K. Lu X. Li A. Liu C. Wu B. Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol. Int. 2021 15 2 444 458 10.1007/s12072‑020‑10101‑6 33219943
    [Google Scholar]
  43. Fu Y. Mackowiak B. Feng D. Lu H. Guan Y. Lehner T. Pan H. Wang X.W. He Y. Gao B. MicroRNA-223 attenuates hepatocarcinogenesis by blocking hypoxia-driven angiogenesis and immunosuppression. Gut 2023 72 10 1942 1958 10.1136/gutjnl‑2022‑327924 36593103
    [Google Scholar]
  44. Liu Y. Xie Q. Ma Y. Lin C. Li J. Hu B. Liu C. Zhao Y. Nanobubbles containing PD-L1 Ab and miR-424 mediated PD-L1 blockade, and its expression inhibition to enable and potentiate hepatocellular carcinoma immunotherapy in mice. Int. J. Pharm. 2022 629 122352 10.1016/j.ijpharm.2022.122352 36374798
    [Google Scholar]
  45. He S. Song W. Cui S. Li J. Jiang Y. Chen X. Peng L. Modulation of miR-146b by N6-methyladenosine modification remodels tumor-associated macrophages and enhances anti-PD-1 therapy in colorectal cancer. Cell. Oncol. 2023 46 6 1731 1746 10.1007/s13402‑023‑00839‑0 37402945
    [Google Scholar]
  46. Zhang Q. Pan J. Xiong D. Zheng J. McPherson K.N. Lee S. Huang M. Xu Y. Chen S.H. Wang Y. Hildebrandt Ruiz L. You M. Aerosolized miR-138-5p and miR-200c targets PD-L1 for lung cancer prevention. Front. Immunol. 2023 14 1166951 10.3389/fimmu.2023.1166951 37520581
    [Google Scholar]
  47. Zhu X. Han J. Lan H. Lin Q. Wang Y. Sun X. A novel circular RNA hsa_circRNA_103809/miR-377-3p/GOT1 pathway regulates cisplatin-resistance in non-small cell lung cancer (NSCLC). BMC Cancer 2020 20 1 1190 10.1186/s12885‑020‑07680‑w 33276753
    [Google Scholar]
  48. Li L. Zhang Q. Lian K. Circular RNA circ_0000284 plays an oncogenic role in the progression of non-small cell lung cancer through the miR-377-3p-mediated PD-L1 promotion. Cancer Cell Int. 2020 20 1 247 10.1186/s12935‑020‑01310‑y 32550825
    [Google Scholar]
  49. Xia Y. Wang W.C. Shen W.H. Xu K. Hu Y.Y. Han G.H. Liu Y.B. Thalidomide suppresses angiogenesis and immune evasion via lncRNA FGD5-AS1/miR-454–3p/ZEB1 axis-mediated VEGFA expression and PD-1/PD-L1 checkpoint in NSCLC. Chem. Biol. Interact. 2021 349 109652 10.1016/j.cbi.2021.109652 34520751
    [Google Scholar]
  50. Boldrini L. Giordano M. Niccoli C. Melfi F. Lucchi M. Mussi A. Fontanini G. Role of microRNA-33a in regulating the expression of PD-1 in lung adenocarcinoma. Cancer Cell Int. 2017 17 1 105 10.1186/s12935‑017‑0474‑y 29176936
    [Google Scholar]
  51. Zheng W. Lai G. Lin Q. Issah M.A. Fu H. Shen J. A miR-129-5P/ARID3A negative feedback loop modulates diffuse large B cell lymphoma progression and immune evasion through regulating the PD-1/PD-L1 checkpoint. Front. Cell Dev. Biol. 2021 9 735855 10.3389/fcell.2021.735855 34778251
    [Google Scholar]
  52. Zhao L. Liu Y. Zhang J. Liu Y. Qi Q. LncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop promoted diffuse large B cell lymphoma progression and immune evasion through regulating PD-1/PD-L1 checkpoint. Cell Death Dis. 2019 10 10 731 10.1038/s41419‑019‑1886‑5 31570691
