Skip to content
2000
image of Effect of Electroacupuncture on Intestinal Mucosal Barrier in IBS-D Rats: Analysis Based on RNA-seq

Abstract

Objective

Transcriptome-level insights into electroacupuncture (EA)’s mechanisms for alleviating intestinal mucosal barrier damage in diarrhea-predominant irritable bowel syndrome (IBS-D) are limited. This study aimed to construct ceRNA networks and elucidate EA's role in restoring barrier integrity via lncRNA-miRNA-mRNA regulation in IBS-D rats.

Methods

The IBS-D model was established by neonatal maternal separation (NMS), 4% acetic acid enema and restrain stress (RS). Rats were randomized into control, model, and EA groups. After 2-week EA treatment, colonic morphology was assessed by HE staining and TEM; intestinal barrier biomarkers were analyzed via ELISA and WB. RNA-seq identified differentially expressed RNAs (DE RNAs) to construct ceRNA networks. GO and KEGG analyzed EA-modulated DE mRNAs. RT-qPCR validated RNA-seq; WB and IF confirmed mast cell (MC) involvement in EA-regulated pathways.

Results

RNA-seq identified 426 up-regulated and 429 down-regulated DE mRNAs, 342 up-regulated and 362 down-regulated DE lncRNAs, and 10 up-regulated and 48 down-regulated DE miRNAs following EA. Constructed ceRNA networks included 7 DE lncRNAs-miR-139-3p- and -miR-378b-. GO analysis linked EA to defense response, hormone regulation, and cytokine function pathways. KEGG implicated antigen processing/presentation, neuroactive ligand-receptor interaction, PPAR signaling, and glutathione metabolism. RT-qPCR validated RNA-seq results.

Conclusion

This RNA-seq study reveals EA mitigates IBS-D intestinal mucosal barrier damage by regulating genes and ceRNA networks, providing novel transcriptomic insights into its therapeutic mechanisms.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073395229250513074835
2025-05-27
2025-09-06
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073395229250513074835/BMS-CCHTS-2025-120.html?itemId=/content/journals/cchts/10.2174/0113862073395229250513074835&mimeType=html&fmt=ahah

References

  1. Ford A.C. Sperber A.D. Corsetti M. Camilleri M. Irritable bowel syndrome. Lancet 2020 396 10263 1675 1688 10.1016/S0140‑6736(20)31548‑8 33049223
    [Google Scholar]
  2. Lembo A. Sultan S. Chang L. Heidelbaugh J.J. Smalley W. Verne G.N. AGA clinical practice guideline on the pharmacological management of irritable bowel syndrome with diarrhea. Gastroenterology 2022 163 1 137 151 10.1053/j.gastro.2022.04.017 35738725
    [Google Scholar]
  3. Black C.J. Ford A.C. Global burden of irritable bowel syndrome: Trends, predictions and risk factors. Nat. Rev. Gastroenterol. Hepatol. 2020 17 8 473 486 10.1038/s41575‑020‑0286‑8 32296140
    [Google Scholar]
  4. Oka P. Parr H. Barberio B. Black C.J. Savarino E.V. Ford A.C. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020 5 10 908 917 10.1016/S2468‑1253(20)30217‑X 32702295
    [Google Scholar]
  5. Holtmann G.J. Ford A.C. Talley N.J. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol. Hepatol. 2016 1 2 133 146 10.1016/S2468‑1253(16)30023‑1 28404070
    [Google Scholar]
