Skip to content
2000
image of Antimicrobial Activities of Five Different Soap Types Combined with an Extract from Eucalyptus camaldulensis

Abstract

Introduction

Soaps are vital for preserving our health and personal hygiene since they not only eliminate germs but also rid the body of pollutants.

Method

The current study aims to determine the physicochemical and antibacterial properties of Eucalyptus camaldulensis leaves using the agar disc diffusion technique and assess the effectiveness of different branded liquid soaps (25 mg/ml, 50 mg/ml, 75 mg/ml, and 100 mg/ml) with the Eucalyptus leaf extract against skin-infecting human pathogenic bacteria.

Results

The combined antimicrobial susceptibility of E. camaldulensis and five liquid soaps showed an inhibition zone of 17.67±0.58, 13.33±0.58, 12.67±0.58, and 15.67±0.58 against Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, and Escherichia coli. The antibacterial properties of Av soap by itself did not work against S. pyogenes. Nevertheless, the extract and DI together showed a detrimental effect against S. aureus and P. aeruginosa, with no halo forming.

Discussion

The absence of inhibition zones for the extract combined with DI against S. aureus and P. aeruginosa may indicate antagonistic interactions or reduced efficacy in that formulation. Overall, the data highlight the potential of E. camaldulensis to improve the antimicrobial properties of commercial soaps, though the effectiveness varies with microbial strain and formulation.

Conclusion

Antimicrobial activity was observed to increase with higher concentrations of the soap-extract combinations. Although liquid soap (seve) was effective against bacterial isolates, a combination of eucalyptus and aqua vera was shown to be more effective.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073381870250523035135
2025-06-12
2025-10-31
Loading full text...

Full text loading...