    [Google Scholar]
  53. He B. Yan F. Wu C. Overexpressed miR-195 attenuated immune escape of diffuse large B-cell lymphoma by targeting PD-L1. Biomed. Pharmacother. 2018 98 95 101 10.1016/j.biopha.2017.11.146 29247952
    [Google Scholar]
  54. Gao L. Guo Q. Li X. Yang X. Ni H. Wang T. Zhao Q. Liu H. Xing Y. Xi T. Zheng L. MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. EBioMedicine 2019 41 395 407 10.1016/j.ebiom.2019.02.034 30803931
    [Google Scholar]
  55. Lin Y.Z. Liu S.H. Wu W.R. Shen Y.C. Wang Y.L. Liao C.C. Lin P.L. Chang H. Liu L.C. Cheng W.C. Wang S.C. miR-4759 suppresses breast cancer through immune checkpoint blockade. Comput. Struct. Biotechnol. J. 2022 20 241 251 10.1016/j.csbj.2021.12.020 35024096
    [Google Scholar]
  56. Jiang K. Zou H. microRNA-20b-5p overexpression combing Pembrolizumab potentiates cancer cells to radiation therapy via repressing programmed death-ligand 1. Bioengineered 2022 13 1 917 929 10.1080/21655979.2021.2014617 34968160
    [Google Scholar]
  57. Shi L. Yang Y. Li M. Li C. Zhou Z. Tang G. Wu L. Yao Y. Shen X. Hou Z. Jia H. LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis. Mol. Ther. 2022 30 4 1564 1577 10.1016/j.ymthe.2022.01.003 35051616
    [Google Scholar]
  58. Sun Y. Wang J. Ma Y. Li J. Sun X. Zhao X. Shi X. Hu Y. Qu F. Zhang X. Radiation induces NORAD expression to promote ESCC radiotherapy resistance via EEPD1/ATR/Chk1 signalling and by inhibiting pri-miR-199a1 processing and the exosomal transfer of miR-199a-5p. J. Exp. Clin. Cancer Res. 2021 40 1 306 10.1186/s13046‑021‑02084‑5 34587992
    [Google Scholar]
  59. Zhang J. Zhao X. Ma X. Yuan Z. Hu M. KCNQ1OT1 contributes to sorafenib resistance and programmed death ligand 1 mediated immune escape via sponging miR 506 in hepatocellular carcinoma cells. Int. J. Mol. Med. 2020 46 5 1794 1804 10.3892/ijmm.2020.4710 33000204
    [Google Scholar]
  60. Peng L. Chen Y. Ou Q. Wang X. Tang N. LncRNA MIAT correlates with immune infiltrates and drug reactions in hepatocellular carcinoma. Int. Immunopharmacol 2020 89 (Pt A), 107071 10.1016/j.intimp.2020.107071 33221703
    [Google Scholar]
  61. Ni W. Mo H. Liu Y. Xu Y. Qin C. Zhou Y. Li Y. Li Y. Zhou A. Yao S. Zhou R. Huo J. Che L. Li J. Targeting cholesterol biosynthesis promotes anti-tumor immunity by inhibiting long noncoding RNA SNHG29-mediated YAP activation. Mol. Ther. 2021 29 10 2995 3010 10.1016/j.ymthe.2021.05.012 33992804
    [Google Scholar]
  62. Zhou N. Chen Y. Yang L. Xu T. Wang F. Chen L. Liu J. Liu G. LncRNA SNHG4 promotes malignant biological behaviors and immune escape of colorectal cancer cells by regulating the miR-144-3p/MET axis. Am. J. Transl. Res. 2021 13 10 11144 11161 [PMID: 34786048
    [Google Scholar]
  63. Tang Y. He Y. Shi L. Yang L. Wang J. Lian Y. Fan C. Zhang P. Guo C. Zhang S. Gong Z. Li X. Xiong F. Li X. Li Y. Li G. Xiong W. Zeng Z. Co-expression of AFAP1-AS1 and PD-1 predicts poor prognosis in nasopharyngeal carcinoma. Oncotarget 2017 8 24 39001 39011 10.18632/oncotarget.16545 28380458