  6. Wu H. Zhan K. Rao K. Zheng H. Qin S. Tang X. Huang S. Comparison of five diarrhea-predominant irritable bowel syndrome (IBS-D) rat models in the brain-gut-microbiota axis. Biomed. Pharmacother. 2022 149 112811 10.1016/j.biopha.2022.112811 35303570
    [Google Scholar]
  7. Martínez C. Rodiño-Janeiro B.K. Lobo B. Stanifer M.L. Klaus B. Granzow M. González-Castro A.M. Salvo-Romero E. Alonso-Cotoner C. Pigrau M. Roeth R. Rappold G. Huber W. González-Silos R. Lorenzo J. de Torres I. Azpiroz F. Boulant S. Vicario M. Niesler B. Santos J. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut 2017 66 9 1537 1538 10.1136/gutjnl‑2016‑311477 28082316
    [Google Scholar]
  8. Zhou Q. Zhang B. Verne N.G. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain 2009 146 1 41 46 10.1016/j.pain.2009.06.017 19595511
    [Google Scholar]
  9. Bertiaux-Vandaële N. Youmba S.B. Belmonte L. Lecleire S. Antonietti M. Gourcerol G. Leroi A.M. Déchelotte P. Ménard J.F. Ducrotté P. Coëffier M. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am. J. Gastroenterol. 2011 106 12 2165 2173 10.1038/ajg.2011.257 22008894
    [Google Scholar]
  10. Vivinus-Nébot M. Dainese R. Anty R. Saint-Paul M.C. Nano J.L. Gonthier N. Marjoux S. Frin-Mathy G. Bernard G. Hébuterne X. Tran A. Theodorou V. Piche T. Combination of allergic factors can worsen diarrheic irritable bowel syndrome: Role of barrier defects and mast cells. Am. J. Gastroenterol. 2012 107 1 75 81 10.1038/ajg.2011.315 21931380
    [Google Scholar]
  11. Hasler W.L. Grabauskas G. Singh P. Owyang C. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome. Neurogastroenterol. Motil. 2022 34 7 14339 10.1111/nmo.14339 35315179
    [Google Scholar]
  12. Martínez C. Lobo B. Pigrau M. Ramos L. González-Castro A.M. Alonso C. Guilarte M. Guilá M. de Torres I. Azpiroz F. Santos J. Vicario M. Diarrhoea-predominant irritable bowel syndrome: An organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut 2013 62 8 1160 1168 10.1136/gutjnl‑2012‑302093 22637702
    [Google Scholar]
  13. Schemann M. Camilleri M. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 2013 144 4 698 704.e4 10.1053/j.gastro.2013.01.040 23354018
    [Google Scholar]
  14. Lee H. Park J.H. Park D.I. Kim H.J. Cho Y.K. Sohn C.I. Jeon W.K. Kim B.I. Chae S.W. Mucosal mast cell count is associated with intestinal permeability in patients with diarrhea predominant irritable bowel syndrome. J. Neurogastroenterol. Motil. 2013 19 2 244 250 10.5056/jnm.2013.19.2.244 23667756
    [Google Scholar]
  15. Albert-Bayo M. Paracuellos I. González-Castro A.M. Rodríguez-Urrutia A. Rodríguez-Lagunas M.J. Alonso-Cotoner C. Santos J. Vicario M. Intestinal mucosal mast cells: Key modulators of barrier function and homeostasis. Cells 2019 8 2 135 10.3390/cells8020135 30744042
    [Google Scholar]
  16. Nee J. Lembo A. Review Article: Current and future treatment approaches for IBS with diarrhoea (IBS‐D) and IBS mixed pattern (IBS‐M). Aliment. Pharmacol. Ther. 2021 54 S1 S63 S74 10.1111/apt.16625 34927757
    [Google Scholar]
