Skip to content
2000
image of YBX1 Enhances the Stability of TM4SF1 in an m5C-Dependent Manner to Promote Bladder Cancer Proliferation and Glycolysis

Abstract

Introduction

Y-box binding protein 1 (YBX1), an RNA-binding protein capable of recognizing the 5-methylcytosine (m5C), plays a role in the development and progression of various cancers. In this study, we aim to investigate the functional mechanism of YBX1-mediated m5C modification in Bladder Cancer (BCa).

Methods

The impact of YBX1 on glycolysis and biological functions in BCa cells was evaluated through a set of experiments. The underlying mechanisms involving YBX1, Transmembrane 4 L six family 1 (TM4SF1), and β-catenin/C-myc in BCa and their relationship were investigated using RNA immunoprecipitation (RIP), m5C-RIP, Actinomycin D, and luciferase reporter gene assays.

Results

BCa cells exhibited elevated expression levels of YBX1 compared to human transitional bladder epithelial cells. YBX1 knockdown inhibited BCa cell proliferation, migration, and invasion while also attenuating glycolytic activity, as evidenced by reduced glucose uptake, lactic acid production, and ATP synthesis. Mechanically, we found that YBX1-dependent m5C modification promoted the stability of TM4SF1 mRNA, thereby upregulating TM4SF1 expression and subsequently activating the β-catenin/C-myc signaling. Furthermore, we discovered that overexpression of β-catenin could reverse the inhibitory effects of TM4SF1 silencing on proliferation and glycolysis in BCa cells.

Discussion

This study has refined the mechanism of BCa progression, but the clinical significance and functions of the YBX1/TM4SF1 axis still require further verification.

Conclusion

YBX1 stabilizes TM4SF1 mRNA m5C modification in BCa, activating β-catenin/c-Myc signaling to drive tumor growth and glycolysis. This reveals a novel therapeutic target for BCa.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073392269250825105059
2025-09-26
2025-11-09
Loading full text...

Full text loading...

References

  1. Dobruch J. Oszczudłowski M. Bladder cancer: Current challenges and future directions. Medicina 2021 57 8 749 10.3390/medicina57080749 34440955
    [Google Scholar]
  2. Jubber I. Ong S. Bukavina L. Black P.C. Compérat E. Kamat A.M. Kiemeney L. Lawrentschuk N. Lerner S.P. Meeks J.J. Moch H. Necchi A. Panebianco V. Sridhar S.S. Znaor A. Catto J.W.F. Cumberbatch M.G. Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur. Urol. 2023 84 2 176 190 10.1016/j.eururo.2023.03.029 37198015
    [Google Scholar]
  3. Li F. Zheng Z. Chen W. Li D. Zhang H. Zhu Y. Mo Q. Zhao X. Fan Q. Deng F. Han C. Tan W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist. Updat. 2023 68 100938 10.1016/j.drup.2023.100938 36774746
    [Google Scholar]
  4. Yue S.W. Liu H.L. Su H.F. Luo C. Liang H.F. Zhang B.X. Zhang W. m6A-regulated tumor glycolysis: New advances in epigenetics and metabolism. Mol. Cancer 2023 22 1 137 10.1186/s12943‑023‑01841‑8 37582735
    [Google Scholar]
  5. Brunner J.S. Finley L.W.S. SnapShot: Cancer metabolism. Mol. Cell 2021 81 18 3878 3878.e1 10.1016/j.molcel.2021.06.021
    [Google Scholar]
  6. Paul S. Ghosh S. Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin. Cancer Biol. 2022 86 Pt 3 1216 1230 10.1016/j.semcancer.2022.09.007 36330953
