Skip to content
2000
image of Identification of DNA Replication Stress-Related Genes as Prognostic Biomarkers for Bladder Cancer

Abstract

Introduction

Bladder cancer (BLCA) is a highly aggressive malignancy with poor prognosis. DNA replication stress-related genes (DRSGs) hold prognostic significance in multiple cancers, and their expression patterns in BLCA may reveal novel biomarkers and therapeutic targets.

Methods

This study was designed using a public database and the Cancer Genome Atlas (TCGA). Genes associated with DNA replication stress in BLCA were discovered by analyzing data from the TCGA and GEO databases using bioinformatics tools. The prognostic gene expression profiles in BLCA cell lines were analyzed using Western blotting (WB). The motility capacity of BLCA cells was evaluated using the wound healing and Transwell migration assays, while cell growth was ascertained with the CCK-8 assay.

Results

Five DRSGs with prognostic significance were identified, and a risk score model was constructed using univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm. Kaplan-Meier (KM) analysis showed worse Overall Survival (OS) in the high-risk group (P < 0.05). Gene Set Enrichment Analysis (GSEA) indicated involvement in tumor-related pathways. The nomogram effectively predicted OS in both training and validation cohorts. WB and functional assays confirmed gene expression and effects on BLCA cell proliferation and migration.

Discussion

This study first validates DRSGs’ prognostic value in bladder cancer, highlighting potential biomarkers and targets. Limitations include reliance on public data and tests. Future research should use multicenter cohorts and animal models to confirm clinical relevance.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073396305250526102508
2025-07-14
2025-09-05
Loading full text...

Full text loading...

References

  1. Dimitrov G. Mangaldzhiev R. Slavov C. Popov E. Contemporary molecular markers for predicting systemic treatment response in urothelial bladder cancer: A narrative review. Cancers 2024 16 17 3056 10.3390/cancers16173056 39272913
    [Google Scholar]
  2. Cañizo C.G. Guerrero-Ramos F. Perez Escavy M. Lodewijk I. Suárez-Cabrera C. Morales L. Nunes S.P. Munera-Maravilla E. Rubio C. Sánchez R. Rodriguez-Izquierdo M. Martínez de Villarreal J. Real F.X. Castellano D. Martín-Arriscado C. Lora Pablos D. Rodríguez Antolín A. Dueñas M. Paramio J.M. Martínez V.G. Characterisation of the tumour microenvironment and PD-L1 granularity reveals the prognostic value of cancer-associated myofibroblasts in non-invasive bladder cancer. OncoImmunology 2025 14 1 2438291 10.1080/2162402X.2024.2438291 39698899
    [Google Scholar]
  3. Ecke T.H. Le Calvez-Kelm F. van Poppel H. Why we need more attention on bladder cancer: Establishing policy recommendations for health care professionals and politicians. Eur. Urol. 2025 87 5 504 506 10.1016/j.eururo.2025.02.005 39979171
    [Google Scholar]
  4. Scilipoti P. Moschini M. Li R. Lerner S.P. Black P.C. Necchi A. Rouprêt M. Shariat S.F. Gupta S. Morgans A.K. Psutka S.P. Kamat A.M. The financial burden of localized and metastatic bladder cancer. Eur. Urol. 2025 87 5 536 550 10.1016/j.eururo.2024.12.002 39730299
    [Google Scholar]