  17. Wechsler E.V. Shah E.D. Diarrhea-predominant and constipation-predominant irritable bowel syndrome: Current prescription drug treatment options. Drugs 2021 81 17 1953 1968 10.1007/s40265‑021‑01634‑7 34727333
    [Google Scholar]
  18. Black C.J. Burr N.E. Camilleri M. Earnest D.L. Quigley E.M.M. Moayyedi P. Houghton L.A. Ford A.C. Efficacy of pharmacological therapies in patients with IBS with diarrhoea or mixed stool pattern: Systematic review and network meta-analysis. Gut 2020 69 1 74 82 10.1136/gutjnl‑2018‑318160 30996042
    [Google Scholar]
  19. Qi L.Y. Yang J.W. Yan S.Y. Tu J.F. She Y.F. Li Y. Chi L.L. Wu B.Q. Liu C.Z. Acupuncture for the treatment of diarrhea-predominant Irritable Bowel Syndrome: A Pilot Randomized Clinical Trial. JAMA Netw. Open 2022 5 12 2248817 10.1001/jamanetworkopen.2022.48817 36580333
    [Google Scholar]
  20. Guo Y. Wei W. Chen J.D.Z. Effects and mechanisms of acupuncture and electroacupuncture for functional dyspepsia: A systematic review. World J. Gastroenterol. 2020 26 19 2440 2457 10.3748/wjg.v26.i19.2440 32476804
    [Google Scholar]
  21. Schneider A. Enck P. Streitberger K. Weiland C. Bagheri S. Witte S. Friederich H.C. Herzog W. Zipfel S. Acupuncture treatment in irritable bowel syndrome. Gut 2006 55 5 649 654 10.1136/gut.2005.074518 16150852
    [Google Scholar]
  22. Zhao J. Lu J. Yin X. Wu L. Bao C. Chen X. Chen Y. Tang W. Jin X. Wu H. Shi Y. Comparison of electroacupuncture and mild-warm moxibustion on brain-gut function in patients with constipation-predominant irritable bowel syndrome: A randomized controlled trial. Chin. J. Integr. Med. 2018 24 5 328 335 10.1007/s11655‑018‑2838‑0 29752611
    [Google Scholar]
  23. Bravo-Vázquez L.A. Medina-Ríos I. Márquez-Gallardo L.D. Reyes-Muñoz J. Serrano-Cano F.I. Pathak S. Banerjee A. Bandyopadhyay A. Duttaroy A.K. Paul S. Functional implications and clinical potential of micrornas in irritable bowel syndrome: A concise review. Dig. Dis. Sci. 2023 68 1 38 53 10.1007/s10620‑022‑07516‑6 35507132
    [Google Scholar]
  24. Chao G. Wang Z. Yang Y. Zhang S. LncRNA H19 as a competing endogenous rna to regulate aqp expression in the intestinal barrier of IBS-D patients. Front. Physiol. 2021 11 602076 10.3389/fphys.2020.602076 33584332
    [Google Scholar]
  25. Quan Y. Song K. Zhang Y. Zhu C. Shen Z. Wu S. Luo W. Tan B. Yang Z. Wang X. Roseburia intestinalis -derived flagellin is a negative regulator of intestinal inflammation. Biochem. Biophys. Res. Commun. 2018 501 3 791 799 10.1016/j.bbrc.2018.05.075 29772233
    [Google Scholar]
  26. Tay Y. Rinn J. Pandolfi P.P. The multilayered complexity of ceRNA crosstalk and competition. Nature 2014 505 7483 344 352 10.1038/nature12986 24429633
    [Google Scholar]
  27. Wang X.J. Li X.Y. Guo X.C. Liu L. Jin Y.Y. Lu Y.Q. Cao Y.J.N. Long J.Y. Wu H.G. Zhang D. Yang G. Hong J. Yang Y.T. Ma X.P. LncRNA-miRNA-mRNA network analysis reveals the potential biomarkers in crohn’s disease rats treated with herb-partitioned moxibustion. J. Inflamm. Res. 2022 15 1699 1716 10.2147/JIR.S351672 35282268
    [Google Scholar]
  28. Kong X. Duan Y. Sang Y. Li Y. Zhang H. Liang Y. Liu Y. Zhang N. Yang Q. LncRNA–CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA‐215. J. Cell. Physiol. 2019 234 6 9105 9117 10.1002/jcp.27587 30362551
