Skip to content
2000
image of Chemical Diversity of Carotenoids Derived from Aquatic Animals and their Therapeutic, Biomedical, and Natural Colorant Applications

Abstract

Carotenoids, prevalent in a diverse range of aquatic animals, perform critical and multifaceted roles essential for marine and freshwater ecosystems. This review examines the distribution, biological functions, and potential biomedical applications of carotenoids sourced from various aquatic animals. Carotenoids are acquired through food consumption or metabolic pathways, playing vital roles such as photoprotection, antioxidant defense, and nutritional enhancement, particularly provitamin A. Marine sponges and cnidarians display a diverse spectrum of carotenoids, crucial for symbiosis and photoprotection. Molluscs and crustaceans exhibit varied carotenoid profiles corresponding to their trophic strategies, whereas fish and echinoderms utilize carotenoids in reproductive and developmental processes. In biomedical contexts, carotenoids act as potential anti-cancer agents and antioxidants. Lycopene, β-carotene, and astaxanthin demonstrate anti-proliferative and antioxidant effects, pivotal in cancer prevention and therapeutic interventions. Their applications extend to biomedical technologies like Raman spectroscopy and drug delivery systems, underscoring their diagnostic and therapeutic potential. Carotenoids, as powerful antioxidants, neutralize free radicals and diminish oxidative stress, which is linked to chronic diseases like cardiovascular diseases, neurodegenerative disorders, and cancer. Some carotenoids, such as beta-carotene, are precursors to vitamin A, vital for vision, immune response, and cell communication. Furthermore, carotenoids have anti-inflammatory properties that modulate inflammatory pathways and provide therapeutic potential in diseases like inflammatory bowel disease and arthritis, which are marked by chronic inflammation. Furthermore, carotenoids provide photoprotection, safeguarding the skin and other tissues from damage caused by ultraviolet radiation. This paper highlights the integral role of carotenoids in biomedical advancements, emphasizing their significance in human health research.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073377688250903053348
2025-10-01
2025-11-09
Loading full text...

Full text loading...

References

  1. Rinehart K.L. Holt T.G. Fregeau N.L. Keifer P.A. Wilson G.R. Perun T.J. Sakai R. Thompson A.G. Stroh J.G. Shield L.S. Seigler D.S. Li L.H. Martin D.G. Grimmelikhuijzen C.J.P. Gäde G. Bioactive compounds from aquatic and terrestrial sources. J. Nat. Prod. 1990 53 4 771 792 10.1021/np50070a001 2095373
    [Google Scholar]
  2. Molinski T.F. Dalisay D.S. Lievens S.L. Saludes J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009 8 1 69 85 10.1038/nrd2487 19096380
    [Google Scholar]
  3. Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007 25 3 294 306 10.1016/j.biotechadv.2007.02.001 17350212
    [Google Scholar]
  4. Thomas N. Kim S.K. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 2013 11 1 146 164 10.3390/md11010146 23344156
    [Google Scholar]
  5. Yuan J.P. Peng J. Yin K. Wang J.H. Potential health‐promoting effects of astaxanthin: A high‐value carotenoid mostly from microalgae. Mol. Nutr. Food Res. 2011 55 1 150 165 10.1002/mnfr.201000414 21207519
    [Google Scholar]
  6. Swanson D. Block R. Mousa S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012 3 1 1 7 10.3945/an.111.000893 22332096
    [Google Scholar]
  7. Hoegh-Guldberg O. Mumby P.J. Hooten A.J. Steneck R.S. Greenfield P. Gomez E. Harvell C.D. Sale P.F. Edwards A.J. Caldeira K. Knowlton N. Coral reefs under rapid climate change and ocean acidification. Science 2007 318 5857 1737 1742 10.1126/science.1152509 18079392
    [Google Scholar]
  8. Paul V.J. Ritson-Williams R. Marine chemical ecology. Nat. Prod. Rep. 2008 25 4 662 695 10.1039/b702742g 18663390
    [Google Scholar]
  9. Pattnaik P. Roy U. Jain P. Biocolours: New generation additives for food. Indian. Food Ind. 1997 16 5 21 25
    [Google Scholar]
  10. Slominski A. Tobin D.J. Shibahara S. Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004 84 4 1155 1228 10.1152/physrev.00044.2003 15383650
    [Google Scholar]
  11. Baron M. Davies S. Alexander L. Snellgrove D. Sloman K.A. The effect of dietary pigments on the coloration and behaviour of flame-red dwarf gourami, Colisa lalia. Anim. Behav. 2008 75 3 1041 1051 10.1016/j.anbehav.2007.08.014
    [Google Scholar]
  12. Sugimoto M. Morphological color changes in fish: Regulation of pigment cell density and morphology. Microsc. Res. Tech. 2002 58 6 496 503 10.1002/jemt.10168 12242707
    [Google Scholar]
  13. Kirti K. Amita S. Priti S. Mukesh Kumar A. Jyoti S. Colorful world of microbes: Carotenoids and their applications. Adv. Biol. 2014 2014 1 1 13 10.1155/2014/837891
    [Google Scholar]
  14. The State of World Fisheries and Aquaculture 2022. Rome FAO 2022 10.4060/cc0461en
    [Google Scholar]
  15. Trade of fisheries and aquaculture products 2024 Available from: https://openknowledge.fao.org/server/api/core/bitstreams/9df19f53-b931-4d04-acd3-58a71c6b1a5b/content/sofia/2022/trade-of-aquatic-products.html#note-1_27
  16. Rahman A. Kalita A. Islam S. Deka P. Species composition and conservation status of ornamental fishes in Khambrenga Wetland, Kamrup District, Assam, India. Uttar Pradesh J. Zool. 2024 45 5 22 33 10.56557/upjoz/2024/v45i53926
    [Google Scholar]
  17. Pangestuti R. Kim S.K. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Funct. Foods 2011 3 4 255 266 10.1016/j.jff.2011.07.001
    [Google Scholar]
