Skip to content
2000
image of Apigenin Regulating PI3K/AKT Pathway to Improve Depressive Behavior in Epileptic Rats

Abstract

Introduction

Depression is a common comorbidity in epilepsy, significantly impacting patients' quality of life. The hippocampus, linked to depression and neurodegeneration, is vulnerable in epilepsy. Epileptogenesis involves inflammation, oxidative stress, and neuronal damage, with the PI3K/AKT pathway playing a key role. Apigenin (API), a flavonoid in fruits and vegetables, shows neuroprotective, anti-inflammatory, and anti-apoptotic effects. This study investigates API's mechanisms in a LiCl-pilocarpine epileptic rat model, focusing on hippocampal neurogenesis and PI3K/AKT signaling as potential therapeutic targets.

Methods

We studied the effects of API and valproate (VPA) on depressive behavior and astrocytes in Lithium chloride (LiCl)-pilocarpine-induced epileptic rats. Additionally, we predicted the potential molecular targets of API for treating epilepsy using network pharmacology. Finally, we conducted in vivo experiments to validate the predicted mechanism.

Results

In the API and VPA groups, there was a reduction in seizure frequency and seizure severity compared with the control group. The model group showed more depressive behavior than the control (CON) group, and these behaviors improved significantly after VPA and API treatment. HE staining showed that both API and VPA treatment improved LiCl-pilocarpine-induced nuclear contraction and cell swelling. Nissl staining demonstrated that Nissl vesicles in the CA3 region of the hippocampus were decreased in the model group, but the neurons were larger, more abundant, and more neatly arranged after API and VPA treatment. In the model group, the p-PI3K/PI3K and p-AKT/AKT protein ratios and PI3K, AKT mRNA expression were reduced, while brain-derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP) were markedly increased. API and VPA treatment effectively reversed these changes.

Discussion

API reduces seizures and depressive behaviors in LiCl-pilocarpine-induced epileptic rats, comparable to VPA API mitigates hippocampal neuronal damage, preserves Nissl bodies, and suppresses astrocyte activation via the PI3K/AKT pathway, suggesting neuroprotective and anti-inflammatory effects. While API shows promise as an antiepileptic and antidepressant agent, further studies are needed to confirm its direct modulation of PI3K/AKT and efficacy in other epilepsy models.

Conclusion

Our study suggests that API improves depression in rats and has anti-epilepsy activity, which may be involved in activating the PI3K/AKT pathway to protect astrocytes.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073385668250601082232
2025-06-23
2025-09-10
Loading full text...

Full text loading...