    [Google Scholar]
  29. Yang X. Wu P. Wang Z. Su X. Wu Z. Ma X. Wu F. Zhang D. Constructed the ceRNA network and predicted a FEZF1-AS1/miR-92b-3p/ZIC5 axis in colon cancer. Mol. Cell. Biochem. 2023 478 5 1083 1097 10.1007/s11010‑022‑04578‑y 36219353
    [Google Scholar]
  30. Wang Q.S. Wang Y.L. Zhang W.Y. Li K.D. Luo X.F. Cui Y.L. Puerarin from Pueraria lobata alleviates the symptoms of irritable bowel syndrome-diarrhea. Food Funct. 2021 12 5 2211 2224 10.1039/D0FO02848G 33595580
    [Google Scholar]
  31. Yang Y.C. Zhou Z.X. Xue T. Feng Y.H. Chen J.T. Wang T.N. Zhao J.Y. Wang Y.J. Zhang P. Zhang L.P. Ma H.F. Effect of electroacupuncture on visceral sensitivity and expression of ngf, trka and trpv1 in colon of diarrhea irritable bowel syndrome rats. Zhongguo Zhenjiu 2022 42 12 1395 1402
    [Google Scholar]
  32. Zhu S.S. Wang J.J. Zou L. Chen J.Y. Li K.W. Liao L.M. Ruan J.R. Li N. Chu H.R. Anti-inflammation effect of moxibustion for rats with diarrhea-predominant irritable bowel syndrome based on multiple miRNAs regulating NF-κB signal pathway. Zhongguo Zhenjiu 2022 42 6 654 662 35712950
    [Google Scholar]
  33. Zou L. Ruan J.R. Chen J.Y. Wang J.J. Zhu S.S. Liao L.M. Li K.W. Wang J.J. Chu H.R. Moxibustion relieves colonic inflammation by up-regulating expression of miR-345-3p/miR-216a-5p and down-regulating NF-κB p65 in colonic tissue of rats with diarrhea-predominant irritable bowel syndrome. Zhen Ci Yan Jiu 2023 48 3 226 232 36951073
    [Google Scholar]
  34. Wang K. Hou Y.J. Wang L. Liao C.X. Song W. Chen Y. Zhou S.Y. Mechanisms of Peitu Yimu acupuncture in repairing intestinal mucosal barrier by regulating CRF/CRFR1 pathway in diarrhea-predominant irritable bowel syndrome rats. Zhen Ci Yan Jiu 2024 49 5 472 479 10.13702/j.1000‑0607.20230154
    [Google Scholar]
  35. Wang F.C. Jia C.S. Subject of acupuncture and moxibustion technique. Shanghai Shanghai Science and Technology Press 2018 132 135
    [Google Scholar]
  36. Zhong L.L.D. Wu X. Lam T.F. Wong Y.P. Cao P. Wong E.Y. Zhang S. Bian Z. Electro-acupuncture for central obesity: Randomized, patient-assessor blinded, sham-controlled clinical trial protocol. BMC Complement. Med. Ther. 2021 21 1 190 10.1186/s12906‑021‑03367‑2
    [Google Scholar]
  37. Dong H. Wang Q. Wang Z. Wu X. Cheng L. Zhou Z. Yang L. Yi P. Huang D. Impact of low frequency electro-acupuncture on glucose and lipid metabolism in unmarried pcos women: A randomized controlled trial. Chin. J. Integr. Med. 2021 27 10 737 743 10.1007/s11655‑021‑3482‑z 34319506
    [Google Scholar]
  38. Liu Z. Liu Y. Xu H. He L. Chen Y. Fu L. Li N. Lu Y. Su T. Sun J. Wang J. Yue Z. Zhang W. Zhao J. Zhou Z. Wu J. Zhou K. Ai Y. Zhou J. Pang R. Wang Y. Qin Z. Yan S. Li H. Luo L. Liu B. Effect of electroacupuncture on urinary leakage among women with stress urinary incontinence. A Randomized Clinical Trial. JAMA 2017 317 24 2493 2501 10.1001/jama.2017.7220 28655016
    [Google Scholar]
  39. Zhang G. Zhang T. Cao Z. Tao Z. Wan T. Yao M. Su X. Wei W. Effects and mechanisms of acupuncture on diarrhea-predominant irritable bowel syndrome: A systematic review. Front. Neurosci. 2022 16 918701 10.3389/fnins.2022.918701 35911986
