Skip to content
2000
image of Exosomal lncRNA ENST00000592016 rescues the Weakened Viability of HUVEC Cells Caused by Intermittent Hypoxia

Abstract

Introduction

Obstructive sleep apnea syndrome [OSAS] is a common sleep breathing disorder accompanied by multiple organ intermittent hypoxemia. Our previous study has suggested that the expression of a lncRNA termed ENST00000592016 [lnc2016 for short] derived from plasma exosomes is remarkably elevated in OSA patients compared to the normal population, and lnc2016 can improve the diagnostic efficiency of OSA.

Objective

To unmask the role of the lnc2016 in vascular endothelial cells, targeted hypoxia is the goal of the current research.

Methods

Primary human ADSCs and HUVEC cells were cultured. CCK-8, cytometric assay, transwell, and tubular formation assay were used to determine cell viability, cell apoptosis, cell cycle, cell migration, as well as tubular formation ability.

Results

Adipose-derived stem cells [ADSCs]-derived exosomes contained robust lnc2016. After co-culture with human umbilical vein endothelial cells [HUVECs], exosomal lnc2016 could enhance cell proliferation, DNA synthesis, migration, and tubular formation, whereas suppress cell apoptosis of HUVECs against hypoxic conditions.

Discussion

Under hypoxic conditions, ADSCs secrete various reparative factors and transmit them exosomes; among them, lnc2016 may participate in the regulation of hypoxia-induced injury through the ceRNA network, which requires further investigation.

Conclusion

Ln2016 can promote the cell growth, migration, DNA synthesis, and tubular formation as well as suppress the cell apoptosis of vascular endothelial cells against hypoxia .

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073355701250512034857
2025-06-03
2025-09-07
Loading full text...

Full text loading...

