Skip to content
2000
image of Gan-Jiang-Ling-Zhu Decoction Prevents Paigen’s Diet-induced Lean Metabolic Dysfunction-associated Steatotic Liver disease by Regulating Bile Acid Metabolism

Abstract

Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health concern, even among lean individuals. The Gan-Jiang-Ling-Zhu decoction (GZD), a traditional Chinese medicine formula, shows therapeutic potential against MASLD. This study investigated the efficacy of GZD in lean MASLD and explored its mechanisms of action.

Methods

A lean MASLD mouse model was established using C57BL/6 mice fed with a cholesterol-rich Paigen’s diet (PD). Following successful modeling, mice were administered GZD (1.8, 3.6, or 7.2 g/kg) or vehicle control. Body weight, food intake, and liver weight were monitored. Hepatic steatosis and lipid accumulation were assessed H&E and Oil Red O staining, while serum enzymes were quantified biochemically. Gut microbiota composition was analyzed by 16S rRNA gene sequencing, and bile acid (BA) profiles in feces and serum were measured using UPLC-TQMS.

Results

Twelve weeks of PD feeding induced a lean MASLD phenotype characterized by reduced body weight alongside hepatic steatosis and dyslipidemia. The GZD treatment dose-dependently ameliorated liver steatosis and lipid accumulation, with the highest dose (7.2 g/kg) showing superior efficacy. GZD restored gut microbiota balance by reducing pathogenic bacteria and enriching taxa involved in BA metabolism, leading to increased fecal excretion of secondary BAs. Conversely, serum levels of secondary BAs were significantly reduced after GZD treatment.

Discussion

Our study highlights the promising role of GZD in lean MASLD, the involvement of gut microbiota and related BA metabolism that aligns with emerging evidence that gut dysbiosis and disrupted BA homeostasis are central to MASLD pathogenesis, even in lean individuals. However, the mechanistic links between specific microbial changes, BA pool composition, and hepatic outcomes remain to be elucidated.

Conclusion

GZD ameliorates hepatic steatosis in lean MASLD mice, an effect associated with modulation of gut microbiota composition and increased fecal excretion of secondary BAs. These findings suggest the potential of GZD as a therapeutic option for lean MASLD through gut-liver axis regulation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073379080250701164923
2025-07-15
2025-10-30
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073379080250701164923/BMS-CCHTS-2024-821.html?itemId=/content/journals/cchts/10.2174/0113862073379080250701164923&mimeType=html&fmt=ahah

References

  1. Chan W.K. Chuah K.H. Rajaram R.B. Lim L.L. Ratnasingam J. Vethakkan S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023 32 3 197 213 10.7570/jomes23052 37700494
    [Google Scholar]
  2. Miao L. Targher G. Byrne C.D. Cao Y.Y. Zheng M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024 35 8 697 707 10.1016/j.tem.2024.02.007 38429161
