Skip to content
2000
image of Development, Characterization, and Evaluation of the Antidepressant Potential of Crocus sativus SLN Nasal Spray in a Drosophila melanogaster Model

Abstract

Objectives

To develop and characterize a (saffron)-based solid lipid nanoparticle (SLN) nasal spray for treating depression by enabling direct nose-to-brain delivery and evaluating its antidepressant potential in a model.

Materials and Methods

Phytochemical screening, antioxidant assays, and HPLC quantification of picrocrocin were performed on extract. The SLN-based nasal spray was formulated and characterized for particle size, zeta potential, polydispersity index (PDI), drug entrapment efficiency, in vitro drug release, and stability over 4 weeks. The antidepressant efficacy was assessed via a climbing assay in .

Results

Phytochemical analysis revealed phenolic content (11–36 μg GAE/mg), flavonoid content (43–56 μg QE/mg), and carotenoid content (1.9–30 μg βC/mg). HPLC analysis quantified picrocrocin at 6.3 mg/g, confirming its presence. The SLNs exhibited a particle size of 110–225 nm, a zeta potential of -1 to -0.8 mV, a PDI of 1, and a drug entrapment efficiency of 99.76%. Drug release reached 37% over 270 minutes, and the nasal spray maintained a pH of 5.8, a viscosity of 23.1 cP, and stability over 4 weeks. In vivo, the climbing assay demonstrated improved locomotor activity, indicating significant antidepressant potential.

Discussion

The favorable physicochemical characteristics of the nasal spray, along with the observed behavioral improvements in the fly model, suggest that SLNs effectively cross the nasal-brain barrier and exert antidepressant-like effects. These findings support its potential for non-invasive management of treatment-resistant depression.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073385084250523043452
2025-06-12
2025-09-12
Loading full text...

Full text loading...