References

  1. Hao S. Li F. Jiang P. Gao J. Effect of chronic intermittent hypoxia-induced HIF-1α/ATAD2 expression on lung cancer stemness. Cell. Mol. Biol. Lett. 2022 27 1 44 10.1186/s11658‑022‑00345‑5 35672694
    [Google Scholar]
  2. Kirsch D.B. Obstructive sleep apnea. Continuum 2020 26 4 908 928 10.1212/CON.0000000000000885 32756228
    [Google Scholar]
  3. Benjafield A.V. Ayas N.T. Eastwood P.R. Heinzer R. Ip M.S.M. Morrell M.J. Nunez C.M. Patel S.R. Penzel T. Pépin J.L. Peppard P.E. Sinha S. Tufik S. Valentine K. Malhotra A. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019 7 8 687 698 10.1016/S2213‑2600(19)30198‑5 31300334
    [Google Scholar]
  4. Kapur V.K. Auckley D.H. Chowdhuri S. Clinical practice guideline for diagnostic testing for adult obstructive sleep Apnea: An American academy of sleep medicine clinical practice guideline. J. Clin. Sleep Med. 2017 13 3 479 504
    [Google Scholar]
  5. Chen X. Liu H. Huang R. Wei R. Zhao Y. Li T. Screening of plasma exosomal lncRNAs to identify potential biomarkers for obstructive sleep apnea. Ann. Transl. Med. 2022 10 17 936 10.21037/atm‑22‑3818 36172105
    [Google Scholar]
  6. Li W. Huang K. Wen F. Cui G. Guo H. He Z. Zhao S. Intermittent hypoxia-induced downregulation of microRNA-320b promotes lung cancer tumorigenesis by increasing CDT1 via USP37. Mol. Ther. Nucleic Acids 2021 24 528 541 10.1016/j.omtn.2020.12.023 33898105
    [Google Scholar]
  7. Zhao M. Wang S. Zuo A. Zhang J. Wen W. Jiang W. Chen H. Liang D. Sun J. Wang M. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cell. Mol. Biol. Lett. 2021 26 1 40 10.1186/s11658‑021‑00283‑8 34479471
    [Google Scholar]
  8. Sun B. Ma Q. Shen J. Meng Z. Xu J. Up-to-date advance in the relationship between OSA and stroke: A narrative review. Sleep Breath. 2024 28 1 53 60 10.1007/s11325‑023‑02904‑2
    [Google Scholar]
  9. Marsboom G. Rehman J. Hypoxia signaling in vascular homeostasis. Physiology 2018 33 5 328 337 10.1152/physiol.00018.2018 30109825
    [Google Scholar]
  10. Luo B. Li Y. Zhu M. Cui J. Liu Y. Liu Y. Intermittent hypoxia and atherosclerosis: From molecular mechanisms to the therapeutic treatment. Oxid. Med. Cell. Longev. 2022 2022 1 16 10.1155/2022/1438470 35965683
    [Google Scholar]
  11. Covello K.L. Simon M.C. HIFs, hypoxia, and vascular development. Curr. Top. Dev. Biol. 2004 62 37 54 10.1016/S0070‑2153(04)62002‑3 15522738
    [Google Scholar]
  12. Zhang Q. Liu J. Duan H. Li R. Peng W. Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021 34 43 63 10.1016/j.jare.2021.06.023 35024180
    [Google Scholar]
  13. Mangiacapra F. Viscusi M.M. Verolino G. Paolucci L. Nusca A. Melfi R. Ussia G.P. Grigioni F. Invasive assessment of coronary microvascular function. J. Clin. Med. 2021 11 1 228 10.3390/jcm11010228 35011968
    [Google Scholar]
  14. Signorelli S. Jennings P. Leonard M.O.O Pfaller W. Differential effects of hypoxic stress in alveolar epithelial cells and microvascular endothelial cells. Cell. Physiol. Biochem. 2010 25 1 135 144 10.1159/000272066
    [Google Scholar]
  15. Kyotani Y. Takasawa S. Yoshizumi M. Proliferative pathways of vascular smooth muscle cells in response to intermittent hypoxia. Int. J. Mol. Sci. 2019 20 11 2706 10.3390/ijms20112706 31159449
    [Google Scholar]
  16. Scheinfeld N. Yu T. Lee J. Verrucous hyperplasia of the great toe: A case and a review of the literature. Dermatol. Surg. 2004 30 2 Pt 1 215 217 10.1097/00042728‑200402000‑00022
    [Google Scholar]
  17. Jaffey J.A. Williams K.J. Masseau I. Krueger M. Reinero C. Vasoproliferative process resembling pulmonary capillary hemangiomatosis in a cat. BMC Vet. Res. 2017 13 1 72 10.1186/s12917‑017‑0984‑9 28320395
    [Google Scholar]
  18. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 2013 93 1 1 21 10.1152/physrev.00017.2012 23303904
    [Google Scholar]
  19. Wang J. Wu H. Peng Y. Zhao Y. Qin Y. Zhang Y. Xiao Z. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. J. Nanobiotechnology 2021 19 1 202 10.1186/s12951‑021‑00942‑0 34233694
    [Google Scholar]
  20. Li S. Sun J. Yang J. Yang Y. Ding H. Yu B. Ma K. Chen M. Gelatin methacryloyl (GelMA) loaded with concentrated hypoxic pretreated adipose-derived mesenchymal stem cells(ADSCs) conditioned medium promotes wound healing and vascular regeneration in aged skin. Biomater. Res. 2023 27 1 11 10.1186/s40824‑023‑00352‑3 36782342
    [Google Scholar]
  21. Li X. Xie X. Lian W. Shi R. Han S. Zhang H. Lu L. Li M. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp. Mol. Med. 2018 50 4 1 14 10.1038/s12276‑018‑0058‑5 29651102
    [Google Scholar]
  22. Wang T. Li T. Niu X. Hu L. Cheng J. Guo D. Ren H. Zhao R. Ji Z. Liu P. Li Y. Guo Y. ADSC-derived exosomes attenuate myocardial infarction injury by promoting miR-205-mediated cardiac angiogenesis. Biol. Direct 2023 18 1 6 10.1186/s13062‑023‑00361‑1 36849959
    [Google Scholar]
  23. Chan T.M. Harn H.J. Lin H.P. Chiu S.C. Lin P.C. Wang H.I. Ho L.I. Chuu C.P. Chiou T.W. Hsieh A.C. Chen Y.W. Ho W.Y. Lin S.Z. The use of ADSCs as a treatment for chronic stroke. Cell Transplant. 2014 23 4-5 541 547 10.3727/096368914X678409 24816449
    [Google Scholar]
  24. Jin J. Shi Y. Gong J. Zhao L. Li Y. He Q. Huang H. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res. Ther. 2019 10 1 95 10.1186/s13287‑019‑1177‑1 30876481
    [Google Scholar]
  25. An Y. Lin S. Tan X. Zhu S. Nie F. Zhen Y. Gu L. Zhang C. Wang B. Wei W. Li D. Wu J. Exosomes from adipose‐derived stem cells and application to skin wound healing. Cell Prolif. 2021 54 3 e12993 10.1111/cpr.12993 33458899
    [Google Scholar]
  26. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073355701250512034857
Loading
/content/journals/cchts/10.2174/0113862073355701250512034857
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: hypoxia ; exosome ; HUVEC ; ADSCs ; ENST00000592016 ; obstructive sleep apnea syndrome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test