References

  1. Qin S. Yang Z. Guan Z. Zhang J. Ping X. Lu Y. Pei L. Exploring the association between epilepsy and depression: A systematic review and meta-analysis. PLoS One 2022 17 12 e0278907 10.1371/journal.pone.0278907 36520790
    [Google Scholar]
  2. Mula M. Brodie M.J. de Toffol B. Guekht A. Hecimovic H. Kanemoto K. Kanner A.M. Teixeira A.L. Wilson S.J. ILAE clinical practice recommendations for the medical treatment of depression in adults with epilepsy. Epilepsia 2022 63 2 316 334 10.1111/epi.17140 34866176
    [Google Scholar]
  3. Nimmo-Smith V. Brugha T.S. Kerr M.P. McManus S. Rai D. Discrimination, domestic violence, abuse, and other adverse life events in people with epilepsy: Population‐based study to assess the burden of these events and their contribution to psychopathology. Epilepsia 2016 57 11 1870 1878 10.1111/epi.13561 27634349
    [Google Scholar]
  4. Wardrope A. Green B. Norman P. Reuber M. The influence of attachment style and relationship quality on quality of life and psychological distress in carers of people with epileptic and nonepileptic seizures. Epilepsy Behav. 2019 93 16 21 10.1016/j.yebeh.2019.01.028 30780076
    [Google Scholar]
  5. Tumienė B. Del Toro Riera M. Grikiniene J. Samaitiene-Aleknienė R. Praninskienė R. Monavari A.A. Sykut-Cegielska J. Multidisciplinary care of patients with inherited metabolic diseases and epilepsy: Current perspectives. J. Multidiscip. Healthc. 2022 15 553 566 10.2147/JMDH.S251863 35387391
    [Google Scholar]
  6. Golub V.M. Reddy D.S. Contusion brain damage in mice for modelling of post-traumatic epilepsy with contralateral hippocampus sclerosis: Comprehensive and longitudinal characterization of spontaneous seizures, neuropathology, and neuropsychiatric comorbidities. Exp. Neurol. 2022 348 113946 10.1016/j.expneurol.2021.113946 34896334
    [Google Scholar]
  7. Li G.G. Lu Y. He P. Zhang S.Y. Cheng Y.T. Zhang S.D. Pei L. Li G. Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis). J. Tradit. Chin. Med. 2021 41 6 845 852 10.19852/j.cnki.jtcm.2021.06.003 34939380
    [Google Scholar]
  8. Shen H. Zhang T. Ji Y. Zhang Y. Wang Y. Jiang Y. Chen X. Liang Q. Wu K. Li Y. Lu X. Cui L. Zhao B. Wang Y. GRK5 deficiency in the hippocampus leads to cognitive impairment via abnormal microglial alterations. Mol. Neurobiol. 2023 60 3 1547 1562 10.1007/s12035‑022‑03151‑4 36525154
    [Google Scholar]
  9. Li X.L. Wang S. Tang C.Y. Ma H.W. Cheng Z.Z. Zhao M. Sun W.J. Wang X.F. Wang M.Y. Li T.F. Qi X.L. Zhou J. Luan G.M. Guan Y.G. Translocation of high mobility group box 1 from the nucleus to the cytoplasm in depressed patients with epilepsy. ASN Neuro 2022 14 1 17590914221136662 10.1177/17590914221136662 36383501
    [Google Scholar]
  10. Scheffer I.E. Zuberi S. Mefford H.C. Guerrini R. McTague A. Developmental and epileptic encephalopathies. Nat. Rev. Dis. Primers 2024 10 1 61 10.1038/s41572‑024‑00546‑6 39237642
    [Google Scholar]
  11. Vezzani A Viviani B Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 2015 96 Pt A 70 80 10.1016/j.neuropharm.2014.10.027 25445483
    [Google Scholar]
  12. Vezzani A. Fujinami R.S. White H.S. Preux P.M. Blümcke I. Sander J.W. Löscher W. Infections, inflammation and epilepsy. Acta Neuropathol. 2016 131 2 211 234 10.1007/s00401‑015‑1481‑5 26423537