References

  1. Bukhari SI Manzoor M Dhar MK A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 2018 98 733 45 10.1016/j.biopha.2017.12.090
    [Google Scholar]
  2. Bastani S Vahedian V Rashidi M Mir A Mirzaei S Alipourfard I An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed Pharmacother 2022 153 113297 10.1016/j.biopha.2022.113297
    [Google Scholar]
  3. Gupta M. Hussain M.S. Thapa R. Bhat A.A. Kumar N. Nurturing hope: Uncovering the potential of herbal remedies against amyotrophic lateral sclerosis. PharmaNutrition 2024 29 100406 10.1016/j.phanu.2024.100406
    [Google Scholar]
  4. Hussain MS Chaturvedi V Goyal S Singh S Mir RHJCBC An update on the application of nano phytomedicine as an emerging therapeutic tool for neurodegenerative diseases. Curr Bioact Compd 2024 20 78 91 10.2174/0115734072258656231013085318
    [Google Scholar]
  5. Hussain M.S. Sharma P. Dhanjal D.S. Khurana N. Vyas M. Sharma N. Mehta M. Tambuwala M.M. Satija S. Sohal S.S. Oliver B.G.G. Sharma H.S. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases. Chem. Biol. Interact. 2021 348 109637 10.1016/j.cbi.2021.109637 34506765
    [Google Scholar]
  6. Scioli Montoto S. Muraca G. Ruiz M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 2020 7 587997 10.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  7. Satapathy M.K. Yen T.L. Jan J.S. Tang R.D. Wang J.Y. Taliyan R. Yang C.H. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through bbb. Pharmaceutics 2021 13 8 1183 10.3390/pharmaceutics13081183 34452143
    [Google Scholar]
  8. Kasongo K.W. Müller R.H. Walker R.B. The use of hot and cold high pressure homogenization to enhance the loading capacity and encapsulation efficiency of nanostructured lipid carriers for the hydrophilic antiretroviral drug, didanosine for potential administration to paediatric patients. Pharm. Dev. Technol. 2012 17 3 353 362 10.3109/10837450.2010.542163 21241166
    [Google Scholar]
  9. Khan AR Liu M Khan MW Zhai G Progress in brain targeting drug delivery system by nasal route. J Control Release 2017 268 364 389 10.1016/j.jconrel.2017.09.001
    [Google Scholar]
  10. Kumar R. Singh A. Kapoor B. Hussain M.S. Singh S.K. Dua K. Nose to brain drug delivery through advanced drug delivery systems. Novel Drug Delivery Systems in the management of CNS Disorders. Academic Press 2025 105 119 10.1016/B978‑0‑443‑13474‑6.00001‑9
    [Google Scholar]
  11. Alberto M. Paiva-Santos A.C. Veiga F. Pires P.C. Lipid and polymeric nanoparticles: Successful strategies for nose-to-brain drug delivery in the treatment of depression and anxiety disorders. Pharmaceutics 2022 14 12 2742 10.3390/pharmaceutics14122742 36559236
    [Google Scholar]
  12. Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie 2006 61 5 375 386 16724531
    [Google Scholar]
  13. Akbari J. Saeedi M. Ahmadi F. Hashemi S.M.H. Babaei A. Yaddollahi S. Rostamkalaei S.S. Asare-Addo K. Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm. Dev. Technol. 2022 27 5 525 544 10.1080/10837450.2022.2084554 35635506
    [Google Scholar]
  14. Bellen H.J. Tong C. Tsuda H. 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat. Rev. Neurosci. 2010 11 7 514 522 10.1038/nrn2839 20383202
    [Google Scholar]
  15. Liu C. Meng Z. Wiggin T.D. Yu J. Reed M.L. Guo F. Zhang Y. Rosbash M. Griffith L.C. A serotonin-modulated circuit controls sleep architecture to regulate cognitive function independent of total sleep in drosophila. Curr. Biol. 2019 29 21 3635 3646.e5 10.1016/j.cub.2019.08.079 31668619
    [Google Scholar]
  16. Pandey U.B. Nichols C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 2011 63 2 411 436 10.1124/pr.110.003293 21415126
    [Google Scholar]
  17. Liguori F. Pandey U.B. Digilio F.A. Editorial: Drosophila as a model to study neurodegenerative diseases. Front. Neurosci. 2023 17 1275253 10.3389/fnins.2023.1275253 37694126
    [Google Scholar]
  18. Martin C.A. Krantz D.E. Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochem. Int. 2014 73 71 88 10.1016/j.neuint.2014.03.015 24704795
    [Google Scholar]
  19. O’Kane C.J. Drosophila as a model organism for the study of neuropsychiatric disorders. Curr. Top. Behav. Neurosci. 2011 7 37 60 10.1007/7854_2010_110 21225410
    [Google Scholar]
  20. Lage M. Cantrell C.L. Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci. Hortic. 2009 121 3 366 373 10.1016/j.scienta.2009.02.017
    [Google Scholar]
  21. Abdelbaky A.S. Abd El-Mageed T.A. Babalghith A.O. Selim S. Mohamed A. Green synthesis and characterization of zno nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and anti-inflammatory activities. Antioxidants 2022 11 8 1444 10.3390/antiox11081444 35892646
    [Google Scholar]