  5. Ng K. Stenzl A. Sharma A. Vasdev N. Urinary biomarkers in bladder cancer: A review of the current landscape and future directions. Urol. Oncol. 2021 39 1 41 51 10.1016/j.urolonc.2020.08.016 32919875
    [Google Scholar]
  6. Razavi S. Khan A. Fu D.X. Mayer D. McConkey D. Putluri N. Siddiqui M.M. Metabolic landscape in bladder cancer. Curr. Opin. Oncol. 2025 37 3 259 266 10.1097/CCO.0000000000001137 40071441
    [Google Scholar]
  7. Kuret T. Kreft M.E. Veranič P. Čemažar M. Pavlin M. Jerman U.D. Phases of tight junction barrier disruption during transurothelial migration of invasive urothelial cancer cells. Sci. Rep. 2025 15 1 12975 10.1038/s41598‑025‑96267‑1 40234478
    [Google Scholar]
  8. Naim V. Understanding DNA replication and replication stress as avenues to combat cancer. Commun. Biol. 2024 7 1 1578 10.1038/s42003‑024‑07250‑x 39592851
    [Google Scholar]
  9. Maresca C. Dello Stritto A. D’Angelo C. Petti E. Rizzo A. Vertecchi E. Berardinelli F. Bonanni L. Sgura A. Antoccia A. Graziani G. Biroccio A. Salvati E. PARP1 allows proper telomere replication through TRF1 poly (ADP-ribosyl)ation and helicase recruitment. Commun. Biol. 2023 6 1 234 10.1038/s42003‑023‑04596‑6 36864251
    [Google Scholar]
  10. Gaillard H. García-Muse T. Aguilera A. Replication stress and cancer. Nat. Rev. Cancer 2015 15 5 276 289 10.1038/nrc3916 25907220
    [Google Scholar]
  11. Shaikh N. Mazzagatti A. De Angelis S. Johnson S.C. Bakker B. Spierings D.C.J. Wardenaar R. Maniati E. Wang J. Boemo M.A. Foijer F. McClelland S.E. Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses. Genome Biol. 2022 23 1 223 10.1186/s13059‑022‑02781‑0 36266663
    [Google Scholar]
  12. Burrell R.A. McClelland S.E. Endesfelder D. Groth P. Weller M.C. Shaikh N. Domingo E. Kanu N. Dewhurst S.M. Gronroos E. Chew S.K. Rowan A.J. Schenk A. Sheffer M. Howell M. Kschischo M. Behrens A. Helleday T. Bartek J. Tomlinson I.P. Swanton C. Replication stress links structural and numerical cancer chromosomal instability. Nature 2013 494 7438 492 496 10.1038/nature11935 23446422
    [Google Scholar]
  13. Tamura N. Shaikh N. Muliaditan D. Soliman T.N. McGuinness J.R. Maniati E. Moralli D. Durin M.A. Green C.M. Balkwill F.R. Wang J. Curtius K. McClelland S.E. Specific mechanisms of chromosomal instability indicate therapeutic sensitivities in high-grade serous ovarian carcinoma. Cancer Res. 2020 80 22 4946 4959 10.1158/0008‑5472.CAN‑19‑0852 32998996
    [Google Scholar]
  14. Ruiz S. Lopez-Contreras A.J. Gabut M. Marion R.M. Gutierrez-Martinez P. Bua S. Ramirez O. Olalde I. Rodrigo-Perez S. Li H. Marques-Bonet T. Serrano M. Blasco M.A. Batada N.N. Fernandez-Capetillo O. Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nat. Commun. 2015 6 1 8036 10.1038/ncomms9036 26292731
    [Google Scholar]
  15. Miron K. Golan-Lev T. Dvir R. Ben-David E. Kerem B. Oncogenes create a unique landscape of fragile sites. Nat. Commun. 2015 6 1 7094 10.1038/ncomms8094 25959793
    [Google Scholar]
  16. Jones R.M. Mortusewicz O. Afzal I. Lorvellec M. García P. Helleday T. Petermann E. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene 2013 32 32 3744 3753 10.1038/onc.2012.387 22945645
    [Google Scholar]
  17. Bartkova J. Hořejší Z. Koed K. Krämer A. Tort F. Zieger K. Guldberg P. Sehested M. Nesland J.M. Lukas C. Ørntoft T. Lukas J. Bartek J. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005 434 7035 864 870 10.1038/nature03482 15829956