    [Google Scholar]
  13. Wang L. Ding J. Zhu C. Guo B. Yang W. He W. Li X. Wang Y. Li W. Wang F. Sun T. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole‑kindled mice. Int. J. Mol. Med. 2021 48 6 219 10.3892/ijmm.2021.5052 34676876
    [Google Scholar]
  14. Hwang J.H. Kumar V.R. Kang S.Y. Jung H.W. Park Y.K. Effects of flower buds extract of tussilago farfara on focal cerebral ischemia in rats and inflammatory response in BV2 microglia. Chin. J. Integr. Med. 2018 24 11 844 852 10.1007/s11655‑018‑2936‑4 30090976
    [Google Scholar]
  15. Vishwakarma S. Singh S. Singh T.G. Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis. Mol. Biol. Rep. 2022 49 2 1437 1452 10.1007/s11033‑021‑06896‑8 34751915
    [Google Scholar]
  16. Pirozzi F. Berkseth M. Shear R. Gonzalez L. Timms A.E. Sulc J. Pao E. Oyama N. Forzano F. Conti V. Guerrini R. Doherty E.S. Saitta S.C. Lockwood C.M. Pritchard C.C. Dobyns W.B. Novotny E. Wright J.N.N. Saneto R.P. Friedman S. Hauptman J. Ojemann J. Kapur R.P. Mirzaa G.M. Profiling PI3K-AKT-MTOR variants in focal brain malformations reveals new insights for diagnostic care. Brain 2022 145 3 925 938 10.1093/brain/awab376 35355055
    [Google Scholar]
  17. Yang J. Feng G. Chen M. Wang S. Tang F. Zhou J. Bao N. Yu J. Jiang G. Glucosamine promotes seizure activity via activation of the PI3K/Akt pathway in epileptic rats. Epilepsy Res. 2021 175 106679 10.1016/j.eplepsyres.2021.106679 34166966
    [Google Scholar]
  18. Nevitt S.J. Sudell M. Weston J. Tudur Smith C. Marson A.G. Antiepileptic drug monotherapy for epilepsy: A network meta-analysis of individual participant data. Cochrane Database Syst. Rev. 2017 12 12 CD011412 10.1002/14651858.CD011412.pub3 29243813
    [Google Scholar]
  19. Alonso-Vanegas M.A. Cisneros-Franco J.M. Castillo-Montoya C. Martínez-Rosas A.R. Gómez-Pérez M.E. Rubio-Donnadieu F. Self‐reported quality of life in pharmacoresistant temporal lobe epilepsy: Correlation with clinical variables and memory evaluation. Epileptic Disord. 2013 15 3 263 271 10.1684/epd.2013.0590 23906668
    [Google Scholar]
  20. Löscher W. Potschka H. Sisodiya S.M. Vezzani A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev. 2020 72 3 606 638 10.1124/pr.120.019539 32540959
    [Google Scholar]
  21. Perucca E. Perucca P. White H.S. Wirrell E.C. Drug resistance in epilepsy. Lancet Neurol. 2023 22 8 723 734 10.1016/S1474‑4422(23)00151‑5 37352888
    [Google Scholar]
  22. Wu J. Cao M. Peng Y. Dong B. Jiang Y. Hu C. Zhu P. Xing W. Yu L. Xu R. Chen Z. Research progress on the treatment of epilepsy with traditional Chinese medicine. Phytomedicine 2023 120 155022 10.1016/j.phymed.2023.155022 37647670
    [Google Scholar]
  23. Li G. Zhang S. Cheng Y. Lu Y. Jia Z. Yang X. Zhang S. Guo W. Pei L. Baicalin suppresses neuron autophagy and apoptosis by regulating astrocyte polarization in pentylenetetrazol-induced epileptic rats and PC12 cells. Brain Res. 2022 1774 147723 10.1016/j.brainres.2021.147723 34780748
    [Google Scholar]
  24. Deng C. Wu Z. Chen Y. Yu Z. Pinellia total alkaloids modulate the gabaergic system in hippocampal formation on pilocarpine-induced epileptic rats. Chin. J. Integr. Med. 2020 26 2 138 145 10.1007/s11655‑019‑2944‑7 31093879
    [Google Scholar]