  22. Tettey C. Shin H. Evaluation of the antioxidant and cytotoxic activities of zinc oxide nanoparticles synthesized using Scutellaria baicalensis root. Sci. Am. 2019 6 e00157 10.1016/j.sciaf.2019.e00157
    [Google Scholar]
  23. e B. Sivalingam A.M. Alex A. Neha B. E B In vitro antioxidant activity of green-synthesized zinc oxide (ZnO) nanoparticles utilizing extracts from allium sativum. Cureus 2024 16 2 e55184 10.7759/cureus.55184 38558717
    [Google Scholar]
  24. Ghareib M. Abu Tahon M. Abdallah W.E. Hussein M. Free radical scavenging activity of zinc oxide nanoparticles biosynthesised using Aspergillus carneus. Micro & Nano Lett. 2019 14 11 1157 1162 10.1049/mnl.2019.0218
    [Google Scholar]
  25. Arika W. Kibiti C.M. Njagi J.M. Ngugi M.P. In vitro antioxidant properties of dichloromethanolic leaf extract of gnidia glauca (fresen) as a promising antiobesity drug. J Evid Based Integr Med 2019 24 2515690X19883258 10.1177/2515690X19883258 31766874
    [Google Scholar]
  26. Ghaffar S. Abbas A. Naeem-Ul-Hassan M. Assad N. Sher M. Ullah S. Improved photocatalytic and antioxidant activity of olive fruit extract-mediated zno nanoparticles. Antioxidants 2023 12 6 1201 10.3390/antiox12061201 37371931
    [Google Scholar]
  27. Kesharwani R. Sachan A. Singh S. Patel D. Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib. J. Appl. Pharm. Sci. 2016 6 124 131 10.7324/JAPS.2016.601017
    [Google Scholar]
  28. Talele S. Nikam P. Ghosh B. Deore C. Jaybhave A. Jadhav A. A research article on nanogel as topical promising drug delivery for diclofenac sodium. Indian J Pharm Educ Res 2017 51 4s s580 s587 10.5530/ijper.51.4s.86
    [Google Scholar]
  29. Gaur P.K. Mishra S. Bajpai M. Mishra A. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies. BioMed Res. Int. 2014 2014 1 9 10.1155/2014/363404 24967360
    [Google Scholar]
  30. Islam M.S. Mojumder T.J. Nawrin F. Development and evaluation of microemulsion formulations of bifonazole. Univ J Pharm Res 2023 8 3 45 50 10.22270/ujpr.v8i3.953
    [Google Scholar]
  31. Inthavong K. Fung M.C. Yang W. Tu J. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure. J. Aerosol Med. Pulm. Drug Deliv. 2015 28 1 59 67 10.1089/jamp.2013.1093 24914675
    [Google Scholar]
  32. Nirmala M.J. Mukherjee A. Chandrasekaran N. Enhanced solubilization of aqueous insoluble anti-hypertensive drug. Int. J. Pharm. Pharm. Sci. 2012 4 366 368 10.1016/j.ijpharm.2019.118892 31786354
    [Google Scholar]
  33. Kundoor V. Dalby R.N. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast. Pharm. Res. 2011 28 8 1895 1904 10.1007/s11095‑011‑0417‑6 21499839
    [Google Scholar]
  34. Yellepeddi V. Sayre C. Burrows A. Watt K. Davies S. Strauss J. Battaglia M. Stability of extemporaneously compounded amiloride nasal spray. PLoS One 2020 15 7 e0232435 10.1371/journal.pone.0232435 32649677
    [Google Scholar]
  35. Liu H. Han M. Li Q. Zhang X. Wang W.A. Huang F.D. Automated rapid iterative negative geotaxis assay and its use in a genetic screen for modifiers of Aβ42-induced locomotor decline in Drosophila. Neurosci. Bull. 2015 31 5 541 549 10.1007/s12264‑014‑1526‑0 26077703
    [Google Scholar]
  36. Aggarwal A. Reichert H. VijayRaghavan K. A locomotor assay reveals deficits in heterozygous Parkinson’s disease model and proprioceptive mutants in adult Drosophila. Proc. Natl. Acad. Sci. USA 2019 116 49 24830 24839 10.1073/pnas.1807456116 31748267
    [Google Scholar]
  37. Upendra Sharma U. Iyer R.S. Effects of crude extracts of areca catechu l. on locomotory behaviour in drosophila melanogaster. Asian J Biol Life Sci. 2022 11 745 10.5530/ajbls.2022.11.99
    [Google Scholar]
  38. Eben A. Sporer F. Vogt H. Wetterauer P. Wink M. Search for alternative control strategies of Drosophila suzukii (Diptera: Drosophilidae): Laboratory assays using volatile natural plant compounds. Insects 2020 11 11 811 10.3390/insects11110811 33217940
    [Google Scholar]
  39. Keshav N Ammankallu R Shashidhar Paithankar JG Baliga MS Patil RK Kudva AK Raghu SV Dextran sodium sulfate alters antioxidant status in the gut affecting the survival of Drosophila melanogaster. 3 Biotech 2022 12 10 280 10.1007/s13205‑022‑03349‑2 36275361
    [Google Scholar]
  40. Nainu F. Akbar Bahar M. Sartini S Proof-of-concept preclinical use of Drosophila melanogaster in the initial screening of immunomodulators. Sci. Pharm. 2022 90 1 11 10.3390/scipharm90010011
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073385084250523043452
Loading
/content/journals/cchts/10.2174/0113862073385084250523043452
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: saffron ; solid lipid nanoparticle ; nasal spray ; Antidepressant ; drosophila
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test