    [Google Scholar]
  18. Di Micco R. Fumagalli M. Cicalese A. Piccinin S. Gasparini P. Luise C. Schurra C. Garre’ M. Giovanni Nuciforo P. Bensimon A. Maestro R. Giuseppe Pelicci P. d’Adda di Fagagna F. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006 444 7119 638 642 10.1038/nature05327 17136094
    [Google Scholar]
  19. Bester A.C. Roniger M. Oren Y.S. Im M.M. Sarni D. Chaoat M. Bensimon A. Zamir G. Shewach D.S. Kerem B. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011 145 3 435 446 10.1016/j.cell.2011.03.044 21529715
    [Google Scholar]
  20. Foskolou I.P. Jorgensen C. Leszczynska K.B. Olcina M.M. Tarhonskaya H. Haisma B. D’Angiolella V. Myers W.K. Domene C. Flashman E. Hammond E.M. Ribonucleotide reductase requires subunit switching in hypoxia to maintain DNA replication. Mol. Cell 2017 66 2 206 220.e9 10.1016/j.molcel.2017.03.005 28416140
    [Google Scholar]
  21. Kotsantis P. Petermann E. Boulton S.J. Mechanisms of oncogene-induced replication stress: Jigsaw falling into place. Cancer Discov. 2018 8 5 537 555 10.1158/2159‑8290.CD‑17‑1461 29653955
    [Google Scholar]
  22. Khamidullina A.I. Abramenko Y.E. Bruter A.V. Tatarskiy V.V. Key proteins of replication stress response and cell cycle control as cancer therapy targets. Int. J. Mol. Sci. 2024 25 2 1263 10.3390/ijms25021263 38279263
    [Google Scholar]
  23. Said M. Barra V. Balzano E. Talhaoui I. Pelliccia F. Giunta S. Naim V. FANCD2 promotes mitotic rescue from transcription-mediated replication stress in SETX-deficient cancer cells. Commun. Biol. 2022 5 1 1395 10.1038/s42003‑022‑04360‑2 36543851
    [Google Scholar]
  24. Wang C. Zhao Z. Zhao Y. Zhao J. Xia L. Xia Q. Macroscopic inhibition of DNA damage repair pathways by targeting AP-2α with LEI110 eradicates hepatocellular carcinoma. Commun. Biol. 2024 7 1 342 10.1038/s42003‑024‑05939‑7 38503825
    [Google Scholar]
  25. Colaprico A. Silva T.C. Olsen C. Garofano L. Cava C. Garolini D. Sabedot T.S. Malta T.M. Pagnotta S.M. Castiglioni I. Ceccarelli M. Bontempi G. Noushmehr H. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016 44 8 71 10.1093/nar/gkv1507 26704973
    [Google Scholar]
  26. Huang R.H. Hong Y.K. Du H. Ke W.Q. Lin B.B. Li Y.L. A machine learning framework develops a DNA replication stress model for predicting clinical outcomes and therapeutic vulnerability in primary prostate cancer. J. Transl. Med. 2023 21 1 20 10.1186/s12967‑023‑03872‑7 36635710
    [Google Scholar]
  27. Dreyer S.B. Upstill-Goddard R. Paulus-Hock V. Paris C. Lampraki E.M. Dray E. Serrels B. Caligiuri G. Rebus S. Plenker D. Galluzzo Z. Brunton H. Cunningham R. Tesson M. Nourse C. Bailey U.M. Jones M. Moran-Jones K. Wright D.W. Duthie F. Oien K. Evers L. McKay C.J. McGregor G.A. Gulati A. Brough R. Bajrami I. Pettitt S. Dziubinski M.L. Candido J. Balkwill F. Barry S.T. Grützmann R. Rahib L. Johns A. Pajic M. Froeling F.E.M. Beer P. Musgrove E.A. Petersen G.M. Ashworth A. Frame M.C. Crawford H.C. Simeone D.M. Lord C. Mukhopadhyay D. Pilarsky C. Tuveson D.A. Cooke S.L. Jamieson N.B. Morton J.P. Sansom O.J. Bailey P.J. Biankin A.V. Chang D.K. Allison S. Bailey P.J. Bailey U-M. Biankin A.V. Beraldi D. Brunton H. Caligiuri G. Cameron E. Chang D.K. Cooke S.L. Cunningham R. Dreyer S. Grimwood P. Kelly S. Lampraki E-M. Marshall J. Martin S. McDade