  25. Zhao Z. He X. Ma C. Wu S. Cuan Y. Sun Y. Bai Y. Huang L. Chen X. Gao T. Zheng X. Excavating anticonvulsant compounds from prescriptions of traditional Chinese medicine in the treatment of epilepsy. Am. J. Chin. Med. 2018 46 4 707 737 10.1142/S0192415X18500374 29737210
    [Google Scholar]
  26. Salehi B. Venditti A. Sharifi-Rad M. Kręgiel D. Sharifi-Rad J. Durazzo A. Lucarini M. Santini A. Souto E.B. Novellino E. Antolak H. Azzini E. Setzer W.N. Martins N. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019 20 6 1305 10.3390/ijms20061305 30875872
    [Google Scholar]
  27. Jiang Z.B. Wang W.J. Xu C. Xie Y.J. Wang X.R. Zhang Y.Z. Huang J.M. Huang M. Xie C. Liu P. Fan X.X. Ma Y.P. Yan P.Y. Liu L. Yao X.J. Wu Q.B. Lai-Han Leung E. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett. 2021 515 36 48 10.1016/j.canlet.2021.05.019 34052328
    [Google Scholar]
  28. Miean K.H. Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001 49 6 3106 3112 10.1021/jf000892m 11410016
    [Google Scholar]
  29. Meng Z. Zhu B. Gao M. Wang G. Zhou H. Lu J. Guan S. Apigenin alleviated PA-induced pyroptosis by activating autophagy in hepatocytes. Food Funct. 2022 13 10 5559 5570 10.1039/D1FO03771D 35481558
    [Google Scholar]
  30. Zhao F. Dang Y. Zhang R. Jing G. Liang W. Xie L. Li Z. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway. Int. Immunopharmacol. 2019 75 105697 10.1016/j.intimp.2019.105697 31352326
    [Google Scholar]
  31. Han Y. Zhang T. Su J. Zhao Y. Chenchen Wang Li X. Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J. Clin. Neurosci. 2017 40 157 162 10.1016/j.jocn.2017.03.003 28342702
    [Google Scholar]
  32. Bijani S. Dizaji R. Sharafi A. Hosseini M.J. Neuroprotective effect of apigenin on depressive-like behavior: Mechanistic approach. Neurochem. Res. 2022 47 3 644 655 10.1007/s11064‑021‑03473‑0 34705188
    [Google Scholar]
  33. Nikbakht F. Hashemi P. Vazifekhah S. Babaei J.F. Investigating the mechanism of antiepileptogenic effect of apigenin in kainate temporal lobe epilepsy: Possible role of mTOR. Exp. Brain Res. 2023 241 3 753 763 10.1007/s00221‑023‑06557‑1 36719442
    [Google Scholar]
  34. Jia C. Zhang R. Wei L. Xie J. Zhou S. Yin W. Hua X. Xiao N. Ma M. Jiao H. Investigation of the mechanism of tanshinone IIA to improve cognitive function via synaptic plasticity in epileptic rats. Pharm. Biol. 2023 61 1 100 110 10.1080/13880209.2022.2157843 36548216
    [Google Scholar]
  35. Van Erum J. Van Dam D. De Deyn P.P. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 2019 95 51 55 10.1016/j.yebeh.2019.02.029 31026782
    [Google Scholar]
  36. Guimarães Marques M.J. Reyes-Garcia S.Z. Marques-Carneiro J.E. Lopes-Silva L.B. Andersen M.L. Cavalheiro E.A. Scorza F.A. Scorza C.A. Long-term potentiation decay and poor long-lasting memory process in the wild rodents Proechimys from Brazil’s Amazon Rainforest. Front. Behav. Neurosci. 2018 12 2 10.3389/fnbeh.2018.00002 29410617
    [Google Scholar]
  37. Pitzer C. La Porta C. Treede R.D. Tappe-Theodor A. Inflammatory and neuropathic pain conditions do not primarily evoke anxiety‐like behaviours in C57 BL /6 mice. Eur. J. Pain 2019 23 2 285 306 10.1002/ejp.1303 30098102
    [Google Scholar]
  38. Ueno H. Takahashi Y. Murakami S. Wani K. Matsumoto Y. Okamoto M. Ishihara T. Effect of simultaneous testing of two mice in the tail suspension test and forced swim test. Sci. Rep. 2022 12 1 9224 10.1038/s41598‑022‑12986‑9 35654971