    [Google Scholar]
  40. Han X.Y. Song X.G. Ma W.L. Fang M. Zhu J.W. Ruan J.R. Li K.W. Zou L. Liao L.M. Li X.M. Wang Z.Y. Fang Y.C. Chu H.R. Electroacupuncture protects the intestinal mucosal barrier in diarrhea-predominant Irritable Bowel Syndrome rats by regulating the MCs/Tryptase/PAR-2/MLCK pathway. Am. J. Transl. Res. 2024 16 3 781 793 10.62347/VZJL1218 38586088
    [Google Scholar]
  41. Zhenzhong L. Xiaojun Y. Weijun T. Yuehua C. Jie S. Jimeng Z. Anqi W. Chunhui B. Yin S. Comparative effect of electroacupuncture and moxibustion on the expression of substance P and vasoactive intestinal peptide in patients with irritable bowel syndrome. J. Tradit. Chin. Med. 2015 35 4 402 410 10.1016/S0254‑6272(15)30116‑3 26427109
    [Google Scholar]
  42. Chen E. Chuang L. Giri M. Villaverde N. Hsu N. Sabic K. Joshowitz S. Gettler K. Nayar S. Chai Z. Alter I.L. Chasteau C.C. Korie U.M. Dzedzik S. Thin T.H. Jain A. Moscati A. Bongers G. Duerr R.H. Silverberg M.S. Brant S.R. Rioux J.D. Peter I. Schumm L.P. Haritunians T. McGovern D.P. Itan Y. Cho J.H. Inflamed ulcerative colitis regions associated with mrgprx2-mediated mast cell degranulation and cell activation modules, defining a new therapeutic target. Gastroenterology 2021 160 5 1709 1724 10.1053/j.gastro.2020.12.076 33421512
    [Google Scholar]
  43. Barbara G. Stanghellini V. De Giorgio R. Corinaldesi R. Functional gastrointestinal disorders and mast cells: Implications for therapy. Neurogastroenterol. Motil. 2006 18 1 6 17 10.1111/j.1365‑2982.2005.00685.x 16371078
    [Google Scholar]
  44. Pontarollo G. Mann A. Brandão I. Malinarich F. Schöpf M. Reinhardt C. Protease‐activated receptor signaling in intestinal permeability regulation. FEBS J. 2020 287 4 645 658 10.1111/febs.15055 31495063
    [Google Scholar]
  45. Chao G. Hong X. Zhang S. Effects of mast cells induced by nsaids impair intestinal epithelial barrier function in vivo and] in vitro. Inflammation 2021 44 4 1396 1404 10.1007/s10753‑021‑01424‑z 33566258
    [Google Scholar]
  46. Ocak U. Eser Ocak P. Huang L. Xu W. Zuo Y. Li P. Gamdzyk M. Zuo G. Mo J. Zhang G. Zhang J.H. Inhibition of mast cell tryptase attenuates neuroinflammation via PAR-2/p38/NFκB pathway following asphyxial cardiac arrest in rats. J. Neuroinflammation 2020 17 1 144 10.1186/s12974‑020‑01808‑2 32366312
    [Google Scholar]
  47. Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009 9 11 799 809 10.1038/nri2653 19855405
    [Google Scholar]
  48. Zhen Z. Xia L. You H. Jingwei Z. Shasha Y. Xinyi W. Wenjing L. Xin Z. Chaomei F. An integrated gut microbiota and network pharmacology study on fuzi-lizhong pill for treating diarrhea-predominant irritable bowel syndrome. Front. Pharmacol. 2021 12 746923 10.3389/fphar.2021.746923 34916934
    [Google Scholar]
  49. Kang X. Zhang H. Li X. Zhang K. Huang Z. Li Y. Ren X. Chai Y. Electroacupuncture improving intestinal barrier function in rats with irritable bowel syndrome through regulating aquaporins. Dig. Dis. Sci. 2024 69 4 1143 1155 10.1007/s10620‑024‑08288‑x 38421507