B. McElroy D. Musgrove E.A. Nourse C. Paulus-Hock V. Ramsay D. Upstill-Goddard R. Wright D. Jones M.D. Evers L. Rebus S. Rahib L. Serrels B. Hair J. Jamieson N.B. McKay C.J. Westwood P. Williams N. Duthie F. Biankin A.V. Johns A.L. Mawson A. Chang D.K. Scarlett C.J. Brancato M-A.L. Rowe S.J. Simpson S.H. Martyn-Smith M. Thomas M.T. Chantrill L.A. Chin V.T. Chou A. Cowley M.J. Humphris J.L. Jones M.D. Mead R.S. Nagrial A.M. Pajic M. Pettit J. Pinese M. Rooman I. Wu J. Tao J. DiPietro R. Watson C. Steinmann A. Lee H.C. Wong R. Pinho A.V. Giry-Laterriere M. Daly R.J. Musgrove E.A. Sutherland R.L. Grimmond S.M. Waddell N. Kassahn K.S. Miller D.K. Wilson P.J. Patch A-M. Song S. Harliwong I. Idrisoglu S. Nourse C. Nourbakhsh E. Manning S. Wani S. Gongora M. Anderson M. Holmes O. Leonard C. Taylor D. Wood S. Xu C. Nones K. Fink J.L. Christ A. Bruxner T. Cloonan N. Newell F. Pearson J.V. Bailey P. Quinn M. Nagaraj S. Kazakoff S. Waddell N. Krisnan K. Quek K. Wood D. Samra J.S. Gill A.J. Pavlakis N. Guminski A. Toon C. Asghari R. Merrett N.D. Pavey D. Das A. Cosman P.H. Ismail K. O’Connnor C. Lam V.W. McLeod D. Pleass H.C. Richardson A. James V. Kench J.G. Cooper C.L. Joseph D. Sandroussi C. Crawford M. Gallagher J. Texler M. Forest C. Laycock A. Epari K.P. Ballal M. Fletcher D.R. Mukhedkar S. Spry N.A. DeBoer B. Chai M. Zeps N. Beilin M. Feeney K. Nguyen N.Q. Ruszkiewicz A.R. Worthley C. Tan C.P. Debrencini T. Chen J. Brooke-Smith M.E. Papangelis V. Tang H. Barbour A.P. Clouston A.D. Martin P. O’Rourke T.J. Chiang A. Fawcett J.W. Slater K. Yeung S. Hatzifotis M. Hodgkinson P. Christophi C. Nikfarjam M. Mountain A. Biobank V.C. Eshleman J.R. Hruban R.H. Maitra A. Iacobuzio-Donahue C.A. Schulick R.D. Wolfgang C.L. Morgan R.A. Hodgin M. Scarpa A. Lawlor R.T. Beghelli S. Corbo V. Scardoni M. Bassi C. Tempero M.A. Biankin A.V. Grimmond S.M. Chang D.K. Musgrove E.A. Jones M.D. Nourse C. Jamieson N.B. Graham J.S. Biankin A.V. Chang D.K. Jamieson N.B. Graham J.S. Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology 2021 160 1 362 377.e13 10.1053/j.gastro.2020.09.043 33039466
    [Google Scholar]
  28. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  29. Langfelder P. Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  30. Ru B. Wong C.N. Tong Y. Zhong J.Y. Zhong S.S.W. Wu W.C. Chu K.C. Wong C.Y. Lau C.Y. Chen I. Chan N.W. Zhang J. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics 2019 35 20 4200 4202 10.1093/bioinformatics/btz210 30903160
    [Google Scholar]
  31. Maeser D. Gruener R.F. Huang R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021 22 6 bbab260 10.1093/bib/bbab260 34260682
    [Google Scholar]
  32. Di Spirito A. Balkhi S. Vivona V. Mortara L. Key immune cells and their crosstalk in the tumor microenvironment of bladder cancer: Insights for innovative therapies. Explor. Target. Antitumor Ther. 2025 6 1002304 10.37349/etat.2025.1002304 40177538
    [Google Scholar]
  33. Burns C.P. Parker J.M. Schaap D.M. Wakefield M.R. Fang Y. From bench to bladder: The rise in immune checkpoint inhibition in the treatment of non-muscle invasive bladder cancer. Cancers 2025 17 7 1135 10.3390/cancers17071135 40227644
    [Google Scholar]
  34. brown; Pichurin, J.; Parrado, C.R.; Kabeche, L.; Baserga, S.J. A role for the kinetochore protein, NUF2, in ribosome biogenesis. Mol. Biol. Cell 2025 36 2 ar16 10.1091/mbc.E24‑08‑0337 39705402