    [Google Scholar]
  39. Zeldetz V. Natanel D. Boyko M. Zlotnik A. Shiyntum H.N. Grinshpun J. Frank D. Kuts R. Brotfain E. Peiser J. A new method for inducing a depression-like behavior in rats. J. Vis. Exp. 2018 132 57137 10.3791/57137 29553503
    [Google Scholar]
  40. Li G. Chu X. Xing Y. Xue X. Ihtisham B. Liang X. Xu J. Mi Y. Zheng P. Baicalin prevents colon cancer by suppressing CDKN2A protein expression. Chin. J. Integr. Med. 2024 30 11 1007 1017 10.1007/s11655‑024‑4109‑6 38941045
    [Google Scholar]
  41. Stelzer G Rosen N Plaschkes I Zimmerman S Twik M Fishilevich S The genecards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016 54 1.30.1 1.30.33 10.1002/cpbi.5 27322403
    [Google Scholar]
  42. Kuleshov M.V. Jones M.R. Rouillard A.D. Fernandez N.F. Duan Q. Wang Z. Koplev S. Jenkins S.L. Jagodnik K.M. Lachmann A. McDermott M.G. Monteiro C.D. Gundersen G.W. Ma’ayan A. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016 44 W1 W90 W97 10.1093/nar/gkw377 27141961
    [Google Scholar]
  43. Mu H. Chen J. Huang W. Huang G. Deng M. Hong S. Ai P. Gao C. Zhou H. OmicShare tools: A zero‐code interactive online platform for biological data analysis and visualization. iMeta 2024 3 5 e228 10.1002/imt2.228 39429881
    [Google Scholar]
  44. Blank L.J. Socioeconomic disparities in epilepsy care. Curr. Opin. Neurol. 2022 35 2 169 174 10.1097/WCO.0000000000001031 35044956
    [Google Scholar]
  45. Chen B. Choi H. Hirsch L.J. Katz A. Legge A. Buchsbaum R. Detyniecki K. Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav. 2017 76 24 31 10.1016/j.yebeh.2017.08.039 28931473
    [Google Scholar]
  46. Ettinger A.B. Kustra R.P. Hammer A.E. Effect of lamotrigine on depressive symptoms in adult patients with epilepsy. Epilepsy Behav. 2007 10 1 148 154 10.1016/j.yebeh.2006.09.008 17071141
    [Google Scholar]
  47. Hashemi P. Fahanik Babaei J. Vazifekhah S. Nikbakht F. Evaluation of the neuroprotective, anticonvulsant, and cognition-improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iran. J. Basic Med. Sci. 2019 22 7 752 758 10.22038/ijbms.2019.33892.8064 32373296
    [Google Scholar]
  48. Cucchiara F. Ferraro S. Luci G. Bocci G. Relevant pharmacological interactions between alkylating agents and antiepileptic drugs: Preclinical and clinical data. Pharmacol. Res. 2022 175 105976 10.1016/j.phrs.2021.105976 34785318
    [Google Scholar]
  49. Nabavi S.F. Khan H. D’onofrio G. Šamec D. Shirooie S. Dehpour A.R. Argüelles S. Habtemariam S. Sobarzo-Sanchez E. Apigenin as neuroprotective agent: Of mice and men. Pharmacol. Res. 2018 128 359 365 10.1016/j.phrs.2017.10.008 29055745
    [Google Scholar]
  50. Jäger A.K. Krydsfeldt K. Rasmussen H.B. Bioassay-guided isolation of apigenin with GABA-benzodiazepine activity from Tanacetum parthenium. Phytother. Res. 2009 23 11 1642 1644 10.1002/ptr.2816 19441011
    [Google Scholar]
  51. Campbell E.L. Chebib M. Johnston G.A. The dietary flavonoids apigenin and (-)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABA(A) receptors. Biochem. Pharmacol. 2004 68 8 1631 1638 10.1016/j.bcp.2004.07.022 15451406
    [Google Scholar]