  18. de Carvalho C.C.C.R. Caramujo M.J. Carotenoids in aquatic ecosystems and aquaculture: A colorful business with implications for human health. Front. Mar. Sci. 2017 4 93 10.3389/fmars.2017.00093
    [Google Scholar]
  19. Pereira D.M. Valentão P. Andrade P.B. Marine natural pigments: Chemistry, distribution and analysis. Dyes Pigments 2014 111 124 134 10.1016/j.dyepig.2014.06.011
    [Google Scholar]
  20. Cañizares-Villanueva R.O. Ríos-Leal E. Olvera Ramírez R. Ponce Noyola T. Márquez Rocha F. Fuentes microbianas de pigmentos. Rev. Latinoam. Microbiol. 1998 40 1-2 87 107 10932737
    [Google Scholar]
  21. Johnson E.A. Schroeder, WA Microbial carotenoids. Adv. Biochem. Eng. Biotechnol. 1996 53 119 178 10.1007/BFb0102327 8578971
    [Google Scholar]
  22. Babu S. Shenolikar I.S. Health & nutritional implications of food colours. Indian J. Med. Res. 1995 102 245 249 8675246
    [Google Scholar]
  23. Nelis H.J. De Leenheer A.P. Microbial sources of carotenoid pigments used in foods and feeds. J. Appl. Bacteriol. 1991 70 3 181 191 10.1111/j.1365‑2672.1991.tb02922.x
    [Google Scholar]
  24. Dufossé L. Fouillaud M. Caro Y. Mapari S.A.S. Sutthiwong N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol. 2014 26 56 61 10.1016/j.copbio.2013.09.007 24679259
    [Google Scholar]
  25. Wolucka B.A. Van Montagu M. GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J. Biol. Chem. 2003 278 48 47483 47490 10.1074/jbc.M309135200 12954627
    [Google Scholar]
  26. Shumskaya M. Wurtzel E.T. The carotenoid biosynthetic pathway: Thinking in all dimensions. Plant Sci. 2013 208 58 63 10.1016/j.plantsci.2013.03.012 23683930
    [Google Scholar]
  27. Superpathway of carotenoid biosynthesis in plants 2024 Available from: https://pmn.plantcyc.org/PLANT/NEW-IMAGE?type=PATHWAY& object=CAROTENOID-PWY
  28. Spiller G.A. Dewell A. Safety of an astaxanthin-rich Haematococcus pluvialis algal extract: A randomized clinical trial. J. Med. Food 2003 6 1 51 56 10.1089/109662003765184741 12804020
    [Google Scholar]
  29. Maoka T. Carotenoids as natural functional pigments. J. Nat. Med. 2020 74 1 1 16 10.1007/s11418‑019‑01364‑x 31588965
    [Google Scholar]
  30. Liaaen-Jensen S. Carotenoids in food chains. 1998 Available from:https://www.cabdirect.org/cabdirect/abstract/19991404642
    [Google Scholar]
  31. Carotenoids 2008 Available from: https://books.google.com/books?hl=en&lr=&id=diIw3GbXPeUC&oi=fnd&pg=PR18&dq=ritton+G,+Liaaen-Jensen+S,+Pfander,+H+(2008)+Carotenoids+vol%3Fume+4:+natural+functions,+Birkh%C3%A4user:+Basel,+Switzerland.&ots=kuelxKfQcR&sig=jVVF-jvRnYvK__OlQO5bTgkramk
  32. Fujiwara Y. Hashimoto K. Manabe K. Maoka T. Structures of tobiraxanthins A1, A2, A3, B, C and D, new carotenoids from the seeds of Pittosporum tobira. Tetrahedron Lett. 2002 43 24 4385 4388 10.1016/S0040‑4039(02)00779‑7
    [Google Scholar]
  33. Matsuno T. Katsuyama M. Maoka T. Hirono T. Komori T. Reductive metabolic pathways of carotenoids in fish (3S,3′S)-astaxanthin to tunaxanthin a, b and c. Comp. Biochem. Physiol. B 1985 80 4 779 789 10.1016/0305‑0491(85)90461‑4
    [Google Scholar]
  34. Maoka T. Carotenoids in marine animals. Mar. Drugs 2011 9 2 278 293 10.3390/md9020278 21566799
    [Google Scholar]
  35. Maoka T. Recent progress in structural studies of carotenoids in animals and plants. Arch. Biochem. Biophys. 2009 483 2 191 195 10.1016/j.abb.2008.10.019 18983811
    [Google Scholar]
  36. Britton G. Functions of intact carotenoids. In: Carotenoids;Birkhäuser: Basel 2008 189 212 10.1007/978‑3‑7643‑7499‑0_10
    [Google Scholar]
  37. Maoka T. Carotenoids: Distribution, function in nature, and analysis using LC-photodiode array detector (DAD)-MS and MS/MS system. Mass Spectrom. 2023 12 1 A0133 10.5702/massspectrometry.A0133 37937116
    [Google Scholar]
  38. Liaaen-Jensen S. Renstrøm B. Ramdahl T. Hallenstvet M. Bergquist P. Carotenoids of marine sponges. Biochem. Syst. Ecol. 1982 10 2 167 174 10.1016/0305‑1978(82)90024‑2
    [Google Scholar]
  39. Yamaguchi M. Carotenoids in sponges. In:Carotenoid chemistry and biochemistry. Pergamon 1982 225 235 10.1016/B978‑0‑08‑026224‑6.50019‑X
    [Google Scholar]
  40. Galasso C. Corinaldesi C. Sansone C. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 2017 6 4 96 10.3390/antiox6040096 29168774
    [Google Scholar]
  41. Tanaka Y. Katayama T. Biochemical studies on the carotenoids in Porifera. Nippon Suisan Gakkaishi 1977 44 11 1283 1285 10.2331/suisan.44.1283
    [Google Scholar]
  42. Tanaka Y. Ito Y. Katayama T. The structure of isoagelaxanthin a in sea sponge Acanthella vulgata. Nippon Suisan Gakkaishi 1982 48 8 1169 1171 10.2331/suisan.48.1169
    [Google Scholar]
  43. Tanaka Y. Katayama T. The structures of isotedanin and isoclathriaxanthin in sea sponge Agelas manuritiana. Nippon Suisan Gakkaishi 1982 48 4 531 533 10.2331/suisan.48.531
    [Google Scholar]
  44. Tanaka Y. Yamamoto A. The structure of a new carotenoid Tethyanine in sea sponge Tethya amamensis. Nippon Suisan Gakkaishi 1984 50 10 1787 10.2331/suisan.50.1787
    [Google Scholar]
  45. Maoka T. Mochida K. Kozuka M. Ito Y. Fujiwara Y. Hashimoto K. Enjo F. Ogata M. Nobukuni Y. Tokuda H. Nishino H. Cancer chemopreventive activity of carotenoids in the fruits of red paprika Capsicum annuum L. Cancer Lett. 2001 172 2 103 109 10.1016/S0304‑3835(01)00635‑8 11566483
    [Google Scholar]
  46. Muller-Parker G. D’elia C.F. Cook C.B. Interactions between corals and their symbiotic algae. In:Coral Reefs in the Anthropocene. Dordrecht Springer 2015 99 116 10.1007/978‑94‑017‑7249‑5_5
    [Google Scholar]
  47. Osinga R. Schutter M. Griffioen B. Wijffels R.H. Verreth J.A.J. Shafir S. Henard S. Taruffi M. Gili C. Lavorano S. The biology and economics of coral growth. Mar. Biotechnol. (NY) 2011 13 4 658 671 10.1007/s10126‑011‑9382‑7 21584662