    [Google Scholar]
  35. Chen J. Luo J. He J. Jiang X. Jiang N. Yang C. Zhong S. Cell cycle‐related gene spc24: A novel potential diagnostic and prognostic biomarker for laryngeal squamous cell cancer. BioMed Res. Int. 2023 2023 1 1733100 10.1155/2023/1733100 36718148
    [Google Scholar]
  36. Yue H. Wu K. Liu K. Gou L. Huang A. Tang H. LINC02154 promotes the proliferation and metastasis of hepatocellular carcinoma by enhancing SPC24 promoter activity and activating the PI3K-AKT signaling pathway. Cell. Oncol. 2022 45 3 447 462 10.1007/s13402‑022‑00676‑7 35543858
    [Google Scholar]
  37. Han W. Chen L. PRR11 in malignancies: Biological activities and targeted therapies. Biomolecules 2022 12 12 1800 10.3390/biom12121800 36551227
    [Google Scholar]
  38. Wang L. Kou Z. Zhu J. Zhu X. Gao L. Zhu H. PRR11 promotes bladder cancer growth and metastasis by facilitating G1 /s progression and epithelial‐mesenchymal transition. Cancer Med. 2025 14 5 70749 10.1002/cam4.70749 40062654
    [Google Scholar]
  39. Thomas A.F. Kelly G.L. Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ. 2022 29 5 961 971 10.1038/s41418‑022‑00996‑z 35396345
    [Google Scholar]
  40. Wu X. Wang H. Lian Y. Chen L. Gu L. Wang J. Huang Y. Deng M. Gao Z. Huang Y. GTSE1 promotes cell migration and invasion by regulating EMT in hepatocellular carcinoma and is associated with poor prognosis. Sci. Rep. 2017 7 1 5129 10.1038/s41598‑017‑05311‑2 28698581
    [Google Scholar]
  41. Sangaletti S. Chiodoni C. Tripodo C. Colombo M.P. The good and bad of targeting cancer-associated extracellular matrix. Curr. Opin. Pharmacol. 2017 35 75 82 10.1016/j.coph.2017.06.003 28734136
    [Google Scholar]
  42. Long Y. Niu Y. Liang K. Du Y. Mechanical communication in fibrosis progression. Trends Cell Biol. 2022 32 1 70 90 10.1016/j.tcb.2021.10.002 34810063
    [Google Scholar]
  43. Schaller M.D. Borgman C.A. Cobb B.S. Vines R.R. Reynolds A.B. Parsons J.T. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl. Acad. Sci. USA 1992 89 11 5192 5196 10.1073/pnas.89.11.5192 1594631
    [Google Scholar]
  44. Zhao J. Guan J.L. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009 28 1-2 35 49 10.1007/s10555‑008‑9165‑4 19169797
    [Google Scholar]
  45. Béraud C. Dormoy V. Danilin S. Lindner V. Béthry A. Hochane M. Coquard C. Barthelmebs M. Jacqmin D. Lang H. Massfelder T. Targeting FAK scaffold functions inhibits human renal cell carcinoma growth. Int. J. Cancer 2015 137 7 1549 1559 10.1002/ijc.29522 25809490
    [Google Scholar]
  46. Pylayeva Y. Gillen K.M. Gerald W. Beggs H.E. Reichardt L.F. Giancotti F.G. Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J. Clin. Invest. 2009 119 2 252 266 10.1172/JCI37160 19147981
    [Google Scholar]
  47. Zhang R. Liu Q. Li T. Liao Q. Zhao Y. Role of the complement system in the tumor microenvironment. Cancer Cell Int. 2019 19 1 300 10.1186/s12935‑019‑1027‑3 31787848
    [Google Scholar]
  48. Mandoj C. Pizzuti L. Sergi D. Sperduti I. Mazzotta M. Di Lauro L. Amodio A. Carpano S. Di Benedetto A. Botti C. Ferranti F. Antenucci A. D’Alessandro M.G. Marchetti P. Tomao S. Sanguineti G. Giordano A. Maugeri-Saccà M. Ciliberto G. Conti L. Vici P. Barba M. Observational study of coagulation activation in early breast cancer: Development of a prognostic model based on data from the real world setting. J. Transl. Med. 2018 16 1 129 10.1186/s12967‑018‑1511‑x 29769125