    [Google Scholar]
  3. Njei B. Al-Ajlouni Y.A. Ugwendum D. Abdu M. Forjindam A. Mohamed M.F. Genetic and epigenetic determinants of non-alcoholic fatty liver disease (NAFLD) in lean individuals: A systematic review. Transl. Gastroenterol. Hepatol. 2024 9 11 10.21037/tgh‑23‑31 38317742
    [Google Scholar]
  4. Ye Q. Zou B. Yeo Y.H. Li J. Huang D.Q. Wu Y. Yang H. Liu C. Kam L.Y. Tan X.X.E. Chien N. Trinh S. Henry L. Stave C.D. Hosaka T. Cheung R.C. Nguyen M.H. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020 5 8 739 752 10.1016/S2468‑1253(20)30077‑7 32413340
    [Google Scholar]
  5. Das K. Das K. Mukherjee P.S. Ghosh A. Ghosh S. Mridha A.R. Dhibar T. Bhattacharya B. Bhattacharya D. Manna B. Dhali G.K. Santra A. Chowdhury A. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. Hepatology 2010 51 5 1593 1602 10.1002/hep.23567 20222092
    [Google Scholar]
  6. Miwa T. Tajirika S. Imamura N. Adachi M. Horita R. Hanai T. Fukao T. Shimizu M. Yamamoto M. Prevalence of Steatotic Liver Disease Based on a New Nomenclature in the Japanese Population: A Health Checkup-Based Cross-Sectional Study. J. Clin. Med. 2024 13 4 1158 10.3390/jcm13041158 38398471
    [Google Scholar]
  7. Iacobini C. Pugliese G. Blasetti Fantauzzi C. Federici M. Menini S. Metabolically healthy versus metabolically unhealthy obesity. Metabolism 2019 92 51 60 10.1016/j.metabol.2018.11.009 30458177
    [Google Scholar]
  8. Tobari M. Hashimoto E. Taniai M. Ikarashi Y. Kodama K. Kogiso T. Tokushige K. Takayoshi N. Hashimoto N. Characteristics of non‐alcoholic steatohepatitis among lean patients in Japan: Not uncommon and not always benign. J. Gastroenterol. Hepatol. 2019 34 8 1404 1410 10.1111/jgh.14585 30590868
    [Google Scholar]
  9. Zou B. Yeo Y.H. Nguyen V.H. Cheung R. Ingelsson E. Nguyen M.H. Prevalence, characteristics and mortality outcomes of obese, nonobese and lean NAFLD in the United States, 1999–2016. J. Intern. Med. 2020 288 1 139 151 10.1111/joim.13069 32319718
    [Google Scholar]
  10. Harrison S.A. Bedossa P. Guy C.D. Schattenberg J.M. Loomba R. Taub R. Labriola D. Moussa S.E. Neff G.W. Rinella M.E. Anstee Q.M. Abdelmalek M.F. Younossi Z. Baum S.J. Francque S. Charlton M.R. Newsome P.N. Lanthier N. Schiefke I. Mangia A. Pericàs J.M. Patil R. Sanyal A.J. Noureddin M. Bansal M.B. Alkhouri N. Castera L. Rudraraju M. Ratziu V. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024 390 6 497 509 10.1056/NEJMoa2309000 38324483
    [Google Scholar]
  11. Harrison S.A. Bashir M.R. Guy C.D. Zhou R. Moylan C.A. Frias J.P. Alkhouri N. Bansal M.B. Baum S. Neuschwander-Tetri B.A. Taub R. Moussa S.E. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2019 394 10213 2012 2024 31727409
    [Google Scholar]