    [Google Scholar]
  48. Venn A.A. Wilson M.A. Trapido-Rosenthal H.G. Keely B.J. Douglas A. The impact of coral bleaching on the pigment profile of the symbiotic alga. Symbiodinium. Plant. Cell. Environ. 2006 29 12 2133 2142 10.1111/j.1365‑3040.2006.001587.x 17081247
    [Google Scholar]
  49. Matsuno T. Aquatic animal carotenoids. Fish. Sci. 2001 67 5 771 783 10.1046/j.1444‑2906.2001.00323.x
    [Google Scholar]
  50. Hertzberg S. Liaaen-Jensen S. Buchardt O. Norin T. Animal carotenoids. 2. Actinioerythrin and related compounds--novel nor-carotenoids with ring contraction. Acta Chem. Scand. 1968 22 5 1714 1716 10.3891/acta.chem.scand.22‑1714 5705723
    [Google Scholar]
  51. Hertzberg S. Liaaen-Jensen S. Enzell C.R. Francis G.W. Ståhl G. Craig J.C. Animal Carotenoids. 3. The Carotenoids of Actinia equina - Structure Determination of Actinioerythrin and Violerythrin. Acta Chem. Scand. 1969 23 3290 3312 10.3891/acta.chem.scand.23‑3290
    [Google Scholar]
  52. Sleigh, MA Trophic strategies. In: The flagellates: Unity, diversity and evolution; London 2000
    [Google Scholar]
  53. Goodwin T.W. The biochemistry of the carotenoids II Animals. London Chapmann and Hall 1984 10.1007/978‑94‑009‑5542‑4
    [Google Scholar]
  54. Ackman R.G. Marine biogenic lipids, fats and oils. CRC press 1989 Vol. 2
    [Google Scholar]
  55. Maoka T. Akimoto N. Tsushima M. Komemushi S. Mezaki T. Iwase F. Takahashi Y. Sameshima N. Mori M. Sakagami Y. Carotenoids in marine invertebrates living along the Kuroshio current coast. Mar. Drugs 2011 9 8 1419 1427 10.3390/md9081419 21892355
    [Google Scholar]
  56. Morton B. Foregut anatomy and predation by Charonia lampas (Gastropoda: Prosobranchia: Neotaenioglossa) attacking Ophidiaster ophidianus (Asteroidea: Ophidiasteridae) in the Açores, with a review of triton feeding behaviour. J. Nat. Hist. 2012 46 41-42 2621 2637 10.1080/00222933.2012.724721
    [Google Scholar]
  57. Tsushima M. Maoka T. Matsuno T. Structures of carotenoids with 5,6-dihydro-β-end groups from the spindle shell Fusinus perplexus. J. Nat. Prod. 2001 64 9 1139 1142 10.1021/np010060y 11575944
    [Google Scholar]
  58. Maoka T. Hashimoto K. Akimoto N. Fujiwara Y. Structures of five new carotenoids from the oyster Crassostrea gigas. J. Nat. Prod. 2001 64 5 578 581 10.1021/np000476w 11374947
    [Google Scholar]
  59. Maoka T. Fujiwara Y. Hashimoto K. Akimoto N. Characterization of fucoxanthin and fucoxanthinol esters in the Chinese surf clam, Mactra chinensis. J. Agric. Food Chem. 2007 55 4 1563 1567 10.1021/jf063139n 17263549
    [Google Scholar]
  60. Maoka T. Akimoto N. Murakoshi M. Sugiyama K. Nishino H. Carotenoids in clams, Ruditapes philippinarum and Meretrix petechialis. J. Agric. Food Chem. 2010 58 9 5784 5788 10.1021/jf1006243 20397729
    [Google Scholar]
  61. Maoka T. Akimoto N. Yim M.J. Hosokawa M. Miyashita K. New C37 skeletal carotenoid from the clam, Paphia amabillis. J. Agric. Food Chem. 2008 56 24 12069 12072 10.1021/jf802717b 19053385
    [Google Scholar]
  62. Fujiwara Y. Maoka T. Ookubo M. Matsuno T. Crassostreaxanthins A and B, novel marine carotenoids from the oyster. Tetrahedron Lett. 1992 33 34 4941 4944 10.1016/S0040‑4039(00)61240‑6
    [Google Scholar]
  63. Avila C. Terpenoids in marine heterobranch molluscs. Mar. Drugs 2020 18 3 162 10.3390/md18030162 32183298
    [Google Scholar]
  64. Yamashita E. Matsuno T. A new apocarotenoid from the sea hare Aplysia kurodai. Comp. Biochem. Physiol. B 1990 96 3 465 470 10.1016/0305‑0491(90)90041‑Q
    [Google Scholar]
  65. McBeth J.W. Carotenoids from nudibranchs. Comp. Biochem. Physiol. B 1972 41 1 55 68 10.1016/0305‑0491(72)90007‑7
    [Google Scholar]
  66. McBeth J.W. Carotenoids from nudibranchs-II. The partial characterization of hopkinsiaxanthin. Comp. Biochem. Physiol. B 1972 41 1 69 77 10.1016/0305‑0491(72)90008‑9
    [Google Scholar]
  67. Bjerkeng B. Carotenoids in aquaculture: Fish and crustaceans. In:Carotenoids; Birkhäuser: Basel, 2008 237 254 10.1007/978‑3‑7643‑7499‑0_12
    [Google Scholar]
  68. Miyashita K. Function of marine carotenoids. Forum Nutr. 2009 61 1 136 146 10.1159/000212746 19367118
    [Google Scholar]
  69. Matsuno T. Animal carotenoids. In:Carotenoids: Chemistry and Biology. Krinsky N.I. Mathews-Roth M.M. Taylor R.F. New York Springer 1989 59 74 10.1007/978‑1‑4613‑0849‑2_4
    [Google Scholar]
  70. Gilchrist B.M. Distribution and relative abundance of carotenoid pigments in anostraca (crustacea: Branchiopoda). Comp. Biochem. Physiol. 1968 24 1 123 147 10.1016/0010‑406X(68)90963‑8 5650838
    [Google Scholar]
  71. Harashima K. Ohno T. Sawachika T. Hidaka T. Ohnishi E. Carotenoids in orange pupae of the swallowtail, Papilio xuthus. Insect Biochem. 1972 2 5 29 48 10.1016/0020‑1790(72)90064‑9
    [Google Scholar]
  72. Maoka T. Akimoto N. 2,3′-Dihydroxycanthaxanthin, a new carotenoid with a 2-hydroxy-4-oxo-β-end group from the hermit crab, Paralithodes brevipes. Chem. Pharm. Bull 2006 54 10 1462 1464 10.1248/cpb.54.1462 17015993
    [Google Scholar]
  73. Matsuno T. Maoka T. Carotenoids of crustacea. VI. The carotenoids of crab Paralithodes brevipes (Hanasakigani in Japanese). Nippon Suisan Gakkaishi 1988 54 8 1437 1442 10.2331/suisan.54.1437
    [Google Scholar]
  74. Matsuno T. OoKuBo M. The first isolation and identification of fritschiellaxanthin from a crab Sesarma haematocheir (Akategani in Japanese). Nippon Suisan Gakkaishi 1982 48 653 659 10.2331/suisan.48.653
    [Google Scholar]
  75. Shahidi F. Brown J.A. Brown J.A. Carotenoid pigments in seafoods and aquaculture. Crit. Rev. Food Sci. Nutr. 1998 38 1 1 67 10.1080/10408699891274165 9491309