    [Google Scholar]
  49. Markiewski M.M. Nilsson B. Nilsson Ekdahl K. Mollnes T.E. Lambris J.D. Complement and coagulation: Strangers or partners in crime? Trends Immunol. 2007 28 4 184 192 10.1016/j.it.2007.02.006 17336159
    [Google Scholar]
  50. Gong Z. He Y. Mi X. Li C. Sun X. Wang G. Li L. Han Y. Xu C. Wang W. Cai S. Wang L. Liu Z. Complement and coagulation cascades pathway-related signature as a predictor of immunotherapy in metastatic urothelial cancer. Aging (Albany NY) 2023 15 18 9479 9498 10.18632/aging.205022 37747262
    [Google Scholar]
  51. Ashton T.M. McKenna W.G. Kunz-Schughart L.A. Higgins G.S. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. 2018 24 11 2482 2490 10.1158/1078‑0432.CCR‑17‑3070 29420223
    [Google Scholar]
  52. Greene J. Segaran A. Lord S. Targeting OXPHOS and the electron transport chain in cancer; Molecular and therapeutic implications. Semin. Cancer Biol. 2022 86 Pt 2 851 859 10.1016/j.semcancer.2022.02.002 35122973
    [Google Scholar]
  53. Hernández-Reséndiz I. Gallardo-Pérez J.C. López-Macay A. Robledo-Cadena D.X. García-Villa E. Gariglio P. Saavedra E. Moreno-Sánchez R. Rodríguez-Enríquez S. Mutant p53 R248Q downregulates oxidative phosphorylation and upregulates glycolysis under normoxia and hypoxia in human cervix cancer cells. J. Cell. Physiol. 2019 234 5 5524 5536 10.1002/jcp.27354 30272821
    [Google Scholar]
  54. Krasnov G.S. Dmitriev A.A. Snezhkina A.V. Kudryavtseva A.V. Deregulation of glycolysis in cancer: Glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Expert Opin. Ther. Targets 2013 17 6 681 693 10.1517/14728222.2013.775253 23445303
    [Google Scholar]
  55. Heras-Murillo I. Mañanes D. Munné P. Núñez V. Herrera J. Catalá-Montoro M. Alvarez M. del Pozo M.A. Melero I. Wculek S.K. Sancho D. Immunotherapy with conventional type-1 dendritic cells induces immune memory and limits tumor relapse. Nat. Commun. 2025 16 1 3369 10.1038/s41467‑025‑58289‑1 40204706
    [Google Scholar]
  56. Hornsteiner F. Vierthaler J. Strandt H. Resag A. Fu Z. Ausserhofer M. Tripp C.H. Dieckmann S. Kanduth M. Farrand K. Bregar S. Nemati N. Hermann-Kleiter N. Seretis A. Morla S. Mullins D. Finotello F. Trajanoski Z. Wollmann G. Ronchese F. Schmitz M. Hermans I.F. Stoitzner P. Tumor-targeted therapy with BRAF-inhibitor recruits activated dendritic cells to promote tumor immunity in melanoma. J. Immunother. Cancer 2024 12 4 008606 10.1136/jitc‑2023‑008606 38631706
    [Google Scholar]
  57. Fu G. Wu Y. Zhao G. Chen X. Xu Z. Sun J. Tian J. Cheng Z. Shi Y. Jin B. Activation of cGAS-STING signal to inhibit the proliferation of bladder cancer: The immune effect of cisplatin. Cells 2022 11 19 3011 10.3390/cells11193011 36230972
    [Google Scholar]
  58. Rojas-Diaz J.M. Solorzano-Ibarra F. Garcia-Barrientos N.T. Klimov-Kravtchenko K. Guitron-Aviña M.S. Cruz-Ramos J.A. Ortiz-Lazareno P.C. Urciaga-Gutierrez P.I. Bueno-Topete M.R. Garcia-Chagollan M. Haramati J. del Toro-Arreola S. Uncovering the expression pattern of the costimulatory receptors ICOS, 4-1BB, and OX-40 in exhausted peripheral and tumor-infiltrating natural killer cells from patients with cervical cancer. Int. J. Mol. Sci. 2024 25 16 8775 10.3390/ijms25168775 39201462