    [Google Scholar]
  7. Angelin A. Gil-de-Gómez L. Dahiya S. Jiao J. Guo L. Levine M.H. Wang Z. Quinn W.J. Kopinski P.K. Wang L. Akimova T. Liu Y. Bhatti T.R. Han R. Laskin B.L. Baur J.A. Blair I.A. Wallace D.C. Hancock W.W. Beier U.H. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017 25 6 1282 1293.e7 10.1016/j.cmet.2016.12.018 28416194
    [Google Scholar]
  8. Kouzarides T. Chromatin modifications and their function. Cell 2007 128 4 693 705 10.1016/j.cell.2007.02.005 17320507
    [Google Scholar]
  9. Gu X. Ma X. Chen C. Guan J. Wang J. Wu S. Zhu H. Vital roles of m5C RNA modification in cancer and immune cell biology. Front. Immunol. 2023 14 1207371 10.3389/fimmu.2023.1207371 37325635
    [Google Scholar]
  10. Yu G. Bao J. Zhan M. Wang J. Li X. Gu X. Song S. Yang Q. Liu Y. Wang Z. Xu B. Comprehensive analysis of M5C methylation regulatory genes and tumor microenvironment in prostate cancer. Front. Immunol. 2022 13 914577 10.3389/fimmu.2022.914577 35757739
    [Google Scholar]
  11. Zou S. Huang Y. Yang Z. Zhang J. Meng M. Zhang Y. Feng J. Sun R. Li W. Wang W. López J.G.F. Fang L. NSUN2 promotes colorectal cancer progression by enhancing SKIL mRNA stabilization. Clin. Transl. Med. 2024 14 3 1621 10.1002/ctm2.1621 38468490
    [Google Scholar]
  12. Wang Y. Wei J. Feng L. Li O. Huang L. Zhou S. Xu Y. An K. Zhang Y. Chen R. He L. Wang Q. Wang H. Du Y. Liu R. Huang C. Zhang X. Yang Y. Kan Q. Tian X. Aberrant m5C hypermethylation mediates intrinsic resistance to gefitinib through NSUN2/YBX1/QSOX1 axis in EGFR-mutant non-small-cell lung cancer. Mol. Cancer 2023 22 1 81 10.1186/s12943‑023‑01780‑4 37161388
    [Google Scholar]
  13. Liu K. Xu P. Lv J. Ge H. Yan Z. Huang S. Li B. Xu H. Yang L. Xu Z. Zhang D. Peritoneal high-fat environment promotes peritoneal metastasis of gastric cancer cells through activation of NSUN2-mediated ORAI2 m5C modification. Oncogene 2023 42 24 1980 1993 10.1038/s41388‑023‑02707‑5 37130916
    [Google Scholar]
  14. Wang N. Chen R. Deng M. Wei W. Zhou Z. Ning K. Li Y. Li X. Ye Y. Wen J. Dong B. Zhang X. Liu Z. Zhou F. m5C-dependent cross-regulation between nuclear reader ALYREF and writer NSUN2 promotes urothelial bladder cancer malignancy through facilitating RABL6/TK1 mRNAs splicing and stabilization. Cell Death Dis. 2023 14 2 139 10.1038/s41419‑023‑05661‑y 36806253
    [Google Scholar]
  15. Hou X. Dong Q. Hao J. Liu M. Ning J. Tao M. Wang Z. Guo F. Huang D. Shi X. Gao M. Li D. Zheng X. NSUN2-mediated m 5 C modification drives alternative splicing reprogramming and promotes multidrug resistance in anaplastic thyroid cancer through the NSUN2/SRSF6/UAP1 signaling axis. Theranostics 2025 15 7 2757 2777 10.7150/thno.104713 40083919
    [Google Scholar]
  16. Wu Y. Ying Y. Zhang F. Shu X. Qi Z. Wang J. Liu Z. Tang Y. Sun J. Yi J. Lu D. Lin S. Hao S. Ma X. Li J. Wang X. Xie L. Zheng X. NSUN2-mediated R-loop stabilization as a key driver of bladder cancer progression and cisplatin sensitivity. Cancer Lett. 2025 611 217416 10.1016/j.canlet.2024.217416 39732321
    [Google Scholar]