  12. Zeng X.F. Varady K.A. Wang X.D. Targher G. Byrne C.D. Tayyem R. Latella G. Bergheim I. Valenzuela R. George J. Newberry C. Zheng J.S. George E.S. Spearman C.W. Kontogianni M.D. Ristic-Medic D. Peres W.A.F. Depboylu G.Y. Yang W. Chen X. Rosqvist F. Mantzoros C.S. Valenti L. Yki-Järvinen H. Mosca A. Sookoian S. Misra A. Yilmaz Y. Kim W. Fouad Y. Sebastiani G. Wong V.W.S. Åberg F. Wong Y.J. Zhang P. Bermúdez-Silva F.J. Ni Y. Lupsor-Platon M. Chan W.K. Méndez-Sánchez N. de Knegt R.J. Alam S. Treeprasertsuk S. Wang L. Du M. Zhang T. Yu M.L. Zhang H. Qi X. Liu X. Pinyopornpanish K. Fan Y.C. Niu K. Jimenez-Chillaron J.C. Zheng M.H. The role of dietary modification in the prevention and management of metabolic dysfunction-associated fatty liver disease: An international multidisciplinary expert consensus. Metabolism 2024 161 156028 10.1016/j.metabol.2024.156028 39270816
    [Google Scholar]
  13. Yasutake K. Nakamuta M. Shima Y. Ohyama A. Masuda K. Haruta N. Fujino T. Aoyagi Y. Fukuizumi K. Yoshimoto T. Takemoto R. Miyahara T. Harada N. Hayata F. Nakashima M. Enjoji M. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: The significance of dietary cholesterol. Scand. J. Gastroenterol. 2009 44 4 471 477 10.1080/00365520802588133 19058085
    [Google Scholar]
  14. Liu Y. Xiao H. Wang Z. Pan Q. Zhao X. Lu B. Interactions between dietary cholesterol and intestinal flora and their effects on host health. Crit. Rev. Food Sci. Nutr. 2025 65 3 494 506 37947307
    [Google Scholar]
  15. Pindjakova J. Sartini C. Lo Re O. Rappa F. Coupe B. Lelouvier B. Pazienza V. Vinciguerra M. Gut dysbiosis and adaptive immune response in diet-induced obesity vs. systemic inflammation. Front. Microbiol. 2017 8 1157 10.3389/fmicb.2017.01157 28690599
    [Google Scholar]
  16. Huang X. Yao Y. Hou X. Wei L. Rao Y. Su Y. Zheng G. Ruan X.Z. Li D. Chen Y. Macrophage SCAP Contributes to Metaflammation and Lean NAFLD by Activating STING–NF-κB Signaling Pathway. Cell. Mol. Gastroenterol. Hepatol. 2022 14 1 1 26 10.1016/j.jcmgh.2022.03.006 35367665
    [Google Scholar]
  17. Watanabe M. Horai Y. Houten S.M. Morimoto K. Sugizaki T. Arita E. Mataki C. Sato H. Tanigawara Y. Schoonjans K. Itoh H. Auwerx J. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J. Biol. Chem. 2011 286 30 26913 26920 21632533
    [Google Scholar]
  18. Xue C. Xu Z. Liu Z. Zeng C. Ye Q. Pachymic acid protects hepatic cells against oxygen-glucose deprivation/reperfusion injury by activating sirtuin 1 to inhibit HMGB1 acetylation and inflammatory signaling. Chin. J. Physiol. 2023 66 4 239 247 37635483
    [Google Scholar]
  19. Qin L. Huang D. Huang J. Qin F. Huang H. Integrated Analysis and Finding Reveal Anti-Liver Cancer Targets and Mechanisms of Pachyman (Poria cocos Polysaccharides). Front. Pharmacol. 2021 12 742349 34603055
    [Google Scholar]
  20. Xie Z. Lin M. He X. Dong Y. Chen Y. Li B. Chen S. Lv G. Chemical constitution, pharmacological effects and the underlying mechanism of atractylenolides: A Review. Molecules 2023 28 10 3987 10.3390/molecules28103987 37241729
    [Google Scholar]
  21. Dang Y. Xu J. Zhu M. Zhou W. Zhang L. Ji G. Gan-Jiang-Ling-Zhu decoction alleviates hepatic steatosis in rats by the miR-138-5p/CPT1B axis. Biomed. Pharmacother. 2020 127 110127 32325349
