Skip to content
2000
image of Mechanisms of Propolis Ethanol Extracts to Alleviate Sarcopenia based on Network Pharmacology and Experimental Validation

Abstract

Introduction

Sarcopenia (Sar) is an age-related loss of muscle mass and function. Propolis, a natural product with anti-inflammatory properties, may help prevent Sar, but its active components and mechanisms remain unclear.

Methods

Network pharmacology identified intersecting targets of propolis ethanol extract (PEE) and Sar. PPI and CTP networks highlighted key compounds and targets, verified by molecular docking. , apigenin (Ap), the predicted main compound, was tested on D-galactose-induced senescent C2C12 myoblasts cell viability and Western blotting.

Results

Twelve overlapping targets were identified between PEE and Sar, with TNFα and IL6 highlighted as hub targets. Network analysis determined Ap as the main active compound. Molecular docking revealed strong binding affinities of Ap with TNFα and IL6. experiments demonstrated that Ap significantly enhanced the viability and differentiation of senescent C2C12 cells, downregulated TNFα and IL6 expression, and inhibited JAK2 and STAT3 phosphorylation, indicating suppression of the JAK-STAT signaling pathway.

Discussion

The findings suggest that PEE, primarily through Ap, alleviates Sar by targeting inflammatory pathways and suppressing JAK-STAT signaling, thereby promoting muscle regeneration. The integration of network pharmacology, molecular docking, and validation provides mechanistic insights supporting the therapeutic potential of PEE in Sar. Limitations include the absence of confirmation, which warrants further animal and clinical studies to validate these effects and explore translational applications.

Conclusion

This study identifies Ap as the key active compound in PEE that alleviates Sar by downregulating TNFα and IL6 and inhibiting the JAK-STAT pathway. The results provide a molecular basis for the use of propolis as a natural intervention for Sar and support its development as a functional food or therapeutic agent targeting age-related muscle degeneration.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073397434250731053716
2025-08-28
2025-12-16
Loading full text...

Full text loading...