    [Google Scholar]
  64. Kathuria H. Millien G. McNally L. Gower A.C. Tagne J.B. Cao Y. Ramirez M.I. NKX2-1-AS1 negatively regulates CD274/PD-L1, cell-cell interaction genes, and limits human lung carcinoma cell migration. Sci. Rep. 2018 8 1 14418 10.1038/s41598‑018‑32793‑5 30258080
    [Google Scholar]
  65. Pang Z. Chen X. Wang Y. Wang Y. Yan T. Wan J. Wang K. Du J. Long non-coding RNA C5orf64 is a potential indicator for tumor microenvironment and mutation pattern remodeling in lung adenocarcinoma. Genomics 2021 113 1 Pt 1 291 304 10.1016/j.ygeno.2020.12.010 33309768
    [Google Scholar]
  66. Ding H. Luo Y. Hu K. Liu P. Xiong M. Linc00467 promotes lung adenocarcinoma proliferation via sponging miR-20b-5p to activate CCND1 expression. OncoTargets Ther. 2019 12 6733 6743 10.2147/OTT.S207748 31686834
    [Google Scholar]
  67. Zhang Y. Li Z. Chen M. Chen H. Zhong Q. Liang L. Li B. lncRNA TCL6 correlates with immune cell infiltration and indicates worse survival in breast cancer. Breast Cancer 2020 27 4 573 585 10.1007/s12282‑020‑01048‑5 31960363
    [Google Scholar]
  68. Shang A. Wang W. Gu C. Chen C. Zeng B. Yang Y. Ji P. Sun J. Wu J. Lu W. Sun Z. Li D. Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. J. Exp. Clin. Cancer Res. 2019 38 1 411 10.1186/s13046‑019‑1394‑6 31533774
    [Google Scholar]
  69. Lin Q. Liu T. Wang X. Hou G. Xiang Z. Zhang W. Zheng S. Zhao D. Leng Q. Zhang X. Lu M. Guan T. Liu H. Hu Y. Long noncoding RNA HITT coordinates with RGS2 to inhibit PD-L1 translation in T cell immunity. J. Clin. Invest. 2023 133 11 e162951 10.1172/JCI162951 37014700
    [Google Scholar]
  70. Deng Y. Guo K. Tang Z. Feng Y. Cai S. Ye J. Xi Y. Li J. Liu R. Cai C. Tan Z. Zhang Y. Han Z. Zeng G. Zhong W. Identification and experimental validation of a tumor-infiltrating lymphocytes-related long noncoding RNA signature for prognosis of clear cell renal cell carcinoma. Front. Immunol. 2022 13 1046790 10.3389/fimmu.2022.1046790 36505457
    [Google Scholar]
  71. Zhang L.X. Gao J. Long X. Zhang P.F. Yang X. Zhu S.Q. Pei X. Qiu B.Q. Chen S.W. Lu F. Lin K. Xu J.J. Wu Y.B. The circular RNA circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung adenocarcinomas and squamous cell carcinomas via the miR-181a-5p/CARM1 axis. Mol. Cancer 2022 21 1 110 10.1186/s12943‑022‑01586‑w 35525959
    [Google Scholar]
  72. Luo Y-H. Yang Y.P. Chien C.S. Yarmishyn A.A. Adekunle Ishola A. Chien Y. Chen Y.M. Tsai P.H. Lin T.W. Wang M.L. Chiou S.H. Circular RNA hsa_circ_0000190 facilitates the tumorigenesis and immune evasion by upregulating the expression of soluble PD-L1 in non-small-cell lung cancer. Int. J. Mol. Sci. 2021 23 1 64 10.3390/ijms23010064 35008490
    [Google Scholar]