    [Google Scholar]
  76. Tsushima M. Carotenoids in sea urchins. In:Developments in aquaculture and fisheries science. Elsevier 2007 Vol. 37 159 166
    [Google Scholar]
  77. Tsushima M. Fujiwara Y. Matsuno T. Novel marine di-Z-carotenoids: Cucumariaxanthins A, B, and C from the sea cucumber Cucumaria japonica. J. Nat. Prod. 1996 59 1 30 34 10.1021/np960022s 8984150
    [Google Scholar]
  78. Mariutti L.R.B. Pereira D.M. Mercadante A.Z. Valentão P. Teixeira N. Andrade P.B. Further insights on the carotenoid profile of the echinoderm Marthasterias glacialis L. Mar. Drugs 2012 10 7 1498 1510 10.3390/md10071498 22851921
    [Google Scholar]
  79. Matsuno T. Ookubo M. Komori T. Carotenoids of tunicates. III. The structural elucidation of two new marine carotenoids, amarouciaxanthin A and B. J. Nat. Prod. 1985 48 4 606 613 10.1021/np50040a015 3840198
    [Google Scholar]
  80. Ookubo M. Matsuno T. Carotenoids of sea squirts—II. Comparative biochemical studies of carotenoids in sea squirts. Comp. Biochem. Physiol. B 1985 81 1 137 141 10.1016/0305‑0491(85)90174‑9
    [Google Scholar]
  81. Adadi P. Barakova N.V. Krivoshapkina E.F. Selected methods of extracting carotenoids, characterization, and health concerns: A review. J. Agric. Food Chem. 2018 66 24 5925 5947 10.1021/acs.jafc.8b01407 29851485
    [Google Scholar]
  82. Tan K. Zhang H. Zheng H. Carotenoid content and composition: A special focus on commercially important fish and shellfish. Crit. Rev. Food Sci. Nutr. 2024 64 2 544 561 10.1080/10408398.2022.2106937 35930379
    [Google Scholar]
  83. Bendich A. Recent advances in clinical research involving carotenoids. Pure Appl. Chem. 1994 66 5 1017 1024 10.1351/pac199466051017
    [Google Scholar]
  84. Krinsky N.I. The biological properties of carotenoids. Pure Appl. Chem. 1994 66 5 1003 1010 10.1351/pac199466051003
    [Google Scholar]
  85. Palozza P. Krinsky N.I. Antioxidant effects of carotenoids in vivo and in vitro: An overview. Methods Enzymol. 1992 213 403 420 10.1016/0076‑6879(92)13142‑K 1435313
    [Google Scholar]
  86. Bergé J.P. Barnathan G. Fatty acids from lipids of marine organisms: Molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. In:Marine Biotechnology I Advances in Biochemical Engineering/Biotechnology. Berlin, Heidelberg Springer 2005 49 125 10.1007/b135782
    [Google Scholar]
  87. Swain S. Hauzoukim A.P.A. Mohanty B. Use of carotenoid supplementation for enhancement of pigmentation in ornamental fishes. J. Entomol. Zool. Stud. 2020 8 6 636 640
    [Google Scholar]
  88. Matsuno T. Matsutaka H. Nagata S. Metabolism of lutein and zeaxanthin to ketocarotenoids in goldfish, Carassius auratus. Bull Jpn Soc. Sci. Fish 1981 47 5 605 611
    [Google Scholar]
  89. Ohkubo M. Tsushima M. Maoka T. Matsuno T. Carotenoids and their metabolism in the goldfish Carassius auratus (Hibuna). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999 124 3 333 340 10.1016/S0305‑0491(99)00124‑8
    [Google Scholar]
  90. Crissey S.D. Wells R. Serum α- and γ-tocopherols, retinol, retinyl palmitate, and carotenoid concentrations in captive and free-ranging bottlenose dolphins (Tursiops truncatus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999 124 4 391 396 10.1016/S0305‑0491(99)00137‑6 10665367
    [Google Scholar]
  91. Slifka K.A. Bowen P.E. Stacewicz-Sapuntzakis M. Crissey S.D. A survey of serum and dietary carotenoids in captive wild animals. J. Nutr. 1999 129 2 380 390 10.1093/jn/129.2.380 10024616
    [Google Scholar]
  92. Harrison E.H. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012 1821 1 70 77 10.1016/j.bbalip.2011.06.002 21718801
    [Google Scholar]
  93. Paniagua-Michel J. Marine natural products: Bioactive isoprenoids and provitamin A carotenoids. In:Marine Biochemistry. CRC Press 2022 119 128 10.1201/9781003303909‑7
    [Google Scholar]
  94. Singh D.K. Lippman S.M. Cancer chemoprevention. Part 1: Retinoids and carotenoids and other classic antioxidants. Oncology 1998 12 11 1643 1653 9834941
    [Google Scholar]
  95. Wang X.D. Russell R.M. Procarcinogenic and anticarcinogenic effects of β-carotene. Nutr. Rev. 1999 57 9 Pt 1 263 272 10.1111/j.1753‑4887.1999.tb01809.x 10568335
    [Google Scholar]
  96. De Flora S. Bagnasco M. Vainio H. Modulation of genotoxic and related effects by carotenoids and vitamin A in experimental models: Mechanistic issues. Mutagenesis 1999 14 2 153 172 10.1093/mutage/14.2.153 10229917
    [Google Scholar]
  97. Downham A. Collins P. Colouring our foods in the last and next millennium. Int. J. Food Sci. Technol. 2000 35 1 5 22 10.1046/j.1365‑2621.2000.00373.x
    [Google Scholar]
  98. Sajilata M.G. Singhal R.S. Isolation and stabilisation of natural pigments for food applications. Stewart Postharvest Rev. 2006 2 5 1 29 10.2212/spr.2006.5.11
    [Google Scholar]
  99. Socaciu C. Food. colorants: Chemical and functional properties. CRC press 2007 10.1201/9781420009286
    [Google Scholar]
  100. Scotter M.J. Emerging and persistent issues with artificial food colours: Natural colour additives as alternatives to synthetic colours in food and drink. Qual. Assur. Saf. Crops Foods 2011 3 1 28 39 10.1111/j.1757‑837X.2010.00087.x
    [Google Scholar]
  101. Mortensen A. Carotenoids and other pigments as natural colorants. Pure Appl. Chem. 2006 78 8 1477 1491 10.1351/pac200678081477
    [Google Scholar]
  102. Wackerbarth H. Stoll T. Gebken S. Pelters C. Bindrich U. Carotenoid–protein interaction as an approach for the formulation of functional food emulsions. Food Res. Int. 2009 42 9 1254 1258 10.1016/j.foodres.2009.04.002
    [Google Scholar]