References

  1. Irigoiti Y. Navarro A. Yamul D. Libonatti C. Tabera A. Basualdo M. The use of propolis as a functional food ingredient: A review. Trends Food Sci. Technol. 2021 115 297 306 10.1016/j.tifs.2021.06.041
    [Google Scholar]
  2. Sforcin J.M. Bankova V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011 133 2 253 260 10.1016/j.jep.2010.10.032 20970490
    [Google Scholar]
  3. Dall T.M. Gallo P.D. Chakrabarti R. West T. Semilla A.P. Storm M.V. An aging population and growing disease burden will require a large and specialized health care workforce by 2025. Health Aff. 2013 32 11 2013 2020 10.1377/hlthaff.2013.0714 24191094
    [Google Scholar]
  4. Romanello V. The interplay between mitochondrial morphology and myomitokines in aging sarcopenia. Int. J. Mol. Sci. 2020 22 1 91 10.3390/ijms22010091 33374852
    [Google Scholar]
  5. Cannataro R. Carbone L. Petro J.L. Cione E. Vargas S. Angulo H. Forero D.A. Odriozola-Martínez A. Kreider R.B. Bonilla D.A. Sarcopenia: Etiology, nutritional approaches, and miRNAs. Int. J. Mol. Sci. 2021 22 18 9724 10.3390/ijms22189724 34575884
    [Google Scholar]
  6. Cruz-Jentoft A.J. Sayer A.A. Sarcopenia. Lancet 2019 393 10191 2636 2646 10.1016/S0140‑6736(19)31138‑9 31171417
    [Google Scholar]
  7. Powrózek T. Pigoń-Zając D. Mazurek M. Ochieng Otieno M. Rahnama-Hezavah M. Małecka-Massalska T. TNF-α induced myotube atrophy in C2C12 cell line uncovers putative inflammatory-related lncrnas mediating muscle wasting. Int. J. Mol. Sci. 2022 23 7 3878 10.3390/ijms23073878 35409236
    [Google Scholar]
  8. Tan Y. Jin Y. Zhao P. Wu J. Ren Z. Lipid droplets contribute myogenic differentiation in C2C12 by promoting the remodeling of the acstin-filament. Cell Death Dis. 2021 12 12 1102 10.1038/s41419‑021‑04273‑8 34815388
    [Google Scholar]
  9. Ni Y. Wu T. Yang L. Xu Y. Ota T. Fu Z. Protective effects of astaxanthin on a combination of D-galactose and jet lag-induced aging model in mice. Endocr. J. 2018 65 5 569 578 10.1507/endocrj.EJ17‑0500 29526991
    [Google Scholar]
  10. Kou X. Li J. Liu X. Yang X. Fan J. Chen N. Ampelopsin attenuates the atrophy of skeletal muscle from d-gal-induced aging rats through activating AMPK/SIRT1/PGC-1α signaling cascade. Biomed. Pharmacother. 2017 90 311 320 10.1016/j.biopha.2017.03.070
    [Google Scholar]
  11. Yang Y.F. Yang W. Liao Z.Y. Wu Y.X. Fan Z. Guo A. Yu J. Chen Q.N. Wu J.H. Zhou J. Xiao Q. MICU3 regulates mitochondrial Ca2+-dependent antioxidant response in skeletal muscle aging. Cell Death Dis. 2021 12 12 1115 10.1038/s41419‑021‑04400‑5 34845191
    [Google Scholar]
  12. Tian S. Zhao H. Liu J. Ma X. Zheng L. Guo H. Jiang Y. Metabolomics reveals that alcohol extract of propolis alleviates D-gal-induced skeletal muscle senescence in mice. Food Biosci. 2022 49 49 101885 10.1016/j.fbio.2022.101885
    [Google Scholar]
  13. Hu P. Sun N. Zhang X. Sun P. Sun Y. Guo J. Zheng X. Yin W. Fan K. Wang J. Network pharmacology-based study on the mechanism of scutellarin against zearalenone-induced ovarian granulosa cell injury. Ecotoxicol. Environ. Saf. 2021 227 112865 10.1016/j.ecoenv.2021.112865
    [Google Scholar]
  14. Akki A.J. Patil S.A. Hungund S. Sahana R. Patil M.M. Kulkarni R.V. Reddy K.R. Zameer F. Raghu A.V. Advances in Parkinson’s disease research - A computational network pharmacological approach. Int. Immunopharmacol. 2024 139 112758 10.1016/j.intimp.2024.112758
    [Google Scholar]
  15. Zhao F. Guochun L. Yang Y. Shi L. Xu L. Yin L. A network pharmacology approach to determine active ingredients and rationality of herb combinations of Modified Simiaowan for treatment of gout. J. Ethnopharmacol. 2015 168 1 16 10.1016/j.jep.2015.03.035
    [Google Scholar]
  16. Fan J. Fu A. Zhang L. Progress in molecular docking. Quant. Biol. 2019 7 2 83 89 10.1007/s40484‑019‑0172‑y
    [Google Scholar]
  17. Kong X. Liu C. Zhang Z. Cheng M. Mei Z. Li X. Liu P. Diao L. Ma Y. Jiang P. Kong X. Nie S. Guo Y. Wang Z. Zhang X. Wang Y. Tang L. Guo S. Liu Z. Li D. BATMAN-TCM 2.0: An enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins. Nucleic Acids Res. 2024 52 D1 D1110 D1120 10.1093/nar/gkad926 37904598