  17. Wang J.Z. Zhu W. Han J. Yang X. Zhou R. Lu H.C. Yu H. Yuan W.B. Li P.C. Tao J. Lu Q. Wei J.F. Yang H. The role of the HIF‐1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun. 2021 41 7 560 575 10.1002/cac2.12158 33991457
    [Google Scholar]
  18. Qi Q. Zhong R. Huang Y. Tang Y. Zhang X. Liu C. Gao C. Zhou L. Yu J. Wu L. The RNA M5C methyltransferase NSUN2 promotes progression of hepatocellular carcinoma by enhancing PKM2-mediated glycolysis. Cell Death Dis. 2025 16 1 82 10.1038/s41419‑025‑07414‑5 39924557
    [Google Scholar]
  19. Li Z.L. Xie Y. Xie Y. Chen H. Zhou X. Liu M. Zhang X.L. HCV 5-methylcytosine enhances viral rna replication through interaction with m5c reader YBX1. ACS Chem. Biol. 2024 19 7 1648 1660 10.1021/acschembio.4c00322 38954741
    [Google Scholar]
  20. Liu L. Chen Y. Zhang T. Cui G. Wang W. Zhang G. Li J. Zhang Y. Wang Y. Zou Y. Ren Z. Xue W. Sun R. YBX1 promotes esophageal squamous cell carcinoma progression via m5C‐dependent SMOX mRNA stabilization. Adv. Sci. 2024 11 20 2302379 10.1002/advs.202302379 38566431
    [Google Scholar]
  21. Huang H. Fang L. Zhu C. Lv J. Xu P. Chen Z. Zhang Z. Wang J. Wang W. Xu Z. YBX1 promotes 5-Fluorouracil resistance in gastric cancer via m5C-dependent ATG9A mRNA stabilization through autophagy. Oncogene 2025 44 2357 2371 10.1038/s41388‑025‑03411‑2 40251390
    [Google Scholar]
  22. Qi J. Jiang T. Liu B. Hu Q. Chen J. Ma N. Xu Y. Song H. Song J. LINC02167 stabilizes KSR1 mRNA in an m5C-dependent manner to regulate the ERK/MAPK signaling pathway and promotes colorectal cancer metastasis. J. Exp. Clin. Cancer Res. 2025 44 1 121 10.1186/s13046‑025‑03368‑w 40234937
    [Google Scholar]
  23. Li O. An K. Wang H. Li X. Wang Y. Huang L. Du Y. Qin N. Dong J. Wei J. Sun R. Shi Y. Guo Y. Sun X. Yang Y. Yang Y.G. Kan Q. Tian X. Targeting YBX1‐m5C mediates RNF115 mRNA circularisation and translation to enhance vulnerability of ferroptosis in hepatocellular carcinoma. Clin. Transl. Med. 2025 15 3 70270 10.1002/ctm2.70270 40088428
    [Google Scholar]
  24. Song Y.H. Shiota M. Yokomizo A. Uchiumi T. Kiyoshima K. Kuroiwa K. Oda Y. Naito S. Twist1 and Y-box-binding protein-1 are potential prognostic factors in bladder cancer. Urol. Oncol. 2014 32 1 31.e1 31.e7 10.1016/j.urolonc.2012.11.003 23395237
    [Google Scholar]
  25. Lai Y.W. Hsu W.J. Lee W.Y. Chen C.H. Tsai Y.H. Dai J.Z. Yang C.C. Lin C.W. Prognostic value of a glycolytic signature and its regulation by Y-box-binding protein 1 in triple-negative breast cancer. Cells 2021 10 8 1890 10.3390/cells10081890 34440660
    [Google Scholar]
  26. Yu T. Zhang Q. Yu S.K. Nie F.Q. Zhang M.L. Wang Q. Lu K.H. THOC3 interacts with YBX1 to promote lung squamous cell carcinoma progression through PFKFB4 mRNA modification. Cell Death Dis. 2023 14 7 475 10.1038/s41419‑023‑06008‑3 37500615
    [Google Scholar]
  27. Jin Y. Eum D.Y. Lee C. Park S.Y. Shim J.W. Choi Y.J. Choi S.H. Kim J.G. Heo K. Park S.J. Breast cancer malignancy is governed by regulation of the macroH2A2/TM4SF1 axis, the AKT/NF‐κB pathway, and elevated MMP13 expression. Mol. Carcinog. 2024 63 4 714 727 10.1002/mc.23683 38251858
    [Google Scholar]
  28. Fu X.Y. Zhou W.B. Xu J. TM4SF1 facilitates non-small cell lung cancer progression through regulating YAP-TEAD pathway. Eur. Rev. Med. Pharmacol. Sci. 2020 24 4 1829 1840 [PMID: 32141552].