  103. Chuyen H.V. Eun J.B. Marine carotenoids: Bioactivities and potential benefits to human health. Crit. Rev. Food Sci. Nutr. 2017 57 12 2600 2610 10.1080/10408398.2015.1063477 26565683
    [Google Scholar]
  104. Birben E. Sahiner U.M. Sackesen C. Erzurum S. Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012 5 1 9 19 10.1097/WOX.0b013e3182439613 23268465
    [Google Scholar]
  105. D’Orazio N. Gemello E. Gammone M.A. De Girolamo M. Ficoneri C. Riccioni G. Fucoxantin: A treasure from the sea. Mar. Drugs 2012 10 3 604 616 10.3390/md10030604 22611357
    [Google Scholar]
  106. Ngo D.H. Wijesekara I. Vo T.S. Van Ta Q. Kim S.K. Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Res. Int. 2011 44 2 523 529 10.1016/j.foodres.2010.12.030
    [Google Scholar]
  107. Ozougwu J.C. The role of reactive oxygen species and antioxidants in oxidative stress. Int. J. Res. 2016 1 8 1 8
    [Google Scholar]
  108. Higuera-Ciapara I. Félix-Valenzuela L. Goycoolea F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006 46 2 185 196 10.1080/10408690590957188 16431409
    [Google Scholar]
  109. Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014 224 164 175 10.1016/j.cbi.2014.10.016 25452175
    [Google Scholar]
  110. Yeum K.J. Aldini G. Russell R.M. Krinsky N.I. Antioxidant/Pro-oxidant Actions of Carotenoids. In: Carotenoids;Birkhäuser: Basel, 2009 235 268 10.1007/978‑3‑7643‑7501‑0_12
    [Google Scholar]
  111. Tian B. Xu Z. Sun Z. Lin J. Hua Y. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim. Biophys. Acta, Gen. Subj. 2007 1770 6 902 911 10.1016/j.bbagen.2007.01.016 17368731
    [Google Scholar]
  112. Stahl W. Sies H. Antioxidant activity of carotenoids. Mol. Aspects Med. 2003 24 6 345 351 10.1016/S0098‑2997(03)00030‑X 14585305
    [Google Scholar]
  113. Fiedor J. Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014 6 2 466 488 10.3390/nu6020466 24473231
    [Google Scholar]
  114. Stahl W. Heinrich U. Jungmann H. Sies H. Tronnier H. Carotenoids and carotenoids plus vitamin E protect against ultraviolet light–induced erythema in humans. Am. J. Clin. Nutr. 2000 71 3 795 798 10.1093/ajcn/71.3.795 10702175
    [Google Scholar]
  115. Miki W. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 1991 63 1 141 146 10.1351/pac199163010141
    [Google Scholar]
  116. da Silva F.O. Tramonte V.L.C.G. Parisenti J. Lima-Garcia J.F. Maraschin M. da Silva E.L. Litopenaeus vannamei muscle carotenoids versus astaxanthin: A comparison of antioxidant activity and in vitro protective effects against lipid peroxidation. Food Biosci. 2015 9 12 19 10.1016/j.fbio.2014.11.001
    [Google Scholar]
  117. Rodriguez-Ruiz V. Salatti-Dorado J.Á. Barzegari A. Nicolas-Boluda A. Houaoui A. Caballo C. Caballero-Casero N. Sicilia D. Bastias Venegas J. Pauthe E. Omidi Y. Letourneur D. Rubio S. Gueguen V. Pavon-Djavid G. Astaxanthin-loaded nanostructured lipid carriers for preservation of antioxidant activity. Molecules 2018 23 10 2601 10.3390/molecules23102601 30314284
    [Google Scholar]
  118. Dose J. Matsugo S. Yokokawa H. Koshida Y. Okazaki S. Seidel U. Eggersdorfer M. Rimbach G. Esatbeyoglu T. Free radical scavenging and cellular antioxidant properties of astaxanthin. Int. J. Mol. Sci. 2016 17 1 103 10.3390/ijms17010103 26784174
    [Google Scholar]
  119. Naguib Y.M.A. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 2000 48 4 1150 1154 10.1021/jf991106k 10775364
    [Google Scholar]
  120. Sztretye M. Dienes B. Gönczi M. Czirják T. Csernoch L. Dux L. Szentesi P. Keller-Pintér A. Astaxanthin: A potential mitochondrial‐targeted antioxidant treatment in diseases and with aging. Oxid. Med. Cell. Longev. 2019 2019 1 1 14 10.1155/2019/3849692 31814873
    [Google Scholar]
  121. Maoka T. Nishino A. Yasui H. Yamano Y. Wada A. Anti-oxidative activity of mytiloxanthin, a metabolite of fucoxanthin in shellfish and tunicates. Mar. Drugs 2016 14 5 93 10.3390/md14050093 27187417
    [Google Scholar]
  122. Hirayama O. Nakamura K. Hamada S. Kobayasi Y. Singlet oxygen quenching ability of naturally occurring carotenoids. Lipids 1994 29 2 149 150 10.1007/BF02537155 8152349
    [Google Scholar]
  123. Shimidzu N. Goto M. Miki W. Carotenoids as singlet oxygen quenchers in marine organisms. Fish. Sci. 1996 62 1 134 137 10.2331/fishsci.62.134
    [Google Scholar]
  124. Iqbal H.M.N. Rasheed T. Ahmed I. Iqbal H.M.N. b b High-value compounds from microalgae with industrial exploitability ndash A review b b. Front. Biosci. 2017 9 3 319 342 10.2741/s490 28410122
    [Google Scholar]
  125. Centella M.H. Arévalo-Gallegos A. Parra-Saldivar R. Iqbal H.M.N. Marine-derived bioactive compounds for value-added applications in bio- and non-bio sectors. J. Clean. Prod. 2017 168 1559 1565 10.1016/j.jclepro.2017.05.086
    [Google Scholar]
  126. Monego D.L. da Rosa M.B. do Nascimento P.C. Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review. Food Chem. 2017 217 37 44 10.1016/j.foodchem.2016.08.073 27664605
    [Google Scholar]
  127. Sosa-Hernández J.E. Escobedo-Avellaneda Z. Iqbal H.M.N. Welti-Chanes J. State-of-the-art extraction methodologies for bioactive compounds from algal biome to meet bio-economy challenges and opportunities. Molecules 2018 23 11 2953 10.3390/molecules23112953 30424551
    [Google Scholar]
  128. Sharoni Y. Linnewiel-Hermoni K. Khanin M. Salman H. Veprik A. Danilenko M. Levy J. Carotenoids and apocarotenoids in cellular signaling related to cancer: A review. Mol. Nutr. Food Res. 2012 56 2 259 269 10.1002/mnfr.201100311 22102431
    [Google Scholar]
  129. Meyers K.J. Mares J.A. Igo R.P. Truitt B. Liu Z. Millen A.E. Klein M. Johnson E.J. Engelman C.D. Karki C.K. Blodi B. Gehrs K. Tinker L. Wallace R. Robinson J. LeBlanc E.S. Sarto G. Bernstein P.S. SanGiovanni J.P. Iyengar S.K. Genetic evidence for role of carotenoids in age-related macular degeneration in the Carotenoids in Age-Related Eye Disease Study (CAREDS). Invest. Ophthalmol. Vis. Sci. 2014 55 1 587 599 10.1167/iovs.13‑13216 24346170