  52. Shao C. Yuan J. Liu Y. Qin Y. Wang X. Gu J. Chen G. Zhang B. Liu H.K. Zhao J. Zhu H.L. Qian Y. Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis. Proc. Natl. Acad. Sci. USA 2020 117 19 10155 10164 10.1073/pnas.1917946117 32327603
    [Google Scholar]
  53. Ping N. Zuo K. Cai J. Rong C. Yu Z. Zhang X. Wang G. Ma C. Yang H. Li J. Wang X. Zhao D. Apigenin protects against ischemic stroke by increasing DNA repair. Front. Pharmacol. 2024 15 1362301 10.3389/fphar.2024.1362301 38746012
    [Google Scholar]
  54. Lu W. Chen Z. Wen J. Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells. Biomed. Pharmacother. 2024 170 115847 10.1016/j.biopha.2023.115847 38016362
    [Google Scholar]
  55. Jiang X. Huang H. The therapeutic potential of apigenin against atherosclerosis. Heliyon 2024 11 1 e41272 10.1016/j.heliyon.2024.e41272 39811295
    [Google Scholar]
  56. Holper S. Foster E. Lloyd M. Rayner G. Rychkova M. Ali R. Winton-Brown T.T. Velakoulis D. O’Brien T.J. Kwan P. Malpas C.B. Clinical predictors of discordance between screening tests and psychiatric assessment for depressive and anxiety disorders among patients being evaluated for seizure disorders. Epilepsia 2021 62 5 1170 1183 10.1111/epi.16871 33735445
    [Google Scholar]
  57. Bartsch T. Wulff P. The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience 2015 309 309 1 16 10.1016/j.neuroscience.2015.07.084 26241337
    [Google Scholar]
  58. Cheng Y. Zhang Y. Huang P. Cheng Q. Ding H. Luteolin ameliorates pentetrazole-induced seizures through the inhibition of the TLR4/NF-κB signaling pathway. Epilepsy Res. 2024 201 107321 10.1016/j.eplepsyres.2024.107321 38382229
    [Google Scholar]
  59. Tambe R. Patil A. Jain P. Sancheti J. Somani G. Sathaye S. Assessment of luteolin isolated from Eclipta alba leaves in animal models of epilepsy. Pharm. Biol. 2017 55 1 264 268 10.1080/13880209.2016.1260597 27927066
    [Google Scholar]
  60. Carriel V. Campos A. Alaminos M. Raimondo S. Geuna S. Staining methods for normal and regenerative myelin in the nervous system. Methods Mol. Biol. 2017 1560 207 218 10.1007/978‑1‑4939‑6788‑9_15 28155156
    [Google Scholar]
  61. Juaristi I. Contreras L. González-Sánchez P. Pérez-Liébana I. González-Moreno L. Pardo B. del Arco A. Satrústegui J. The response to stimulation in neurons and astrocytes. Neurochem. Res. 2019 44 10 2385 2391 10.1007/s11064‑019‑02803‑7 31016552
    [Google Scholar]
  62. Farhy-Tselnicker I. Allen N.J. Astrocytes, neurons, synapses: A tripartite view on cortical circuit development. Neural Dev. 2018 13 1 7 10.1186/s13064‑018‑0104‑y 29712572
    [Google Scholar]
  63. Soto J.S. Jami-Alahmadi Y. Chacon J. Moye S.L. Diaz-Castro B. Wohlschlegel J.A. Khakh B.S. Astrocyte–neuron subproteomes and obsessive–compulsive disorder mechanisms. Nature 2023 616 7958 764 773 10.1038/s41586‑023‑05927‑7 37046092
    [Google Scholar]
  64. Galosi E. Di Pietro G. La Cesa S. Di Stefano G. Leone C. Fasolino A. Di Lionardo A. Leonetti F. Buzzetti R. Mollica C. Cruccu G. Truini A. Differential involvement of myelinated and unmyelinated nerve fibers in painful diabetic polyneuropathy. Muscle Nerve 2021 63 1 68 74 10.1002/mus.27080 32996600
    [Google Scholar]
  65. Lang J. Sun B. Feng S. Sun G. Impaired autophagic flux in the human brain after traumatic brain injury. Neuroreport 2024 35 6 387 398 10.1097/WNR.0000000000002020 38526944