    [Google Scholar]
  29. Lee S. Bae J.S. Jung C.K. Chung W.Y. Extensive lymphatic spread of papillary thyroid microcarcinoma is associated with an increase in expression of genes involved in epithelial‐mesenchymal transition and cancer stem cell‐like properties. Cancer Med. 2019 8 15 6528 6537 10.1002/cam4.2544 31498560
    [Google Scholar]
  30. Chen G. She X. Yin Y. Ma J. Gao Y. Gao H. Qin H. Fang J. Targeting TM4SF1 exhibits therapeutic potential via inhibition of cancer stem cells. Signal Transduct. Target. Ther. 2022 7 1 350 10.1038/s41392‑022‑01177‑7 36229443
    [Google Scholar]
  31. Yang S. Zhou Z. Lei J. Li X. Chen Q. Li B. Zhang Y. Ge Y. Zuo S. TM4SF1 upregulates MYH9 to activate the NOTCH pathway to promote cancer stemness and lenvatinib resistance in HCC. Biol. Direct 2023 18 1 18 10.1186/s13062‑023‑00376‑8 37069693
    [Google Scholar]
  32. Chen J. Wang F. Xu H. Chen D. Liu W. Wang J. Over-expression of TM4SF1 improves cell metastasis and growth by activating ERK1/2 signaling pathway in human prostate cancer. J. BUON 2019 24 6 2531 2538 [PMID: 31983129].
    [Google Scholar]
  33. Hou S. Hao X. Li J. Weng S. Wang J. Zhao T. Li W. Hu X. Deng B. Gu J. Hang Q. TM4SF1 promotes esophageal squamous cell carcinoma metastasis by interacting with integrin α6. Cell Death Dis. 2022 13 7 609 10.1038/s41419‑022‑05067‑2 35835740
    [Google Scholar]
  34. Zheng Y.W. Wang M. Zhong Z.M. Wu G.Q. Zhang T. Chen L.L. Li M. TM4SF1 promotes glioma malignancy through multiple mechanisms. Neoplasma 2022 69 4 859 867 10.4149/neo_2022_211009N1427 35532297
    [Google Scholar]
  35. Wang R. Sun L. Xia S. Wu H. Ma Y. Zhan S. Zhang G. Zhang X. Shi T. Chen W. B7-H3 suppresses doxorubicin-induced senescence-like growth arrest in colorectal cancer through the AKT/TM4SF1/SIRT1 pathway. Cell Death Dis. 2021 12 5 453 10.1038/s41419‑021‑03736‑2 33958586
    [Google Scholar]
  36. Xu D. Yang F. Wu K. Xu X. Zeng K. An Y. Xu F. Xun J. Lv X. Zhang X. Yang X. Xu L. Lost miR-141 and upregulated TM4SF1 expressions associate with poor prognosis of pancreatic cancer: Regulation of EMT and angiogenesis by miR-141 and TM4SF1 via AKT. Cancer Biol. Ther. 2020 21 4 354 363 10.1080/15384047.2019.1702401 31906774
    [Google Scholar]
  37. Fu F. Yang X. Zheng M. Zhao Q. Zhang K. Li Z. Zhang H. Zhang S. Role of transmembrane 4 L six family 1 in the development and progression of cancer. Front. Mol. Biosci. 2020 7 202 10.3389/fmolb.2020.00202 33015133
    [Google Scholar]
  38. Cao R. Wang G. Qian K. Chen L. Ju L. Qian G. Wu C.L. Dan H.C. Jiang W. Wu M. Xiao Y. Wang X. Corrigendum to “TM4SF1 regulates apoptosis, cell cycle and ROS metabolism via the PPARγ-SIRT1 feedback loop in human bladder cancer cells” [Cancer Lett. 414 (1 February 2018) 278–293]. Cancer Lett. 2022 525 198 199 10.1016/j.canlet.2021.11.013 34785090
    [Google Scholar]
  39. Tong L. Yang H. Xiong W. Tang G. Zu X. Qi L. circ_100984‐miR‐432‐3p axis regulated c‐Jun/YBX‐1/β‐catenin feedback loop promotes bladder cancer progression. Cancer Sci. 2021 112 4 1429 1442 10.1111/cas.14774 33314480
    [Google Scholar]