    [Google Scholar]
  18. Yee J.L. Huang C.Y. Yu Y.C. Huang S.J. Potential mechanisms of guizhi fuling wan in treating endometriosis: An analysis based on TCMSP and disgenet databases. J. Ethnopharmacol. 2024 329 118190 10.1016/j.jep.2024.118190 38614264
    [Google Scholar]
  19. Yu Z. Wang R. Dai T. Guo Y. Tian Z. Zhu Y. Chen J. Yu Y. Identification of hub genes and key pathways in arsenic-treated rice (Oryza sativa L.) based on 9 topological analysis methods of CytoHubba. Environ. Health Prev. Med. 2024 29 41 10.1265/ehpm.24‑00095
    [Google Scholar]
  20. Alhawarri M.B. Al-Thiabat M.G. Dubey A. Tufail A. Banisalman K. Al Jabal G.A. Alkasasbeh E. Al-Trad E.I. Alrimawi B.H. Targeting necroptosis in MCF-7 breast cancer cells: In Silico insights into 8,12-dimethoxysanguinarine from Eomecon Chionantha through molecular docking, dynamics, DFT, and MEP studies. PLoS One 2025 20 1 0313094 10.1371/journal.pone.0313094 39775383
    [Google Scholar]
  21. Chen Q.N. Fan Z. Lyu A.K. Wu J. Guo A. Yang Y.F. Chen J.L. Xiao Q. Effect of sarcolipin-mediated cell transdifferentiation in sarcopenia-associated skeletal muscle fibrosis. Exp. Cell Res. 2020 389 1 111890 10.1016/j.yexcr.2020.111890 32035132
    [Google Scholar]
  22. Bano G. Trevisan C. Carraro S. Solmi M. Luchini C. Stubbs B. Manzato E. Sergi G. Veronese N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017 96 10 15 10.1016/j.maturitas.2016.11.006
    [Google Scholar]
  23. Meng S.J. Yu L.J. Oxidative stress, molecular inflammation and sarcopenia. Int. J. Mol. Sci. 2010 11 4 1509 1526 10.3390/ijms11041509 20480032
    [Google Scholar]
  24. Pan L. Xie W. Fu X. Lu W. Jin H. Lai J. Zhang A. Yu Y. Li Y. Xiao W. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp. Gerontol. 2021 154 111544 10.1016/j.exger.2021.111544
    [Google Scholar]
  25. Dalle S. Rossmeislova L. Koppo K. The role of inflammation in age-related sarcopenia. Front. Physiol. 2017 8 1045 10.3389/fphys.2017.01045
    [Google Scholar]
  26. Ham D.J. Börsch A. Lin S. Thürkauf M. Weihrauch M. Reinhard J.R. Delezie J. Battilana F. Wang X. Kaiser M.S. Guridi M. Sinnreich M. Rich M.M. Mittal N. Tintignac L.A. Handschin C. Zavolan M. Rüegg M.A. The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nat. Commun. 2020 11 1 4510 10.1038/s41467‑020‑18140‑1 32908143
    [Google Scholar]
  27. Salehi B. Venditti A. Sharifi-Rad M. Kręgiel D. Sharifi-Rad J. Durazzo A. Lucarini M. Santini A. Souto E.B. Novellino E. Antolak H. Azzini E. Setzer W.N. Martins N. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019 20 6 1305 10.3390/ijms20061305 30875872
    [Google Scholar]
  28. Huang X. Yu Z. Ning L. Lei Y. Zhang X. Wang Z. Apigenin as a promising myocyte protectant against damage and degradation. Biocell 2022 46 2 383 388 10.32604/biocell.2021.015651
    [Google Scholar]
  29. Wang D. Yang Y. Zou X. Zhang J. Zheng Z. Wang Z. Antioxidant apigenin relieves age-related muscle atrophy by inhibiting oxidative stress and hyperactive mitophagy and apoptosis in skeletal muscle of mice. J. Gerontol. A Biol. Sci. Med. Sci. 2020 75 11 2081 2088 10.1093/gerona/glaa214 32857105
    [Google Scholar]
  30. Choi W.H. Son H.J. Jang Y.J. Ahn J. Jung C.H. Ha T.Y. Apigenin ameliorates the obesity-induced skeletal muscle atrophy by attenuating mitochondrial dysfunction in the muscle of obese mice. Mol. Nutr. Food Res. 2017 61 12 1700218 10.1002/mnfr.201700218 28971573
    [Google Scholar]
  31. Doles J.D. Olwin B.B. The impact of JAK-STAT signaling on muscle regeneration. Nat. Med. 2014 20 10 1094 1095 10.1038/nm.3720 25295935
    [Google Scholar]
  32. Price F.D. von Maltzahn J. Bentzinger C.F. Dumont N.A. Yin H. Chang N.C. Wilson D.H. Frenette J. Rudnicki M.A. Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat. Med. 2014 20 10 1174 1181 10.1038/nm.3655 25194569
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073397434250731053716
Loading
/content/journals/cchts/10.2174/0113862073397434250731053716
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test