References

  1. Chaudhari V.M. Studies on antimicrobial activity of antiseptic soaps and herbal soaps against selected human pathogens. J. Sci. Innov. Res. 2016 5 6 201 204 10.31254/jsir.2016.5601
    [Google Scholar]
  2. Pan M. Lei Q. Zang N. Zhang H. A strategy based on GC-MS/MS, UPLC-MS/MS and virtual molecular docking for analysis and prediction of bioactive compounds in Eucalyptus globulus leaves. Int. J. Mol. Sci. 2019 20 16 3875 10.3390/ijms20163875 31398935
    [Google Scholar]
  3. AlMatar M. Makky E.A. Mahmood M.H. Wen K.X. Qi T.B.G. In vitro antioxidant and antimicrobial studies of ethanolic plant extracts of P. granatum, O. stamineus, A. bilimbi, M. nigra, and E. longifolia. Curr. Pharm. Biotechnol. 2022 23 10 1284 1312 10.2174/1389201022666210615113854 34132178
    [Google Scholar]
  4. Ali M.J. Makky E.A. Zareen S. Yusoff M.M. Identification of bioactive phytochemicals using GC–mass and TLC to the estimation of antimicrobial susceptibility of plant extracts. J. Phys. Conf. Ser. 2019 1294 6 062013 10.1088/1742‑6596/1294/6/062013
    [Google Scholar]
  5. Lis-Balchin M. Hart S.L. Deans S.G. Pharmacological and antimicrobial studies on different tea-tree oils (Melaleuca alternifolia, Leptospermum scoparium or Manuka and Kunzea ericoides or Kanuka), originating in Australia and New Zealand. Phytother. Res. 2000 14 8 623 629 10.1002/1099‑1573(200012)14:8<623:AID‑PTR763>3.0.CO;2‑Z 11114000
    [Google Scholar]
  6. Friedman M. Wolf R. Chemistry of soaps and detergents: Various types of commercial products and their ingredients. Clin. Dermatol. 1996 14 1 7 13 10.1016/0738‑081X(95)00102‑L 8901393
    [Google Scholar]
  7. Solanki R. Treatment of skin diseases through medicinal plants in different regions of the world. Int. J. Biomed. Res. 2011 2 1 73 10.7439/ijbr.v2i1.82
    [Google Scholar]
  8. Saikia A.P. Ryakala V.K. Sharma P. Goswami P. Bora U. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J. Ethnopharmacol. 2006 106 2 149 157 10.1016/j.jep.2005.11.033 16473486
    [Google Scholar]
  9. Getradeghana B. Evaluation of African traditional soap. Glob. J. Pure Appl. Sci. 2000 6 174 179
    [Google Scholar]
  10. Fluit A.C. Schmitz F.J. Verhoef J. Group E.S.P. Frequency of isolation of pathogens from bloodstream, nosocomial pneumonia, skin and soft tissue, and urinary tract infections occurring in European patients. Eur J. Clin. Microbiol. Infect. Dis., 2001 20 3 0188 0191 10.1007/s100960100455 11347669
    [Google Scholar]
  11. Higaki S. Kitagawa T. Kagoura M. Morohashi M. Yamagishi T. Predominant Staphylococcus aureus isolated from various skin diseases. J. Int. Med. Res. 2000 28 4 187 190 10.1177/147323000002800404 11014326
    [Google Scholar]
  12. Ali M. Obaid R. Obaid R. Antibacterial activity for acne treatment through medicinal plants extracts: Novel alternative therapies for acne. J. Pure Appl. Microbiol. 2019 13 2 1245 1250 10.22207/JPAM.13.2.66
    [Google Scholar]
  13. Makky E.A. Wen C.C. Ali M.J. Evaluation of antibacterial susceptibility pattern of cellulolytic bacteria isolated from Coptotermes curvignathus gut to heavy metals, disinfectants and common antibiotics for termite control. J. Indian Acad. Wood Sci. 2018 15 1 105 113 10.1007/s13196‑018‑0214‑5
    [Google Scholar]
  14. Makky E.A. Ali M.J. Yusoff M.M. EDP Sciences 2018
    [Google Scholar]
  15. Ali M.J. Makky E.A. Yusoff M.M. Impact of antimicrobial agents on bacterial isolates from dental decay. ARPN J. Eng. Appl. Sci. 2006 11 16 9689 9693
    [Google Scholar]
  16. Hossain T.J. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur. J. Microbiol. Immunol. (Bp.) 2024 14 2 97 115 10.1556/1886.2024.00035 38648108
    [Google Scholar]
  17. Jaradat N. Al-Maharik N. Hawash M. Qadi M. Issa L. Anaya R. Daraghmeh A. Hijleh L. Daraghmeh T. Alyat A. Aboturabi R. Eucalyptus camaldulensis Dehnh leaf essential oil from Palestine exhibits antimicrobial and antioxidant activity but no effect on porcine pancreatic lipase and α-amylase. Plants 2023 12 22 3805 10.3390/plants12223805 38005702
    [Google Scholar]
  18. Cheng J.Y. Ngok K. Huang Y. Multinational corporations, global civil society and Chinese labour: Workers’ solidarity in China in the era of globalization. Econ. Ind. Democracy 2012 33 3 379 401 10.1177/0143831X11411325
    [Google Scholar]
  19. Tsiri D. Kretsi O. Chinou I.B. Spyropoulos C.G. Composition of fruit volatiles and annual changes in the volatiles of leaves of Eucalyptus camaldulensis Dehn. growing in Greece. Flavour Fragrance J. 2003 18 3 244 247 10.1002/ffj.1220
    [Google Scholar]
  20. Abubakar E-M.M. Antibacterial potential of crude leaf extracts of Eucalyptus camaldulensis against some pathogenic bacteria. Afr. J. Plant Sci. 2010 4 202 209
    [Google Scholar]
  21. Aleksic Sabo V. Knezevic P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind. Crops Prod. 2019 132 413 429 10.1016/j.indcrop.2019.02.051 32288268
    [Google Scholar]
  22. Arhin R.E. Gordon A. Nuhu Y. Boakye E.E. Owusu I. Oppong-Mensah J. Alhassan S. Physicochemical and antibacterial properties of Myristica fragrans and Syzygium aromaticum methanolic extract soap formulations. J. Chem. 2024 2024 1 2457296 10.1155/2024/2457296
    [Google Scholar]
  23. Vivian O.P. Nathan O. Osano A. Mesopirr L. Omwoyo W.N. Assessment of the physicochemical properties of selected commercial soaps manufactured and sold in Kenya. Open J. Appl. Sci. 2014 4 8 433 440 10.4236/ojapps.2014.48040
    [Google Scholar]
  24. Silva A.C.N. Vasconcelos Júnior A.A. Cunha F.A. Cunha M.C.S.O. Menezes E.A. Susceptibility testing of Candida albicans by disk diffusion method: A comparison of the culture media used. Rev. Bras Análises Clínicas 2016 48 4 363 369 10.21877/2448‑3877.201600209
    [Google Scholar]
  25. Santos C.J. Junior Lins F.C.C.O. Santos P.O. Silva V.B. Barros Y.V.R. Araújo M.A.S. Rocha T.J.M. Souza A.K.P. Evaluation of antibacterial and antifungal activity of antimicrobial soaps. Braz. J. Biol. 2022 82 e263364 [PMID: 36228285
    [Google Scholar]
  26. Chaves T.P. Pinheiro R.E.E. Melo E.S. Soares M.J.S. Souza J.S.N. Andrade T.B. Lemos T.L.G. Coutinho H.D.M. Essential oil of Eucalyptus camaldulensis Dehn potentiates β-lactam activity against Staphylococcus aureus and Escherichia coli resistant strains. Ind. Crops Prod. 2018 112 70 74 10.1016/j.indcrop.2017.10.048
    [Google Scholar]
  27. Lukac P.J. Bonomo R.A. Logan L.K. Extended-spectrum β-lactamase-producing Enterobacteriaceae in children: Old foe, emerging threat. Clin. Infect. Dis. 2015 60 9 1389 1397 10.1093/cid/civ020 25595742
    [Google Scholar]
  28. Wijayawardhana N. Cooray D. Jayasuriya B. Uluwaduge I. Meedin F. Arawwawala M. Antimicrobial activity of a combination of three natural plant extracts and development of a herbal soap. Pharm. Sci. Asia 2021 48 6 523 534 10.29090/psa.2021.06.21.031
    [Google Scholar]
  29. Toigo L. Valdez R.H. Falconi F.A. Mizuta H.T.T. Antimicrobial activity of alcohol gel. Braz J. Dev. 2020 6 7 49558 49571 10.34117/bjdv6n7‑560
    [Google Scholar]
  30. Costa A.D.C. Leite H.W.S. Santos L.C. Amorim M.S. Silva K.M.R. Araújo E.T.H. In vitro antimicrobial effects of liquid soaps containing triclosan against Escherichia coli and Staphylococcus aureus strains. Rev. Prev Infecç Saúde 2018 4 7060 10.26694/repis.v4i0.7060
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073381870250523035135
Loading
/content/journals/cchts/10.2174/0113862073381870250523035135
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: GC Mass ; Skin hygiene ; P. aeruginosa ; antibacterial ; Eucalyptus ; S. aureus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test