  40. Chen X. Li A. Sun B.F. Yang Y. Han Y.N. Yuan X. Chen R.X. Wei W.S. Liu Y. Gao C.C. Chen Y.S. Zhang M. Ma X.D. Liu Z.W. Luo J.H. Lyu C. Wang H.L. Ma J. Zhao Y.L. Zhou F.J. Huang Y. Xie D. Yang Y.G. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 2019 21 8 978 990 10.1038/s41556‑019‑0361‑y 31358969
    [Google Scholar]
  41. Chen S.J. Zhang J. Zhou T. Rao S.S. Li Q. Xiao L.Y. Wei S.T. Zhang H.F. Epigenetically upregulated NSUN2 confers ferroptosis resistance in endometrial cancer via m5C modification of SLC7A11 mRNA. Redox Biol. 2024 69 102975 10.1016/j.redox.2023.102975 38042059
    [Google Scholar]
  42. Chen Y. Zuo X. Wei Q. Xu J. Liu X. Liu S. Wang H. Luo Q. Wang Y. Yang Y. Zhao H. Xu J. Liu T. Yi P. Upregulation of LRRC8A by m 5 C modification-mediated mRNA stability suppresses apoptosis and facilitates tumorigenesis in cervical cancer. Int. J. Biol. Sci. 2023 19 2 691 704 10.7150/ijbs.79205 36632452
    [Google Scholar]
  43. Zheng H. Zhu M. Li W. Zhou Z. Wan X. m 5 C and m 6 A modification of long noncoding NKILA accelerates cholangiocarcinoma progression via the miR‐582‐3p‐YAP1 axis. Liver Int. 2022 42 5 1144 1157 10.1111/liv.15240 35274813
    [Google Scholar]
  44. Yang L. Yin H. Chen Y. Pan C. Hang H. Lu Y. Ma W. Li X. Gan W. Guo H. Li D. Low expression of PEBP1P2 promotes metastasis of clear cell renal cell carcinoma by post-transcriptional regulation of PEBP1 and KLF13 mRNA. Exp. Hematol. Oncol. 2022 11 1 87 10.1186/s40164‑022‑00346‑2 36348434
    [Google Scholar]
  45. Xu L. Li H. Wu L. Huang S. YBX1 promotes tumor growth by elevating glycolysis in human bladder cancer. Oncotarget 2017 8 39 65946 65956 10.18632/oncotarget.19583 29029484
    [Google Scholar]
  46. Xiao Y. Jin W. Qian K. Ju L. Wang G. Wu K. Cao R. Chang L. Xu Z. Luo J. Shan L. Yu F. Chen X. Liu D. Cao H. Wang Y. Cao X. Zhou W. Cui D. Tian Y. Ji C. Luo Y. Hong X. Chen F. Peng M. Zhang Y. Wang X. Integrative single cell atlas revealed intratumoral heterogeneity generation from an adaptive epigenetic cell state in human bladder urothelial carcinoma. Adv. Sci. 2024 11 24 2308438 10.1002/advs.202308438 38582099
    [Google Scholar]
  47. Xin S. Li R. Su J. Cao Q. Wang H. Wei Z. Li G. Qin W. Zhang Z. Wang C. Zhang C. Zhang J. A novel model based on disulfidptosis-related genes to predict prognosis and therapy of bladder urothelial carcinoma. J. Cancer Res. Clin. Oncol. 2023 149 15 13925 13942 10.1007/s00432‑023‑05235‑7 37541976
    [Google Scholar]
  48. Peng R. Ma X. Jiang Z. Duan Y. Lv S. Jing W. Integrative analysis of Anoikis-related genes reveals that FASN is a novel prognostic biomarker and promotes the malignancy of bladder cancer via Wnt/β-catenin pathway. Heliyon 2024 10 13 34029 10.1016/j.heliyon.2024.e34029 39071712
    [Google Scholar]
  49. Zhao Y. Shi G. Huang X. Zhang Z. Liao K. Xiong H. Feng Z. Mao S. Zhang X. LRP8 inhibits bladder cancer cell ferroptosis by activating the Wnt/β-catenin-SCD1 positive feedback loop. Hum. Mol. Genet. 2025 34 10 843 851 10.1093/hmg/ddaf024
    [Google Scholar]
  50. Wang X. Jia Y. Wang D. Cathepsin C. Cathepsin C promotes tumorigenesis in bladder cancer by activating the WNT/β-catenin signalling pathway. Front. Bioscience-Landmark 2024 29 9 327 10.31083/j.fbl2909327 39344330