    [Google Scholar]
  50. Buckley A. Turner J.R. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb. Perspect. Biol. 2018 10 1 a029314 10.1101/cshperspect.a029314 28507021
    [Google Scholar]
  51. Otani T. Furuse M. Tight junction structure and function revisited. Trends Cell Biol. 2020 30 10 805 817 10.1016/j.tcb.2020.08.004
    [Google Scholar]
  52. Balda M.S. Matter K. Tight junctions. Curr. Biol. 2023 33 21 R1135 R1140 10.1016/j.cub.2023.09.027 37935122
    [Google Scholar]
  53. Wang S. Jing W. Gu G. Li S. Pang J. Cong H. Zhang K. Yang J. Wu C. Improvement effect and mechanism of XuanFuDaiZhe tang on rats with diarrheal irritable bowel syndrome induced by colorectal dilation. J. Ethnopharmacol. 2025 337 Pt 3 118938 10.1016/j.jep.2024.118938 39419305
    [Google Scholar]
  54. Enko D. Kriegshäuser G. Halwachs-Baumann G. Mangge H. Schnedl W.J. Serum diamine oxidase activity is associated with lactose malabsorption phenotypic variation. Clin. Biochem. 2017 50 1-2 50 53 10.1016/j.clinbiochem.2016.08.019 27593109
    [Google Scholar]
  55. Ma M. Zheng Z. Zeng Z. Li J. Ye X. Kang W. Perioperative enteral immunonutrition support for the immune function and intestinal mucosal barrier in gastric cancer patients undergoing gastrectomy: A prospective randomized controlled study. Nutrients 2023 15 21 4566 10.3390/nu15214566 37960219
    [Google Scholar]
  56. Zhou B. Yuan Y. Zhang S. Guo C. Li X. Li G. Xiong W. Zeng Z. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Front. Immunol. 2020 11 575 10.3389/fimmu.2020.00575 32318067
    [Google Scholar]
  57. Lai B.Y. Hong M.Y. He Y.J. Li X. Wang S.S. Chen Y. Li X.W. Nie J. Liu D. She C. Effect of acupuncture and moxibustion on intestinal flora in the rats with diarrhea-predominant irritable bowel syndrome based on 16S rDNA technique. Zhongguo Zhenjiu 2023 43 12 1411 1421 10.13703/j.0255‑2930.20230630‑k0002
    [Google Scholar]
  58. Wang J.W. Zheng S.X. Lin S. Xu J.S. Regulatory effect of electropuncture on gut microbiota of rats with IBS-D based on 16S rDNA high-throughput sequencing. Global Tradit. Chin. Med. 2023 16 05 846 851
    [Google Scholar]
  59. Yaklai K. Pattanakuhar S. Chattipakorn N. Chattipakorn S.C. The role of acupuncture on the gut–brain–microbiota axis in irritable bowel syndrome. Am. J. Chin. Med. 2021 49 2 285 314 10.1142/S0192415X21500154 33622207
    [Google Scholar]
  60. Zhai L. Huang C. Ning Z. Zhang Y. Zhuang M. Yang W. Wang X. Wang J. Zhang L. Xiao H. Zhao L. Asthana P. Lam Y.Y. Chow C.F.W. Huang J. Yuan S. Chan K.M. Yuan C.S. Lau J.Y.N. Wong H.L.X. Bian Z. Ruminococcus gnavus plays a pathogenic role in diarrhea-predominant irritable bowel syndrome by increasing serotonin biosynthesis. Cell Host Microbe 2023 31 1 33 44.e5 10.1016/j.chom.2022.11.006 36495868
    [Google Scholar]
  61. Zhu X. Liu Z. Niu W. Wang Y. Zhang A. Qu H. Zhou J. Bai L. Yang Y. Li J. Effects of Electroacupuncture at ST25 and BL25 in a Sennae -induced rat model of diarrhoea-predominant irritable bowel syndrome. Acupunct. Med. 2017 35 3 216 223 10.1136/acupmed‑2016‑011180 27852563
    [Google Scholar]