    [Google Scholar]
  22. Xu R. Wu J. Pan J. Zhang S. Yang Y. Zhang L. Zhou W. Wu N. Hu D. Ji G. Dang Y. Gan-jiang-ling-zhu decoction improves steatohepatitis by regulating gut microbiota-mediated 12-tridecenoic acid inhibition. Front. Pharmacol. 2024 15 1444561 39246653
    [Google Scholar]
  23. Wu J. Xian S. Zhang S. Yang Y. Pan J. Zhou W. Hu D. Ji G. Dang Y. Gan-Jiang-Ling-Zhu decoction improves steatohepatitis induced by choline-deficient-high-fat-diet through the METTL14/N6-methyladenosine-mediated Ugt2a3 expression. J. Ethnopharmacol. 2025 339 119153 39580132
    [Google Scholar]
  24. Cao Y. Shu X. Li M. Yu S. Li C. Ji G. Zhang L. Jiangzhi granule attenuates non-alcoholic steatohepatitis through modulating bile acid in mice fed high-fat vitamin D deficiency diet. Biomed. Pharmacother. 2022 149 112825 10.1016/j.biopha.2022.112825 35305348
    [Google Scholar]
  25. Li Q. Li M. Li F. Zhou W. Dang Y. Zhang L. Ji G. Qiang-Gan formula extract improves non-alcoholic steatohepatitis via regulating bile acid metabolism and gut microbiota in mice. J. Ethnopharmacol. 2020 258 112896 10.1016/j.jep.2020.112896 32325178
    [Google Scholar]
  26. Schmid A. Neumann H. Karrasch T. Liebisch G. Schäffler A. Bile Acid Metabolome after an Oral Lipid Tolerance Test by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). PLoS One 2016 11 2 e0148869 10.1371/journal.pone.0148869 26863103
    [Google Scholar]
  27. Zheng X. Huang F. Zhao A. Lei S. Zhang Y. Xie G. Chen T. Qu C. Rajani C. Dong B. Li D. Jia W. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol. 2017 15 1 120 10.1186/s12915‑017‑0462‑7 29241453
    [Google Scholar]
  28. Luo J. Yang H. Song B.L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020 21 4 225 245 10.1038/s41580‑019‑0190‑7 31848472
    [Google Scholar]
  29. van der Wulp M.Y.M. Verkade H.J. Groen A.K. Regulation of cholesterol homeostasis. Mol. Cell. Endocrinol. 2013 368 1-2 1 16 10.1016/j.mce.2012.06.007 22721653
    [Google Scholar]
  30. Wang T.Y. Liu M. Portincasa P. Wang D.Q.H. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur. J. Clin. Invest. 2013 43 11 1203 1223 10.1111/eci.12161 24102389
    [Google Scholar]
  31. Klass D.M. Bührmann K. Sauter G. Del Puppo M. Scheibner J. Fuchs M. Stange E.F. Biliary lipids, cholesterol and bile synthesis: different adaptive mechanisms to dietary cholesterol in lean and obese subjects. Aliment. Pharmacol. Ther. 2006 23 7 895 905 10.1111/j.1365‑2036.2006.02836.x 16573792
    [Google Scholar]
  32. Sanyal A.J. Chalasani N. Kowdley K.V. McCullough A. Diehl A.M. Bass N.M. Neuschwander-Tetri B.A. Lavine J.E. Tonascia J. Unalp A. Van Natta M. Clark J. Brunt E.M. Kleiner D.E. Hoofnagle J.H. Robuck P.R. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010 362 18 1675 1685 10.1056/NEJMoa0907929 20427778
    [Google Scholar]