    [Google Scholar]
  51. Li Y. Kong Y. An M. Luo Y. Zheng H. Lin Y. Chen J. Yang J. Liu L. Luo B. Huang J. Lin T. Chen C. ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. J. Exp. Clin. Cancer Res. 2023 42 1 191 10.1186/s13046‑023‑02757‑3 37528489
    [Google Scholar]
  52. Zhan Y. Zhang L. Yu S. Wen J. Liu Y. Zhang X. Long non-coding RNA CASC9 promotes tumor growth and metastasis via modulating FZD6/Wnt/β-catenin signaling pathway in bladder cancer. J. Exp. Clin. Cancer Res. 2020 39 1 136 10.1186/s13046‑020‑01624‑9 32677984
    [Google Scholar]
  53. Zhang M. Du H. Wang L. Yue Y. Zhang P. Huang Z. Lv W. Ma J. Shao Q. Ma M. Liang X. Yang T. Wang W. Zeng J. Chen G. Wang X. Fan J. Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/β-catenin signaling pathway. Chem. Biol. Interact. 2020 320 109022 10.1016/j.cbi.2020.109022 32112862
    [Google Scholar]
  54. Guo J. Chen Z. Jiang H. Yu Z. Peng J. Xie J. Li Z. Wu W. Cheng Z. Xiao K. The lncRNA DLX6-AS1 promoted cell proliferation, invasion, migration and epithelial-to-mesenchymal transition in bladder cancer via modulating Wnt/β-catenin signaling pathway. Cancer Cell Int. 2019 19 1 312 10.1186/s12935‑019‑1010‑z 31787849
    [Google Scholar]
  55. Yang D. Ma Y. Zhao P. Ma J. He C. HMMR is a downstream target of FOXM1 in enhancing proliferation and partial epithelial-to-mesenchymal transition of bladder cancer cells. Exp. Cell Res. 2021 408 2 112860 10.1016/j.yexcr.2021.112860 34624323
    [Google Scholar]
  56. Zhou Q. Chen S. Lu M. Luo Y. Wang G. Xiao Y. Ju L. Wang X. EFEMP2 suppresses epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway in human bladder cancer. Int. J. Biol. Sci. 2019 15 10 2139 2155 10.7150/ijbs.35541 31592144
    [Google Scholar]
  57. Li S. Mao L. Zhao F. Yan J. Song G. Luo Q. Li Z. C19orf10 promotes malignant behaviors of human bladder carcinoma cells via regulating the PI3K/AKT and Wnt/β-catenin pathways. J. Cancer 2021 12 14 4341 4354 10.7150/jca.56993 34093834
    [Google Scholar]
  58. Liu S. Chen L. Zhao H. Li Q. Hu R. Wang H. Integrin β8 facilitates tumor growth and drug resistance through a Y‐box binding protein 1‐dependent signaling pathway in bladder cancer. Cancer Sci. 2020 111 7 2423 2430 10.1111/cas.14439 32350965
    [Google Scholar]
  59. Shi X. Hu Z. Bai S. Zong C. Xue H. Li Y. Li F. Chen L. Xuan J. Xia Y. Wei L. Shen F. Wang K. YBX1 promotes stemness and cisplatin insensitivity in intrahepatic cholangiocarcinoma via the AKT/ β ‐catenin axis. J. Gene Med. 2024 26 5 3689 10.1002/jgm.3689 38676365
    [Google Scholar]
  60. Li B. Xing F. Wang J. Wang X. Zhou C. Fan G. Zhuo Q. Ji S. Yu X. Xu X. Qin Y. Li Z. YBX1 as a therapeutic target to suppress the LRP1-β-catenin-RRM1 axis and overcome gemcitabine resistance in pancreatic cancer. Cancer Lett. 2024 602 217197 10.1016/j.canlet.2024.217197 39216548
    [Google Scholar]
  61. Vallée A. Lecarpentier Y. Vallée J.N. The key role of the WNT/β-catenin pathway in metabolic reprogramming in cancers under normoxic conditions. Cancers (Basel) 2021 13 21 5557 10.3390/cancers13215557 34771718
    [Google Scholar]