  62. El-Salhy M. Hatlebakk J.G. Hausken T. Diet in irritable bowel syndrome (IBS): Interaction with gut microbiota and gut hormones. Nutrients 2019 11 8 1824 10.3390/nu11081824 31394793
    [Google Scholar]
  63. Lach G. Schellekens H. Dinan T.G. Cryan J.F. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics 2018 15 1 36 59 10.1007/s13311‑017‑0585‑0 29134359
    [Google Scholar]
  64. Xie Y. Zhan X. Tu J. Xu K. Sun X. Liu C. Ke C. Cao G. Zhou Z. Liu Y. Atractylodes oil alleviates diarrhea-predominant irritable bowel syndrome by regulating intestinal inflammation and intestinal barrier via SCF/c-kit and MLCK/MLC2 pathways. J. Ethnopharmacol. 2021 272 113925 10.1016/j.jep.2021.113925 33592255
    [Google Scholar]
  65. Cresswell P. Bangia N. Dick T. Diedrich G. The nature of the MHC class I peptide loading complex. Immunol. Rev. 1999 172 1 21 28 10.1111/j.1600‑065X.1999.tb01353.x 10631934
    [Google Scholar]
  66. Taylor J.P. Tse H.M. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol. 2021 48 102159 10.1016/j.redox.2021.102159 34627721
    [Google Scholar]
  67. Han C. Sheng Y. Wang J. Zhou X. Li W. Zhang C. Guo L. Yang Y. NOX4 promotes mucosal barrier injury in inflammatory bowel disease by mediating macrophages M1 polarization through ROS. Int. Immunopharmacol. 2022 104 108361 10.1016/j.intimp.2021.108361 34949550
    [Google Scholar]
  68. Cardamone C. Parente R. Feo G.D. Triggiani M. Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunol. Lett. 2016 178 10 14 10.1016/j.imlet.2016.07.003 27393494
    [Google Scholar]
  69. Chen M.J. Ruan G.C. Chen L. Ying S.H. Li G.H. Xu F.H. Xiao Z.F. Tian Y.T. Lv L.L. Ping Y. Cheng Y. Wei Y.L. Neurotransmitter and intestinal interactions: Focus on the microbiota-gut-brain axis in irritable bowel syndrome. Front. Endocrinol. 2022 13 817100 10.3389/fendo.2022.817100
    [Google Scholar]
  70. Gershon M.D. Nerves, reflexes, and the enteric nervous system: Pathogenesis of the irritable bowel syndrome. J. Clin. Gastroenterol. 2005 39 5 S184 S193 10.1097/01.mcg.0000156403.37240.30 15798484
    [Google Scholar]
  71. Gao J. Xiong T. Grabauskas G. Owyang C. Mucosal serotonin reuptake transporter expression in irritable bowel syndrome is modulated by gut microbiota via mast cell–prostaglandin e2. Gastroenterology 2022 162 7 1962 1974.e6 10.1053/j.gastro.2022.02.016 35167867
    [Google Scholar]
  72. Yao P.L. Morales J.L. Gonzalez F.J. Peters J.M. Peroxisome proliferator‐activated receptor‐ β / δ modulates mast cell phenotype. Immunology 2017 150 4 456 467 10.1111/imm.12699 27935639
    [Google Scholar]
  73. Yao L. Gu Y. Jiang T. Che H. Inhibition effect of PPAR-γ signaling on mast cell-mediated allergic inflammation through down-regulation of PAK1/ NF-κB activation. Int. Immunopharmacol. 2022 108 108692 10.1016/j.intimp.2022.108692 35636075
    [Google Scholar]
  74. Piotin A. Oulehri W. Charles A.L. Tacquard C. Collange O. Mertes P.M. Geny B. Oxidative stress and mitochondria are involved in anaphylaxis and mast cell degranulation: A systematic review. Antioxidants 2024 13 8 920 10.3390/antiox13080920 39199166
    [Google Scholar]