    [Google Scholar]
  59. Cruz S.M. Sholevar C.J. Judge S.J. Darrow M.A. Iranpur K.R. Farley L.E. Lammers M. Razmara A.M. Dunai C. Gingrich A.A. Persky J. Mori H. Thorpe S.W. Monjazeb A.M. Murphy W.J. Canter R.J. Intratumoral NKp46+ natural killer cells are spatially distanced from T and MHC-I+ cells with prognostic implications in soft tissue sarcoma. Front. Immunol. 2023 14 1230534 10.3389/fimmu.2023.1230534 37545516
    [Google Scholar]
  60. Tenuta M. Pandozzi C. Sciarra F. Campolo F. Gelibter A.J. Sirgiovanni G. Cortesi E. Lenzi A. Isidori A.M. Sbardella E. Venneri M.A. Circulating natural killer cells as prognostic value for non-small-cell lung cancer patients treated with immune checkpoint inhibitors: Correlation with sarcopenia. Cancers 2023 15 14 3592 10.3390/cancers15143592 37509255
    [Google Scholar]
  61. Mukherjee N. Ji N. Tan X. Chen C.L. Noel O.D.V. Rodriguez-Padron M. Lin C.L. Alonzo D.G. Huang T.H. Svatek R.S. KLRF1, a novel marker of CD56 bright NK cells, predicts improved survival for patients with locally advanced bladder cancer. Cancer Med. 2023 12 7 8970 8980 10.1002/cam4.5579 36583228
    [Google Scholar]
  62. Mukherjee N. Ji N. Hurez V. Curiel T.J. Montgomery M.O. Braun A.J. Nicolas M. Aguilera M. Kaushik D. Liu Q. Ruan J. Kendrick K.A. Svatek R.S. Intratumoral CD56bright natural killer cells are associated with improved survival in bladder cancer. Oncotarget 2018 9 92 36492 36502 10.18632/oncotarget.26362 30559932
    [Google Scholar]
  63. Salomé B. Sfakianos J.P. Ranti D. Daza J. Bieber C. Charap A. Hammer C. Banchereau R. Farkas A.M. Ruan D.F. Izadmehr S. Geanon D. Kelly G. de Real R.M. Lee B. Beaumont K.G. Shroff S. Wang Y.A. Wang Y. Thin T.H. Garcia-Barros M. Hegewisch-Solloa E. Mace E.M. Wang L. O’Donnell T. Chowell D. Fernandez-Rodriguez R. Skobe M. Taylor N. Kim-Schulze S. Sebra R.P. Palmer D. Clancy-Thompson E. Hammond S. Kamphorst A.O. Malmberg K.J. Marcenaro E. Romero P. Brody R. Viard M. Yuki Y. Martin M. Carrington M. Mehrazin R. Wiklund P. Mellman I. Mariathasan S. Zhu J. Galsky M.D. Bhardwaj N. Horowitz A. NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer. Cancer Cell 2022 40 9 1027 1043.e9 10.1016/j.ccell.2022.08.005 36099881
    [Google Scholar]
  64. Chowell D. Krishna C. Pierini F. Makarov V. Rizvi N.A. Kuo F. Morris L.G.T. Riaz N. Lenz T.L. Chan T.A. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat. Med. 2019 25 11 1715 1720 10.1038/s41591‑019‑0639‑4 31700181
    [Google Scholar]
  65. Tognarelli E.I. Gutiérrez-Vera C. Palacios P.A. Pasten-Ferrada I.A. Aguirre-Muñoz F. Cornejo D.A. González P.A. Carreño L.J. Natural killer T cell diversity and immunotherapy. Cancers 2023 15 24 5737 10.3390/cancers15245737 38136283
    [Google Scholar]
  66. Wang Z. Yang Z. Qu C. Li J. Wang X. Natural killer cells strengthen antitumor activity of cisplatin by immunomodulation and ameliorate cisplatin-induced side effects. Int. Urol. Nephrol. 2023 55 8 1957 1970 10.1007/s11255‑023‑03650‑w 37253929
    [Google Scholar]
  67. Aller M.A. Arias A. Arias J.I. Arias, J. Carcinogenesis: The cancer cell–mast cell connection. Inflamm. Res. 2019 68 2 103 116 10.1007/s00011‑018‑1201‑4 30460391
    [Google Scholar]
  68. Shu F. Yu J. Liu Y. Wang F. Gou G. Wen M. Luo C. Lu X. Hu Y. Du Q. Xu J. Xie R. Mast cells: Key players in digestive system tumors and their interactions with immune cells. Cell Death Discov. 2025 11 1 8 10.1038/s41420‑024‑02258‑y 39814702