    [Google Scholar]
  130. Sommer A. Vitamin a deficiency and clinical disease: An historical overview. J. Nutr. 2008 138 10 1835 1839 10.1093/jn/138.10.1835 18806089
    [Google Scholar]
  131. Stephensen C.B. Vitamin A, infection, and immune function. Annu. Rev. Nutr. 2001 21 1 167 192 10.1146/annurev.nutr.21.1.167 11375434
    [Google Scholar]
  132. Sathasivam R. Ki J.S. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar. Drugs 2018 16 1 26 10.3390/md16010026 29329235
    [Google Scholar]
  133. Torre L.A. Siegel R.L. Ward E.M. Jemal A. Global cancer incidence and mortality rates and trends—An update. Cancer Epidemiol. Biomarkers Prev. 2016 25 1 16 27 10.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  134. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  135. Nishino H. Murakoshi M. Ii T. Takemura M. Kuchide M. Kanazawa M. Yang Mou, X.; Wada, S.; Masuda, M.; Ohsaka, Y.; Yogosawa, S.; Satomi, Y.; Jinno, K. Carotenoids in cancer chemoprevention. Cancer Metastasis Rev. 2002 21 3-4 257 264 10.1023/A:1021206826750 12549764
    [Google Scholar]
  136. Rao A.V. Agarwal S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr. Res. 1999 19 2 305 323 10.1016/S0271‑5317(98)00193‑6
    [Google Scholar]
  137. Zhang L.X. Cooney R.V. Bertram J.S. Carotenoids up-regulate connexin43 gene expression independent of their provitamin A or antioxidant properties. Cancer Res. 1992 52 20 5707 5712 1327514
    [Google Scholar]
  138. Zhang L.X. Cooney R.V. Bertram J.S. Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: Relationship to their cancer chemopreventive action. Carcinogenesis 1991 12 11 2109 2114 10.1093/carcin/12.11.2109 1934296
    [Google Scholar]
  139. Landrum J.T. Bone R.A. Herrero C. Astaxanthin, β-cryptoxanthin, lutein, and zeaxanthin. In:Phytochemicals in Nutrition and Health. CRC Press 2002 189 208 10.1201/9781420031690.ch12
    [Google Scholar]
  140. Bhosale P. Bernstein P.S. Microbial xanthophylls. Appl. Microbiol. Biotechnol. 2005 68 4 445 455 10.1007/s00253‑005‑0032‑8 16001255
    [Google Scholar]
  141. Mumu M. Das A. Emran T.B. Mitra S. Islam F. Roy A. Karim M.M. Das R. Park M.N. Chandran D. Sharma R. Khandaker M.U. Idris A.M. Kim B. Fucoxanthin: A promising phytochemical on diverse pharmacological targets. Front. Pharmacol. 2022 13 929442 10.3389/fphar.2022.929442 35983376
    [Google Scholar]
  142. Das S.K. Hashimoto T. Kanazawa K. Growth inhibition of human hepatic carcinoma HepG2 cells by fucoxanthin is associated with down-regulation of cyclin D. Biochim. Biophys. Acta, Gen. Subj. 2008 1780 4 743 749 10.1016/j.bbagen.2008.01.003 18230364
    [Google Scholar]
  143. Hosokawa M. Wanezaki S. Miyauchi K. Kurihara H. Kohno H. Kawabata J. Odashima S. Takahashi K. Apoptosis-inducing effect of fucoxanthin on human leukemia cell line HL-60. Food Sci. Technol. Res. 1999 5 3 243 246 10.3136/fstr.5.243
    [Google Scholar]
  144. Liu C.L. Huang Y.S. Hosokawa M. Miyashita K. Hu M.L. Inhibition of proliferation of a hepatoma cell line by fucoxanthin in relation to cell cycle arrest and enhanced gap junctional intercellular communication. Chem. Biol. Interact. 2009 182 2-3 165 172 10.1016/j.cbi.2009.08.017 19737546
    [Google Scholar]
  145. Das S.K. Hashimoto T. Shimizu K. Yoshida T. Sakai T. Sowa Y. Komoto A. Kanazawa K. Fucoxanthin induces cell cycle arrest at G0/G1 phase in human colon carcinoma cells through up-regulation of p21WAF1/Cip1. Biochim. Biophys. Acta, Gen. Subj. 2005 1726 3 328 335 10.1016/j.bbagen.2005.09.007 16236452
    [Google Scholar]
  146. Rengarajan T. Rajendran P. Nandakumar N. Balasubramanian M. Nishigaki I. Cancer preventive efficacy of marine carotenoid fucoxanthin: Cell cycle arrest and apoptosis. Nutrients 2013 5 12 4978 4989 10.3390/nu5124978 24322524
    [Google Scholar]
  147. Kim J.H. Park J.J. Lee B.J. Joo M.K. Chun H.J. Lee S.W. Bak Y.T. Astaxanthin inhibits proliferation of human gastric cancer cell lines by interrupting cell cycle progression. Gut Liver 2016 10 3 369 374 10.5009/gnl15208 26470770
    [Google Scholar]
  148. Kan B. Guo D. Yuan B. Vuong A.M. Jiang D. Zhang M. Cheng H. Zhao Q. Li B. Feng L. Huang F. Wang N. Shen X. Yang S. Dietary carotenoid intake and osteoporosis: The national health and nutrition examination survey, 2005–2018. Arch. Osteoporos. 2022 17 1 2 10.1007/s11657‑021‑01047‑9 34878583
    [Google Scholar]
  149. Blüher M. Adipose tissue dysfunction in obesity. Exp. Clin. Endocrinol. Diabetes 2009 117 6 241 250 10.1055/s‑0029‑1192044 19358089
    [Google Scholar]
  150. Kojta I. Chacińska M. Błachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020 12 5 1305 10.3390/nu12051305 32375231
    [Google Scholar]
  151. Gallagher E.J. LeRoith D. Karnieli E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt. Sinai J. Med. 2010 77 5 511 523 10.1002/msj.20212 20960553
    [Google Scholar]
  152. Hasani-Ranjbar S. Jouyandeh Z. Abdollahi M. A systematic review of anti-obesity medicinal plants - An update. J. Diabetes Metab. Disord. 2013 12 1 28 10.1186/2251‑6581‑12‑28
    [Google Scholar]
  153. Ikeuchi M. Koyama T. Takahashi J. Yazawa K. Effects of astaxanthin in obese mice fed a high-fat diet. Biosci. Biotechnol. Biochem. 2007 71 4 893 899 10.1271/bbb.60521 17420580
    [Google Scholar]
  154. Arunkumar E. Bhuvaneswari S. Anuradha C.V. An intervention study in obese mice with astaxanthin, a marine carotenoid – Effects on insulin signaling and pro-inflammatory cytokines. Food Funct. 2012 3 2 120 126 10.1039/C1FO10161G 22089895
    [Google Scholar]