  75. An Y. Furber K.L. Ji S. Pseudogenes regulate parental gene expression via ce RNA network. J. Cell. Mol. Med. 2017 21 1 185 192 10.1111/jcmm.12952 27561207
    [Google Scholar]
  76. Yasudome R. Seki N. Asai S. Goto Y. Kita Y. Hozaka Y. Wada M. Tanabe K. Idichi T. Mori S. Ohtsuka T. Molecular pathogenesis of colorectal cancer: Impact of oncogenic targets regulated by tumor suppressive miR-139-3p. Int. J. Mol. Sci. 2022 23 19 11616 10.3390/ijms231911616 36232922
    [Google Scholar]
  77. Gerin I. Bommer G.T. McCoin C.S. Sousa K.M. Krishnan V. MacDougald O.A. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am. J. Physiol. Endocrinol. Metab. 2010 299 2 E198 E206 10.1152/ajpendo.00179.2010 20484008
    [Google Scholar]
  78. Wang P. Gu Y. Zhang Q. Han Y. Hou J. Lin L. Wu C. Bao Y. Su X. Jiang M. Wang Q. Li N. Cao X. Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity. J. Immunol. 2012 189 1 211 221 10.4049/jimmunol.1200609 22649192
    [Google Scholar]
  79. Flores-Romero H. Hohorst L. John M. Albert M.C. King L.E. Beckmann L. Szabo T. Hertlein V. Luo X. Villunger A. Frenzel L.P. Kashkar H. Garcia-Saez A.J. BCL‐2‐family protein tBID can act as a BAX‐like effector of apoptosis. EMBO J. 2022 41 2 108690 10.15252/embj.2021108690 34931711
    [Google Scholar]
  80. Yeretssian G. Correa R.G. Doiron K. Fitzgerald P. Dillon C.P. Green D.R. Reed J.C. Saleh M. Non-apoptotic role of BID in inflammation and innate immunity. Nature 2011 474 7349 96 99 10.1038/nature09982 21552281
    [Google Scholar]
  81. Kuo W.T. Shen L. Zuo L. Shashikanth N. Ong M.L.D.M. Wu L. Zha J. Edelblum K.L. Wang Y. Wang Y. Nilsen S.P. Turner J.R. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression. Gastroenterology 2019 157 5 1323 1337 10.1053/j.gastro.2019.07.058 31401143
    [Google Scholar]
  82. Aalkjaer C. Boedtkjer E. Choi I. Lee S. Cation-coupled bicarbonate transporters. Compr. Physiol. 2014 4 4 1605 1637 10.1002/j.2040‑4603.2014.tb00581.x 25428855
    [Google Scholar]
  83. Omole O.O. Nappert G. Naylor J.M. Zello G.A. Both L- and D-lactate contribute to metabolic acidosis in diarrheic calves. J. Nutr. 2001 131 8 2128 2131 10.1093/jn/131.8.2128 11481406
    [Google Scholar]
  84. Meadows V. Kennedy L. Ekser B. Kyritsi K. Kundu D. Zhou T. Chen L. Pham L. Wu N. Demieville J. Hargrove L. Glaser S. Alpini G. Francis H. Mast cells regulate ductular reaction and intestinal inflammation in cholestasis through farnesoid X receptor signaling. Hepatology 2021 74 5 2684 2698 10.1002/hep.32028 34164827
    [Google Scholar]
  85. Li W.T. Luo Q.Q. Wang B. Chen X. Yan X.J. Qiu H.Y. Chen S.L. Bile acids induce visceral hypersensitivity via mucosal mast cell–to–nociceptor signaling that involves the farnesoid X receptor/nerve growth factor/transient receptor potential vanilloid 1 axis. FASEB J. 2019 33 2 2435 2450 10.1096/fj.201800935RR 30260705
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073395229250513074835
Loading
/content/journals/cchts/10.2174/0113862073395229250513074835
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: MC ; lncRNA-miRNA-mRNA ; ceRNA ; EA ; intestinal mucosal barrier ; IBS-D ; RNA-Seq
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test