    [Google Scholar]
  69. Derakhshani A. Vahidian F. Alihasanzadeh M. Mokhtarzadeh A. Lotfi Nezhad P. Baradaran B. Mast cells: A double-edged sword in cancer. Immunol. Lett. 2019 209 28 35 10.1016/j.imlet.2019.03.011 30905824
    [Google Scholar]
  70. Han R. Gu S. Zhang Y. Luo A. Jing X. Zhao L. Zhao X. Zhang L. Estrogen promotes progression of hormone-dependent breast cancer through CCL2-CCR2 axis by upregulation of Twist via PI3K/AKT/NF-κB signaling. Sci. Rep. 2018 8 1 9575 10.1038/s41598‑018‑27810‑6 29934505
    [Google Scholar]
  71. Brea-Iglesias J. Gallardo-Gómez M. Oitabén A. Lázaro-Quintela M.E. León L. Alves J.M. Pino-González M. Juaneda-Magdalena L. García-Benito C. Abdulkader I. Muinelo L. Paramio J.M. Martínez-Fernández M. Genomics guiding personalized first-line immunotherapy response in lung and bladder tumors. J. Transl. Med. 2025 23 1 404 10.1186/s12967‑025‑06323‑7 40188131
    [Google Scholar]
  72. Sawant A. Shi F. Cararo Lopes E. Hu Z. Abdelfattah S. Baul J. Powers J.R. Hinrichs C.S. Rabinowitz J.D. Chan C.S. Lattime E.C. Ganesan S. White E.P. Immune checkpoint blockade delays cancer development and extends survival in DNA polymerase mutator syndromes. Cancer Res. 2025 85 6 1130 1144 10.1158/0008‑5472.CAN‑24‑2589 39786467
    [Google Scholar]
  73. Ishiguro T. Takeda K. Takayanagi D. Mura E. Suzuki R. Tsurui T. Iriguchi N. Hirasawa Y. Ohkuma R. Shimokawa M. Ariizumi H. Kubota Y. Horiike A. Izumizaki M. Wada S. Yoshimura K. Hoffman R.M. Tsunoda T. Immune stress-induced tumor mutation burden and neoantigen expression in 4t1 mammary cancer cells: A potential mechanism for long-term survival in patients treated with immune checkpoint inhibitors. Cancer Genom. Prot. 2025 22 1 1 12 10.21873/cgp.20481 39730175
    [Google Scholar]
  74. Wang X. Lamberti G. Di Federico A. Alessi J. Ferrara R. Sholl M.L. Awad M.M. Vokes N. Ricciuti B. Tumor mutational burden for the prediction of PD-(L)1 blockade efficacy in cancer: Challenges and opportunities. Ann. Oncol. 2024 35 6 508 522 10.1016/j.annonc.2024.03.007 38537779
    [Google Scholar]
  75. Peng Y. Qi X. Ding L. Huang J. Liu Y. Zheng R. Fu Y. Yin L. Deng T. Ye Y. Chen S. Li X. SKP2 inhibition activates tumor cell-intrinsic immunity by inducing DNA replication stress and genomic instability. Br. J. Cancer 2025 132 1 81 92 10.1038/s41416‑024‑02909‑y 39582087
    [Google Scholar]
  76. Qin Y. Zu X. Li Y. Han Y. Tan J. Cai C. Shen E. Liu P. Deng G. Feng Z. Wu W. Peng Y. Liu Y. Ma J. Zeng S. Chen Y. Shen H. A cancer-associated fibroblast subtypes-based signature enables the evaluation of immunotherapy response and prognosis in bladder cancer. iScience 2023 26 9 107722 10.1016/j.isci.2023.107722 37694141
    [Google Scholar]
  77. Abdel-Hafiz H.A. Kailasam Mani S.K. Huang W. Gouin K.H. Chang Y. Xiao T. Ma Q. Li Z. Knott S.R.V. Theodorescu D. Single-cell profiling of murine bladder cancer identifies sex-specific transcriptional signatures with prognostic relevance. iScience 2023 26 9 107703 10.1016/j.isci.2023.107703 37701814
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073396305250526102508
Loading
/content/journals/cchts/10.2174/0113862073396305250526102508
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test