  155. Ni Y. Nagashimada M. Zhuge F. Zhan L. Nagata N. Tsutsui A. Nakanuma Y. Kaneko S. Ota T. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci. Rep. 2015 5 1 17192 10.1038/srep17192 26603489
    [Google Scholar]
  156. Kim B. Farruggia C. Ku C.S. Pham T.X. Yang Y. Bae M. Wegner C.J. Farrell N.J. Harness E. Park Y.K. Koo S.I. Lee J.Y. Astaxanthin inhibits inflammation and fibrosis in the liver and adipose tissue of mouse models of diet-induced obesity and nonalcoholic steatohepatitis. J. Nutr. Biochem. 2017 43 27 35 10.1016/j.jnutbio.2016.01.006 28193580
    [Google Scholar]
  157. Jaswir I. Noviendri D. Hasrini R.F. Octavianti F. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 2011 5 33 7119 7131
    [Google Scholar]
  158. Takayanagi K. Morimoto S. Shirakura Y. Mukai K. Sugiyama T. Tokuji Y. Ohnishi M. Mechanism of visceral fat reduction in Tsumura Suzuki obese, diabetes (TSOD) mice orally administered β-cryptoxanthin from Satsuma mandarin oranges (Citrus unshiu Marc). J. Agric. Food Chem. 2011 59 23 12342 12351 10.1021/jf202821u 22085304
    [Google Scholar]
  159. Ni Y. Nagashimada M. Zhan L. Nagata N. Kobori M. Sugiura M. Ogawa K. Kaneko S. Ota T. Prevention and reversal of lipotoxicity-induced hepatic insulin resistance and steatohepatitis in mice by an antioxidant carotenoid, β-cryptoxanthin. Endocrinology 2015 156 3 987 999 10.1210/en.2014‑1776 25562616
    [Google Scholar]
  160. Maeda H. Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: A review. J. Oleo Sci. 2015 64 2 125 132 10.5650/jos.ess14226 25748372
    [Google Scholar]
  161. Hosokawa M. Miyashita T. Nishikawa S. Emi S. Tsukui T. Beppu F. Okada T. Miyashita K. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-A mice. Arch. Biochem. Biophys. 2010 504 1 17 25 10.1016/j.abb.2010.05.031 20515643
    [Google Scholar]
  162. Manivasagan P. Bharathiraja S. Santha Moorthy M. Mondal S. Seo H. Dae Lee K. Oh J. Marine natural pigments as potential sources for therapeutic applications. Crit. Rev. Biotechnol. 2018 38 5 745 761 10.1080/07388551.2017.1398713 29124966
    [Google Scholar]
  163. Kaewkroek K. Wattanapiromsakul C. Matsuda H. Nakamura S. Tewtrakul S. Anti-inflammatory activity of compounds from Kaempferia marginata rhizomes. Songklanakarin J. Sci. Technol. 2017 39 1
    [Google Scholar]
  164. Sindhu S. Sherief P.M. Aristeus alcocki (Ramadan, 1938). J. Mar. Biol. Assoc. India 2016 58 2 118
    [Google Scholar]
  165. Ohgami K. Shiratori K. Kotake S. Nishida T. Mizuki N. Yazawa K. Ohno S. Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Invest. Ophthalmol. Vis. Sci. 2003 44 6 2694 2701 10.1167/iovs.02‑0822 12766075
    [Google Scholar]
  166. Si P. Zhu C. Biological and neurological activities of astaxanthin.(Review) Mol. Med. Rep. 2022 26 4 300 10.3892/mmr.2022.12816 35946443
    [Google Scholar]
  167. Porter J.L. Varacallo M.A. Osteoporosis. Treasure Island, FL StatPearls 2023
    [Google Scholar]
  168. Bai X. Lu D. Bai J. Zheng H. Ke Z. Li X. Luo S. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Biochem. Biophys. Res. Commun. 2004 314 1 197 207 10.1016/j.bbrc.2003.12.073 14715266
    [Google Scholar]
  169. Callaway D.A. Jiang J.X. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J. Bone Miner. Metab. 2015 33 4 359 370 10.1007/s00774‑015‑0656‑4 25804315
    [Google Scholar]
  170. Mody N. Parhami F. Sarafian T.A. Demer L.L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 2001 31 4 509 519 10.1016/S0891‑5849(01)00610‑4 11498284
    [Google Scholar]
  171. Yamaguchi M. β-Cryptoxanthin and bone metabolism: The preventive role in osteoporosis. J. Health Sci. 2008 54 4 356 369 10.1248/jhs.54.356
    [Google Scholar]
  172. Uchiyama S. Sumida T. Yamaguchi M. Anabolic effect of β-cryptoxanthin on bone components in the femoral tissues of aged rats in vivo and in vitro. J. Health Sci. 2004 50 5 491 496 10.1248/jhs.50.491
    [Google Scholar]
  173. Granado-Lorencio F. Lagarda M.J. Garcia-López F.J. Sánchez-Siles L.M. Blanco-Navarro I. Alegría A. Pérez-Sacristán B. Garcia-Llatas G. Donoso-Navarro E. Silvestre-Mardomingo R.A. Barberá R. Effect of β-cryptoxanthin plus phytosterols on cardiovascular risk and bone turnover markers in post-menopausal women: A randomized crossover trial. Nutr. Metab. Cardiovasc. Dis. 2014 24 10 1090 1096 10.1016/j.numecd.2014.04.013 24909799
    [Google Scholar]
  174. Joshi K. Kumar P. Kataria R. Microbial carotenoid production and their potential applications as antioxidants: A current update. Process Biochem. 2023 128 190 205 10.1016/j.procbio.2023.02.020
    [Google Scholar]
  175. Schindler P.R. Metz H. Bacteria of the Flexibacter/Sporocytophaga group and violet-pigmented bacteria as indicators for hygienically doubtful drinking water. Zentralbl. Hyg. Umweltmed. 1989 189 1 29 36 2510750
    [Google Scholar]
  176. Jain A. Singh B.N. Singh S.P. Singh H.B. Singh S. Exploring biodiversity as bioindicators for water pollution. National Conference on Biodiversity, Development and Poverty Alleviation 2010 Uttar Pradesh
    [Google Scholar]
  177. Gu J.D. Cheung K.H. Phenotypic expression of Vogesella indigofera upon exposure to hexavalent chromium, Cr6+. World J. Microbiol. Biotechnol. 2001 17 5 475 480 10.1023/A:1011966725978
    [Google Scholar]
  178. Cardona-Cardona V.Z. Gilbes Santaella F. Molecular analysis, physiological study and biotechnological capabilities of Blue Pigmented Bacteria from Puerto Rico. Thesis 2010
    [Google Scholar]
  179. Chen N. Bianchi T.S. McKee B.A. Bland J.M. Historical trends of hypoxia on the Louisiana shelf: Application of pigments as biomarkers. Org. Geochem. 2001 32 4 543 561 10.1016/S0146‑6380(00)00194‑7
    [Google Scholar]