  33. Cho Y. Rhee H. Kim Y. Lee M. Lee B.W. Kang E.S. Cha B.S. Choi J.Y. Lee Y. Ezetimibe combination therapy with statin for non-alcoholic fatty liver disease: an open-label randomized controlled trial (ESSENTIAL study). BMC Med. 2022 20 1 93 10.1186/s12916‑022‑02288‑2 35307033
    [Google Scholar]
  34. Zhang X. Coker O.O. Chu E.S.H. Fu K. Lau H.C.H. Wang Y.X. Chan A.W.H. Wei H. Yang X. Sung J.J.Y. Yu J. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 2021 70 4 761 774 10.1136/gutjnl‑2019‑319664 32694178
    [Google Scholar]
  35. Dimova L.G. Zlatkov N. Verkade H.J. Uhlin B.E. Tietge U.J.F. High-cholesterol diet does not alter gut microbiota composition in mice. Nutr. Metab. (Lond.) 2017 14 1 15 10.1186/s12986‑017‑0170‑x 28239402
    [Google Scholar]
  36. Bo T. Shao S. Wu D. Niu S. Zhao J. Gao L. Relative variations of gut microbiota in disordered cholesterol metabolism caused by high‐cholesterol diet and host genetics. MicrobiologyOpen 2017 6 4 e00491 10.1002/mbo3.491 28660729
    [Google Scholar]
  37. Mohamad Nor M.H. Ayob N. Mokhtar N.M. Raja Ali R.A. Tan G.C. Wong Z. Shafiee N.H. Wong Y.P. Mustangin M. Nawawi K.N.M. The effect of probiotics (MCP® BCMC® strains) on hepatic steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with non-alcoholic fatty liver disease. Nutrients 2021 13 9 3192 10.3390/nu13093192 34579068
    [Google Scholar]
  38. Reshef N. Gophna U. Reshef L. Konikoff F. Gabay G. Zornitzki T. Knobler H. Maor Y. Prebiotic treatment in patients with nonalcoholic fatty liver disease (NAFLD)-a randomized pilot trial. Nutrients 2024 16 11 1571 10.3390/nu16111571 38892505
    [Google Scholar]
  39. Scorletti E. Afolabi P.R. Miles E.A. Smith D.E. Almehmadi A. Alshathry A. Childs C.E. Del Fabbro S. Bilson J. Moyses H.E. Clough G.F. Sethi J.K. Patel J. Wright M. Breen D.J. Peebles C. Darekar A. Aspinall R. Fowell A.J. Dowman J.K. Nobili V. Targher G. Delzenne N.M. Bindels L.B. Calder P.C. Byrne C.D. Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology 2020 158 6 1597 1610.e7 10.1053/j.gastro.2020.01.031 31987796
    [Google Scholar]
  40. Younossi Z.M. Ratziu V. Loomba R. Rinella M. Anstee Q.M. Goodman Z. Bedossa P. Geier A. Beckebaum S. Newsome P.N. Sheridan D. Sheikh M.Y. Trotter J. Knapple W. Lawitz E. Abdelmalek M.F. Kowdley K.V. Montano-Loza A.J. Boursier J. Mathurin P. Bugianesi E. Mazzella G. Olveira A. Cortez-Pinto H. Graupera I. Orr D. Gluud L.L. Dufour J.F. Shapiro D. Campagna J. Zaru L. MacConell L. Shringarpure R. Harrison S. Sanyal A.J. Abdelmalek M. Abrams G. Aguilar H. Ahmed A. Aigner E. Aithal G. Ala A. Alazawi W. Albillos A. Allison M. Al-Shamma S. Andrade R. Andreone P. Angelico M. Ankoma-Sey V. Anstee Q. Anty R. Araya V. Arenas Ruiz J.I. Arkkila P. Arora M. Asselah T. Au J. Ayonrinde O. Bailey R.J. Balakrishnan M. Bambha K. Bansal M. Barritt S. Bate J. Beato J. Beckebaum S. Behari J. Bellot P. Ben Ari Z. Bennett M. Berenguer M. Beretta-Piccoli B.T. Berg T. Bonacini M. Bonet L. Borg B. Bourliere M. Boursier J. Bowman W. Bradley D. Brankovic M. Braun M. Bronowicki J-P. Bruno S. Bugianesi E. Cai C. Calderon