  62. Fang Y. Shen Z.Y. Zhan Y.Z. Feng X.C. Chen K.L. Li Y.S. Deng H.J. Pan S.M. Wu D.H. Ding Y. CD36 inhibits β-catenin/c-myc-mediated glycolysis through ubiquitination of GPC4 to repress colorectal tumorigenesis. Nat. Commun. 2019 10 1 3981 10.1038/s41467‑019‑11662‑3 31484922
    [Google Scholar]
  63. Dai M. Song J. Wang L. Zhou K. Shu L. HOXC13 promotes cervical cancer proliferation, invasion and Warburg effect through β-catenin/c-Myc signaling pathway. J. Bioenerg. Biomembr. 2021 53 5 597 608 10.1007/s10863‑021‑09908‑1 34309767
    [Google Scholar]
  64. Wang W. Shao F. Yang X. Wang J. Zhu R. Yang Y. Zhao G. Guo D. Sun Y. Wang J. Xue Q. Gao S. Gao Y. He J. Lu Z. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding. Nat. Commun. 2021 12 1 3803 10.1038/s41467‑021‑23501‑5 34155197
    [Google Scholar]
  65. Kwon H.H. Ahn C.H. Lee H.J. Sim D.Y. Park J.E. Park S.Y. Kim B. Shim B.S. Kim S.H. The apoptotic and anti-warburg effects of brassinin in PC-3 cells via reactive oxygen species production and the inhibition of the c-Myc, SIRT1, and β-catenin signaling axis. Int. J. Mol. Sci. 2023 24 18 13912 10.3390/ijms241813912 37762214
    [Google Scholar]
  66. Pak J.N. Lee H.J. Sim D.Y. Park J.E. Ahn C.H. Park S.Y. Khil J.H. Shim B. Kim B. Kim S.H. Anti‐Warburg effect via generation of ROS and inhibition of PKM2 /β‐catenin mediates apoptosis of lambertianic acid in prostate cancer cells. Phytother. Res. 2023 37 9 4224 4235 10.1002/ptr.7903 37235481
    [Google Scholar]
  67. Huang J. Tian F. Song Y. Cao M. Yan S. Lan X. Cui Y. Cui Y. Cui Y. Jia D. Cai L. Xing Y. Wang X. A feedback circuit comprising EHD1 and 14-3-3ζ sustains β-catenin/c-Myc-mediated aerobic glycolysis and proliferation in non-small cell lung cancer. Cancer Lett. 2021 520 12 25 10.1016/j.canlet.2021.06.023 34217785
    [Google Scholar]
  68. Li T. Tong H. Yin H. Luo Y. Zhu J. Qin Z. Yin S. He W. Starvation induced autophagy promotes the progression of bladder cancer by LDHA mediated metabolic reprogramming. Cancer Cell Int. 2021 21 1 597 10.1186/s12935‑021‑02303‑1 34743698
    [Google Scholar]
  69. Smith B.A.H. Deutzmann A. Correa K.M. Delaveris C.S. Dhanasekaran R. Dove C.G. Sullivan D.K. Wisnovsky S. Stark J.C. Pluvinage J.V. Swaminathan S. Riley N.M. Rajan A. Majeti R. Felsher D.W. Bertozzi C.R. MYC-driven synthesis of Siglec ligands is a glycoimmune checkpoint. Proc. Natl. Acad. Sci. USA 2023 120 11 2215376120 10.1073/pnas.2215376120 36897988
    [Google Scholar]
  70. Kao C.C. Lai C.R. Lin Y.H. Chen T.M. Tsai Y.L. Tsai W.C. Ong T.Y. Wang H.H. Wu S.T. Chen Y. GW4064 inhibits migration and invasion through cathepsin B and MMP2 downregulation in human bladder cancer. Chem. Biol. Interact. 2024 389 110869 10.1016/j.cbi.2024.110869 38216027
    [Google Scholar]
  71. Xie L. Liang S. Jiwa H. Zhang L. Lu Q. Wang X. Luo L. Xia H. Li Z. Wang J. Luo X. Luo J. Securinine inhibits the tumor growth of human bladder cancer cells by suppressing Wnt/β-catenin signaling pathway and activating p38 and JNK signaling pathways. Biochem. Pharmacol. 2024 223 116125 10.1016/j.bcp.2024.116125 38484850
    [Google Scholar]