  180. Peneaux C. Hansbro P.M. Griffin A.S. The potential utility of carotenoid‐based coloration as a biomonitor of environmental change. Ibis 2021 163 1 20 37 10.1111/ibi.12866
    [Google Scholar]
  181. Han H.S. Choi K.Y. Advances in nanomaterial-mediated photothermal cancer therapies: Toward clinical applications. Biomedicines 2021 9 3 305 10.3390/biomedicines9030305 33809691
    [Google Scholar]
  182. Fassett R.G. Coombes J.S. Astaxanthin: A potential therapeutic agent in cardiovascular disease. Mar. Drugs 2011 9 3 447 465 10.3390/md9030447 21556169
    [Google Scholar]
  183. Hussein G. Sankawa U. Goto H. Matsumoto K. Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. J. Nat. Prod. 2006 69 3 443 449 10.1021/np050354+ 16562856
    [Google Scholar]
  184. Nguyen V.P. Kim S.W. Kim H. Kim H. Seok K.H. Jung M.J. Ahn Y. Kang H.W. Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy. PLoS One 2017 12 4 0174687 10.1371/journal.pone.0174687 28369126
    [Google Scholar]
  185. Auner G.W. Koya S.K. Huang C. Broadbent B. Trexler M. Auner Z. Elias A. Mehne K.C. Brusatori M.A. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. 2018 37 4 691 717 10.1007/s10555‑018‑9770‑9 30569241
    [Google Scholar]
  186. Asher S.A. UV resonance Raman studies of molecular structure and dynamics: Applications in physical and biophysical chemistry. Annu. Rev. Phys. Chem. 1988 39 1 537 588 10.1146/annurev.pc.39.100188.002541 3075468
    [Google Scholar]
  187. Brozek-Pluska B. Musial J. Kordek R. Bailo E. Dieing T. Abramczyk H. Raman spectroscopy and imaging: Applications in human breast cancer diagnosis. Analyst 2012 137 16 3773 3780 10.1039/c2an16179f 22754917
    [Google Scholar]
  188. Abramczyk H. Brozek-Pluska B. Surmacki J. Jablonska-Gajewicz J. Kordek R. Raman ‘optical biopsy’ of human breast cancer. Prog. Biophys. Mol. Biol. 2012 108 1-2 74 81 10.1016/j.pbiomolbio.2011.10.004 22122914
    [Google Scholar]
  189. Horiue H. Sasaki M. Yoshikawa Y. Toyofuku M. Shigeto S. Raman spectroscopic signatures of carotenoids and polyenes enable label-free visualization of microbial distributions within pink biofilms. Sci. Rep. 2020 10 1 7704 10.1038/s41598‑020‑64737‑3 32382042
    [Google Scholar]
  190. Ruiz-Anchondo T. Flores-Holguín N. Glossman-Mitnik D. Natural carotenoids as nanomaterial precursors for molecular photovoltaics: A computational DFT study. Molecules 2010 15 7 4490 4510 10.3390/molecules15074490 20657373
    [Google Scholar]
  191. Wang X.F. Fujii R. Ito S. Koyama Y. Yamano Y. Ito M. Kitamura T. Yanagida S. Dye-sensitized solar cells using retinoic acid and carotenoic acids: Dependence of performance on the conjugation length and the dye concentration. Chem. Phys. Lett. 2005 416 1-3 1 6 10.1016/j.cplett.2005.09.020
    [Google Scholar]
  192. Gómez-Ortíz N.M. Vázquez-Maldonado I.A. Pérez-Espadas A.R. Mena-Rejón G.J. Azamar-Barrios J.A. Oskam G. Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol. Energy Mater. Sol. Cells 2010 94 1 40 44 10.1016/j.solmat.2009.05.013
    [Google Scholar]
  193. Kong F.T. Dai S.Y. Wang K.J. Review of recent progress in dye‐sensitized solar cells. Adv. Optoelectron. 2007 2007 1 1 13 10.1155/2007/75384
    [Google Scholar]
  194. Nguyen V.P. Park S. Oh J. Wook Kang H. Biocompatible astaxanthin as novel contrast agent for biomedical imaging. J. Biophoton. 2017 10 8 1053 1061 10.1002/jbio.201600159 27618280
    [Google Scholar]
  195. Chen-Wei Wei, Sheng-Wen Huang; Pai-Chi Li; Li, P.C. Photoacoustic flow measurements based on wash-in analysis of gold nanorods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007 54 6 1131 1141 10.1109/TUFFC.2007.367 17571812
    [Google Scholar]
  196. Viator J.A. Svaasand L.O. Aguilar G. Choi B. Nelson J.S. Photoacoustic measurement of epidermal melanin. Proceedings Volume 4960, Biomedical Optoacoustics IV, San Jose, CA, United States 2003 10.1117/12.477648
    [Google Scholar]
  197. Wang L.V. Hu S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012 335 6075 1458 1462 10.1126/science.1216210 22442475
    [Google Scholar]
  198. Braiman-Wiksman L. Solomonik I. Spira R. Tennenbaum T. Novel insights into wound healing sequence of events. Toxicol. Pathol. 2007 35 6 767 779 10.1080/01926230701584189 17943650
    [Google Scholar]
  199. Hamdi M. Feki A. Bardaa S. Li S. Nagarajan S. Mellouli M. Boudawara T. Sahnoun Z. Nasri M. Nasri R. A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment. Mater. Sci. Eng. C 2020 113 110978 10.1016/j.msec.2020.110978 32487393
    [Google Scholar]
  200. Meephansan J. Rungjang A. Yingmema W. Deenonpoe R. Ponnikorn S. Effect of astaxanthin on cutaneous wound healing. Clin. Cosmet. Investig. Dermatol. 2017 10 259 265 10.2147/CCID.S142795 28761364
    [Google Scholar]
  201. Mizuta M. Hirano S. Hiwatashi N. Tateya I. Kanemaru S. Nakamura T. Ito J. Effect of astaxanthin on vocal fold wound healing. Laryngoscope 2014 124 1 E1 E7 10.1002/lary.24197 23686840
    [Google Scholar]
  202. Fang Q. Guo S. Zhou H. Han R. Wu P. Han C. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis. Sci. Rep. 2017 7 1 41440 10.1038/srep41440 28128352
    [Google Scholar]
  203. Madhyastha H.K. Radha K.S. Nakajima Y. Omura S. Maruyama M. uPA dependent and independent mechanisms of wound healing by C‐phycocyanin. J. Cell. Mol. Med. 2008 12 6b 2691 2703 10.1111/j.1582‑4934.2008.00272.x 18266963
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073377688250903053348
Loading
/content/journals/cchts/10.2174/0113862073377688250903053348
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: astaxanthin ; drug delivery ; Antioxidant ; anti-cancer ; aquatic organism ; crustaceans
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test