A. Calleja Panero J.L. Carey E. Carmiel M. Carrión J.A. Cave M. Chagas C. Chami T. Chang A. Coates A. Cobbold J. Costentin C. Corey K. Corless L. Cortez-Pinto H. Crespo J. Cruz Pereira O. de Ledinghen V. deLemos A. Diago M. Dong M. Dufour J-F. Dugalic P. Dunn W. Elkhashab M. Epstein M. Escudero-Garcia M.D. Etzion O. Evans L. Falcone R. Fernandez C. Ferreira J. Fink S. Finnegan K. Firpi-Morell R. Floreani A. Fontanges T. Ford R. Forrest E. Fowell A. Fracanzani A.L. Francque S. Freilich B. Frias J. Fuchs M. Fuentes J. Galambos M. Gallegos J. Geerts A. Geier A. George J. Ghali M. Ghalib R. Gholam P. Gines P. Gitlin N. Gluud L.L. Goeser T. Goff J. Gordon S. Gordon F. Goria O. Greer S. Grigorian A. Gronbaek H. Guillaume M. Gunaratnam N. Halegoua-De Marzio D. Hameed B. Hametner S. Hamilton J. Harrison S. Hartleb M. Hassanein T. Häussinger D. Hellstern P. Herring R. Heurich E. Hezode C. Hinrichsen H. Holland Fischer P. Horsmans Y. Huang J. Hussaini H. Jakiche A. Jeffers L. Jones B. Jorge R. Jorquera F. Joshi S. Kahraman A. Kaita K. Karyotakis N. Kayali Z. Kechagias S. Kepczyk T. Khalili M. Khallafi H. Kluwe J. Knapple W. Kohli A. Korenblat K. Kowdley K. Krag A. Krause R. Kremer A. Krok K. Krstic M. Kugelmas M. Kumar S. Kuwada S. Labarriere D. Lai M. Laleman W. Lampertico P. Lawitz E. Lee A. Leroy V. Lidofsky S. Lim T.H. Lim J. Lipkis D. Little E. Lonardo A. Long M. Loomba R. Luketic V.A.C. Lurie Y. Macedo G. Magalhaes J. Makara M. Maliakkal B. Manns M. Manousou P. Mantry P. Marchesini G. Marinho C. Marotta P. Marschall H-U. Martinez L. Mathurin P. Mayo M. Mazzella G. McCullen M. McLaughlin W. Merle U. Merriman R. Modi A. Molina E. Montano-Loza A. Monteverde C. Morales Cardona A. Moreea S. Moreno C. Morisco F. Mubarak A. Muellhaupt B. Mukherjee S. Müller T. Nagorni A. Naik J. Neff G. Nevah M. Newsome P. Nguyen-Khac E. Noureddin M. Oben J. Olveira A. Orlent H. Orr D. Orr J. Ortiz-Lasanta G. Ozenne V. Pandya P. Paredes A. Park J. Patel J. Patel K. Paul S. Patton H. Peck-Radosavljevic M. Petta S. Pianko S. Piekarska A. Pimstone N. Pisegna J. Pockros P. Pol S. Porayko M. Poulos J. Pound D. Pouzar J. Presa Ramos J. Pyrsopoulos N. Rafiq N. Muller K. Ramji A. Ratziu V. Ravinuthala R. Reddy C. Reddy K.G. G.; Reddy K R, K.R.; Regenstein, F.; Reindollar, R.; Reynolds, J.; Riera, A.; Rinella, M.; Rivera Acosta, J.; Robaeys, G.; Roberts, S.; Rodriguez-Perez, F.; Romero, S.; Romero-Gomez, M.; Rubin, R.; Rumi, M.; Rushbrook, S.; Rust, C.; Ryan, M.; Safadi, R.; Said, A.; Salminen, K.; Samuel, D.; Santoro, J.; Sanyal, A.; Sarkar, S.; Schaeffer, C.; Schattenberg, J.; Schiefke, I.; Schiff, E.; Schmidt, W.; Schneider, J.; Schouten, J.; Schultz, M.; Sebastiani, G.; Semela, D.; Sepe, T.; Sheikh, A.; Sheikh, M.; Sheridan, D.; Sherman, K.; Shibolet, O.; Shiffman, M.; Siddique, A.; Sieberhagen, C.; Sigal, S.; Sikorska, K.; Simon, K.; Sinclair, M.; Skoien, R.; Solis, J.; Sood, S.; Souder, B.; Spivey, J.; Stal, P.; Stinton, L.; Strasser, S.; Svorcan, P.; Szabo, G.; Talal, A.; Tam, E.; Tetri, B.; Thuluvath, P.; Tobias, H.; Tomasiewicz, K.; Torres, D.; Tran, A.; Trauner, M.; Trautwein, C.; Trotter, J.; Tsochatzis, E.; Unitt, E.; Vargas, V.; Varkonyi, I.; Veitsman, E.; Vespasiani