  72. Wang J. Shen D. Li S. Li Q. Zuo Q. Lu J. Tang D. Feng Y. Yin P. Chen C. Chen T. LINC00665 activating Wnt3a/β-catenin signaling by bond with YBX1 promotes gastric cancer proliferation and metastasis. Cancer Gene Ther. 2023 30 11 1530 1542 10.1038/s41417‑023‑00657‑4 37563362
    [Google Scholar]
  73. Lim J.P. Nair S. Shyamasundar S. Chua P.J. Muniasamy U. Matsumoto K. Gunaratne J. Bay B.H. Silencing Y-box binding protein-1 inhibits triple-negative breast cancer cell invasiveness via regulation of MMP1 and beta-catenin expression. Cancer Lett. 2019 452 119 131 10.1016/j.canlet.2019.03.014 30905819
    [Google Scholar]
  74. Yao B. Xing M. Zeng X. Zhang M. Zheng Q. Wang Z. Peng B. Qu S. Li L. Jin Y. Li H. Yuan H. Zhao Q. Ma C. KMT2D‐mediated H3K4me1 recruits YBX1 to facilitate triple‐negative breast cancer progression through epigenetic activation of c‐Myc. Clin. Transl. Med. 2024 14 7 1753 10.1002/ctm2.1753 38967349
    [Google Scholar]
  75. Lv C. Sun J. Ye Y. Lin Z. Li H. Liu Y. Mo K. Xu W. Hu W. Draz E. Wang S. Long noncoding RNA EIF1AX‐AS1 promotes endometrial cancer cell apoptosis by affecting EIF1AX mRNA stabilization. Cancer Sci. 2022 113 4 1277 1291 10.1111/cas.15275 35080085
    [Google Scholar]
  76. Zhou H. Liu W. Zhou Y. Hong Z. Ni J. Zhang X. Li Z. Li M. He W. Zhang D. Chen X. Zhu J. Therapeutic inhibition of GAS6-AS1/YBX1/MYC axis suppresses cell propagation and disease progression of acute myeloid leukemia. J. Exp. Clin. Cancer Res. 2021 40 1 353 10.1186/s13046‑021‑02145‑9 34753494
    [Google Scholar]
  77. Bao P. Li P. Zhou X. Zhang H. You S. Xu Z. Wu Q. SMAR1 inhibits proliferation, EMT and Warburg effect of bladder cancer cells by suppressing the activity of the Wnt/β-catenin signaling pathway. Cell Cycle 2023 22 2 229 241 10.1080/15384101.2022.2112006 35980125
    [Google Scholar]
  78. Tang Q. Chen J. Di Z. Yuan W. Zhou Z. Liu Z. Han S. Liu Y. Ying G. Shu X. Di M. TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. J. Exp. Clin. Cancer Res. 2020 39 1 232 10.1186/s13046‑020‑01690‑z 33153498
    [Google Scholar]
  79. Zhu C. Luo X. Wu J. Liu Y. Liu L. Ma S. Xie R. Wang S. Ji W. TM4SF1, a binding protein of DVL2 in hepatocellular carcinoma, positively regulates beta‐catenin/TCF signalling. J. Cell. Mol. Med. 2021 25 5 2356 2364 10.1111/jcmm.14787 31876386
    [Google Scholar]
  80. Wang K. Li H. Zhao J. Yao J. Lu Y. Dong J. Bai J. Liao L. Potential diagnostic of lymph node metastasis and prognostic values of TM4SFs in papillary thyroid carcinoma patients. Front. Cell Dev. Biol. 2022 10 1001954 10.3389/fcell.2022.1001954 36568979
    [Google Scholar]
  81. Sun X. Zhang Y. Chen Y. Xin S. Jin L. Liu X. Zhou Z. Zhang J. Mei W. Zhang B. Yao X. Yang G. Ye L. In silico establishment and validation of novel lipid metabolism-related gene signature in bladder cancer. Oxid. Med. Cell. Longev. 2022 2022 1 20 10.1155/2022/3170950 35480865
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073392269250825105059
Loading
/content/journals/cchts/10.2174/0113862073392269250825105059
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: YBX1 ; glycolysis ; Bladder cancer ; TM4SF1 ; proliferation ; m5C
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test