    [Google Scholar]
  66. Wolinski P. Ksiazek-Winiarek D. Glabinski A. Cytokines and neurodegeneration in epileptogenesis. Brain Sci. 2022 12 3 380 10.3390/brainsci12030380 35326336
    [Google Scholar]
  67. Hong Q. Ding Y. Chen J. Shi S. Liang R. Tu X. Schisandrin B. Schisandrin B protects against ischemic brain damage by regulating PI3K/AKT signaling in rats. Chin. J. Integr. Med. 2023 29 10 885 894 10.1007/s11655‑023‑3596‑1 37357242
    [Google Scholar]
  68. Liu K. An J. Zhang J. Zhao J. Sun P. He Z. Network pharmacology combined with experimental validation show that apigenin as the active ingredient of Campsis grandiflora flower against Parkinson’s disease by inhibiting the PI3K/AKT/NF-κB pathway. PLoS One 2024 19 10 e0311824 10.1371/journal.pone.0311824 39383141
    [Google Scholar]
  69. Fu C. Peng J. Ling Y. Zhao H. Zhao Y. Zhang X. Ai M. Peng Q. Qin Y. Apigenin inhibits angiogenesis in retinal microvascular endothelial cells through regulating of the miR-140-5p/HDAC3-mediated PTEN/PI3K/AKT pathway. BMC Ophthalmol. 2023 23 1 302 10.1186/s12886‑023‑03046‑5 37415101
    [Google Scholar]
  70. Lim W. Park S. Bazer F.W. Song G. Apigenin reduces survival of choriocarcinoma cells by inducing apoptosis via the PI3K/AKT and ERK1/2 MAPK pathways. J. Cell. Physiol. 2016 231 12 2690 2699 10.1002/jcp.25372 26970256
    [Google Scholar]
  71. Jansen L.A. Mirzaa G.M. Ishak G.E. O’Roak B.J. Hiatt J.B. Roden W.H. Gunter S.A. Christian S.L. Collins S. Adams C. Rivière J.B. St-Onge J. Ojemann J.G. Shendure J. Hevner R.F. Dobyns W.B. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 2015 138 6 1613 1628 10.1093/brain/awv045 25722288
    [Google Scholar]
  72. Tripathi S. Kushwaha R. Mishra J. Gupta M.K. Kumar H. Sanyal S. Singh D. Sanyal S. Sahasrabuddhe A.A. Kamthan M. Mudiam M.K.R. Bandyopadhyay S. Docosahexaenoic acid up-regulates both PI3K/AKT-dependent FABP7-PPARγ interaction and MKP3 that enhance GFAP in developing rat brain astrocytes. J. Neurochem. 2017 140 1 96 113 10.1111/jnc.13879 27787894
    [Google Scholar]
  73. Chen Z.P. Wang S. Zhao X. Fang W. Wang Z. Ye H. Wang M.J. Ke L. Huang T. Lv P. Jiang X. Zhang Q. Li L. Xie S.T. Zhu J.N. Hang C. Chen D. Liu X. Yan C. Lipid-accumulated reactive astrocytes promote disease progression in epilepsy. Nat. Neurosci. 2023 26 4 542 554 10.1038/s41593‑023‑01288‑6 36941428
    [Google Scholar]
  74. Liu X. Yang L. Shao L. He Y. Wu G. Bao Y. Lu N. Gong D. Lu Y. Cui T. Sun N. Chen D. Shi W. Fukunaga K. Chen H. Chen Z. Han F. Lu Y. Endothelial Cdk5 deficit leads to the development of spontaneous epilepsy through CXCL1/CXCR2-mediated reactive astrogliosis. J. Exp. Med. 2020 217 1 e20180992 10.1084/jem.20180992 31699822
    [Google Scholar]
  75. Henning L. Antony H. Breuer A. Müller J. Seifert G. Audinat E. Singh P. Brosseron F. Heneka M.T. Steinhäuser C. Bedner P. Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia 2023 71 2 168 186 10.1002/glia.24265 36373840
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073385668250601082232
Loading
/content/journals/cchts/10.2174/0113862073385668250601082232
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: depressive behavior ; Epilepsy ; PI3K/AKT ; astrocyte ; apigenin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test