  73. Tian Q. Wu T. Zhang X. Xu K. Yin X. Wang X. Shi S. Wang P. Gao L. Xu S. Liu X. Immunomodulatory functions of the circ_001678/miRNA-326/ZEB1 axis in non-small cell lung cancer via the regulation of PD-1/PD-L1 pathway. Hum. Mol. Genet. 2022 31 23 4094 4106 10.1093/hmg/ddac155 35848890
    [Google Scholar]
  74. Lei J. Zhu J. Hui B. Jia C. Yan X. Jiang T. Wang X. Circ-HSP90A expedites cell growth, stemness, and immune evasion in non-small cell lung cancer by regulating STAT3 signaling and PD-1/PD-L1 checkpoint. Cancer Immunol. Immunother. 2023 72 1 101 124 10.1007/s00262‑022‑03235‑z 35750765
    [Google Scholar]
  75. Liu Z. Wang T. She Y. Wu K. Gu S. Li L. Dong C. Chen C. Zhou Y. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol. Cancer 2021 20 1 105 10.1186/s12943‑021‑01398‑4 34416901
    [Google Scholar]
  76. Lv J. Li K. Yu H. Han J. Zhuang J. Yu R. Cheng Y. Song Q. Bai K. Cao Q. Yang H. Yang X. Lu Q. HNRNPL induced circFAM13B increased bladder cancer immunotherapy sensitivity via inhibiting glycolysis through IGF2BP1/PKM2 pathway. J. Exp. Clin. Cancer Res. 2023 42 1 41 10.1186/s13046‑023‑02614‑3 36747239
    [Google Scholar]
  77. Liu Y. Zhang H. Zhang W. Xiang L. Yin Z. Xu H. Lu P. Ma Y. Xiong L. Zhang X. Liang X. Luo J. Liang X. circ_0004140 promotes LUAD tumor progression and immune resistance through circ_0004140/miR-1184/CCL22 axis. Cell Death Discov. 2022 8 1 181 10.1038/s41420‑022‑00983‑w 35396377
    [Google Scholar]
  78. Ye R. Lu X. Liu J. Duan Q. Xiao J. Duan X. Yue Z. Liu F. CircSOD2 contributes to tumor progression, immune evasion and anti-PD-1 resistance in hepatocellular carcinoma by targeting miR-497-5p/ANXA11 axis. Biochem. Genet. 2023 61 2 597 614 10.1007/s10528‑022‑10273‑w 36008700
    [Google Scholar]
  79. Xu G. Zhang P. Liang H. Xu Y. Shen J. Wang W. Li M. Huang J. Ni C. Zhang X. Zhu X. Circular RNA hsa_circ_0003288 induces EMT and invasion by regulating hsa_circ_0003288/miR-145/PD-L1 axis in hepatocellular carcinoma. Cancer Cell Int. 2021 21 1 212 10.1186/s12935‑021‑01902‑2 33858418
    [Google Scholar]
  80. Hu Z. Chen G. Zhao Y. Gao H. Li L. Yin Y. Jiang J. Wang L. Mang Y. Gao Y. Zhang S. Ran J. Li L. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol. Cancer 2023 22 1 55 10.1186/s12943‑023‑01759‑1 36932387
    [Google Scholar]
  81. Chen D.L. Sheng H. Zhang D.S. Jin Y. Zhao B.T. Chen N. Song K. Xu R.H. The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p. Mol. Cancer 2021 20 1 166 10.1186/s12943‑021‑01475‑8 34911533
    [Google Scholar]
  82. Shan H. CircSCUBE3 reduces the anti-gastric cancer activity of anti-PD-L1. Mol. Biotechnol. 2023 66 1 123 137 10.1007/s12033‑023‑00696‑0 37052807
    [Google Scholar]
  83. Zhang X. Xu L. Wang F. Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR138 targets TERT and PDL1. Cell Biol. Int. 2017 41 9 1056 1064 10.1002/cbin.10826 28707774
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073384743250617062430
Loading
/content/journals/cchts/10.2174/0113862073384743250617062430
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test