Gentilucci, U.; Victor, D.; Vierling, J.; Vincent, C.; Vincze, A.; von der Ohe, M.; Von Roenn, N.; Vuppalanchi, R.; Waters, M.; Watt, K.; Wattacheril, J.; Weltman, M.; Wieland, A.; Wiener, G.; Williams A, A.; Williams J, J.; Wilson, J.; Yataco, M.; Yoshida, E.; Younes, Z.; Yuan, L.; Zivony, A.; Zogg, D.; Zoller, H.; Zoulim, F.; Zuckerman, E.; Zuin, M. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2019 394 10215 2184 2196 10.1016/S0140‑6736(19)33041‑7 31813633
    [Google Scholar]
  41. Xu H. Fang F. Wu K. Song J. Li Y. Lu X. Liu J. Zhou L. Yu W. Yu F. Gao J. Gut microbiota-bile acid crosstalk regulates murine lipid metabolism via the intestinal FXR-FGF19 axis in diet-induced humanized dyslipidemia. Microbiome 2023 11 1 262 10.1186/s40168‑023‑01709‑5 38001551
    [Google Scholar]
  42. Jia W. Xie G. Jia W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018 15 2 111 128 10.1038/nrgastro.2017.119 29018272
    [Google Scholar]
  43. Wang Q. Lin H. Shen C. Zhang M. Wang X. Yuan M. Yuan M. Jia S. Cao Z. Wu C. Chen B. Gao A. Bi Y. Ning G. Wang W. Wang J. Liu R. Gut microbiota regulates postprandial GLP-1 response via ileal bile acid-TGR5 signaling. Gut Microbes 2023 15 2 2274124 10.1080/19490976.2023.2274124 37942583
    [Google Scholar]
  44. Huang F. Zheng X. Ma X. Jiang R. Zhou W. Zhou S. Zhang Y. Lei S. Wang S. Kuang J. Han X. Wei M. You Y. Li M. Li Y. Liang D. Liu J. Chen T. Yan C. Wei R. Rajani C. Shen C. Xie G. Bian Z. Li H. Zhao A. Jia W. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun. 2019 10 1 4971 10.1038/s41467‑019‑12896‑x 31672964
    [Google Scholar]
  45. Xu F. Yu Z. Liu Y. Du T. Yu L. Tian F. Chen W. Zhai Q. A high-fat, high-cholesterol diet promotes intestinal inflammation by exacerbating gut microbiome dysbiosis and bile acid disorders in cholecystectomy. Nutrients 2023 15 17 3829 10.3390/nu15173829 37686860
    [Google Scholar]
  46. Zhao K. Qiu L. He Y. Tao X. Zhang Z. Wei H. Alleviation Syndrome of High-Cholesterol-Diet-Induced Hypercholesterolemia in Mice by Intervention with Lactiplantibacillus plantarum WLPL21 via Regulation of Cholesterol Metabolism and Transportation as Well as Gut Microbiota. Nutrients 2023 15 11 2600 10.3390/nu15112600 37299563
    [Google Scholar]
  47. Chen F. Esmaili S. Rogers G.B. Bugianesi E. Petta S. Marchesini G. Bayoumi A. Metwally M. Azardaryany M.K. Coulter S. Choo J.M. Younes R. Rosso C. Liddle C. Adams L.A. Craxì A. George J. Eslam M. Lean NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation. Hepatology 2020 71 4 1213 1227 10.1002/hep.30908 31442319
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073379080250701164923
Loading
/content/journals/cchts/10.2174/0113862073379080250701164923
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test