Skip to content
2000
image of Constipation and Psychiatric Disorders: A Bidirectional Mendelian

Abstract

Background

Observational studies have shown a link between constipation (CN) and psychiatric disorders, including Schizophrenia (SP), Bipolar disorder (BD), Schizoaffective disorder (SD), and Parkinson’s disease (PD). However, it is still unknown whether CN affects the occurrence and development of psychiatric disorders or whether psychiatric disorders cause the occurrence and development of CN. Therefore, this study used Mendelian randomization (MR) analysis to evaluate the relationship between CN and psychiatric disorders.

Method

We used genome-wide association studies (GWAS) to assess the relationship between constipation (N = 411, 623) and four psychiatric disorders, including SP (N = 77, 096), BD (N = 51, 710), SD (N = 210, 962), PD (N = 482, 730), using bidirectional MR analysis. Inverse variance weighting (IVW), MR Egger (ME) and Weighted median (WM) were used as causal analysis methods. Cochran's Q test, funnel plot, MR Egger intercept test and Leave‐one‐out analysis were used to detect sensitivity. Confounding factors were analyzed and eliminated by LDtrait to avoid influencing the final MR Analysis result.

Results

The results of positive MR analysis indicated that there was no evidence of influence of constipation on SP (OR 1.043, 95%CI 0.946 - 1.149, P value = 0.398), BD (OR 1.114, 95%CI 0.995 - 1.248, P value = 0.062), SD (OR 0.934, 95%CI 0.674 - 1.294, value = 0.682) and PD (OR 1.118, 95%CI 0.918 - 1.361, value = 0.269) under gene prediction. Reverse MR analysis suggested that SP (OR 1.030, 95% CI 1.001-1.060, value = 0.042) had a causal relationship with constipation. BD (OR 0.993, 95% CI 0.962-1.025, value = 0.664), SD (OR 1.021, 95% CI 0.984-1.059, value = 0.265) and PD (OR 1.004, 95% CI 0.974-1.035, value = 0.790) were not associated with CN.

Conclusion

There was a positive association between SP and CN. CN may have no exact causal relationship with BD, SD and PD, and the interaction mechanism between these diseases needs to be further explored.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073378253250428071105
2025-05-14
2025-09-12
Loading full text...

Full text loading...

References

  1. Mearin F. Lacy B.E. Chang L. Chey W.D. Lembo A.J. Simren M. Spiller R. Bowel Disorders. Gastroenterology 2016 150 6 1393 1407 10.1053/j.gastro.2016.02.031.
    [Google Scholar]
  2. Black C.J. Ford A.C. Chronic idiopathic constipation in adults: Epidemiology, pathophysiology, diagnosis and clinical management. Med. J. Aust. 2018 209 2 86 91 10.5694/mja18.00241 29996755
    [Google Scholar]
  3. O’Keefe E.A. Talley N.J. Zinsmeister A.R. Jacobsen S.J. Bowel disorders impair functional status and quality of life in the elderly: A population-based study. J. Gerontol. A Biol. Sci. Med. Sci. 1995 50A 4 M184 M189 10.1093/gerona/50A.4.M184 7614239
    [Google Scholar]
  4. Ma X.X. Xiao Z.H. Chen W. Zhao S.Y. The relationship between gastrointestinal symptoms in FGID patients and D-type personality and emotion regulation strategies. iScience 2024 27 6 109867 10.1016/j.isci.2024.109867 38784000
    [Google Scholar]
  5. Prichard D.O. Bharucha A.E. Recent advances in understanding and managing chronic constipation. Fac. Rev. 1640 7 F1000
    [Google Scholar]
  6. Holtmann G.J. Ford A.C. Talley N.J. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol. Hepatol. 2016 1 2 133 146 10.1016/S2468‑1253(16)30023‑1 28404070
    [Google Scholar]
  7. Lind P.A. Parker R.K. Northwood K. Siskind D.J. Medland S.E. Clozapine efficacy and adverse drug reactions among a nationwide study of 1021 Australians prescribed clozapine: The clozagene study. Schizophr. Bull. 2024 2024 sbae065 10.1093/schbul/sbae065 38713070
    [Google Scholar]
  8. Kessler R.C. Demler O. Frank R.G. Olfson M. Pincus H.A. Walters E.E. Wang P. Wells K.B. Zaslavsky A.M. Prevalence and treatment of mental disorders, 1990 to 2003. N. Engl. J. Med. 2005 352 24 2515 2523 10.1056/NEJMsa043266 15958807
    [Google Scholar]
  9. Correll C.U. Rubio J.M. Kane J.M. What is the risk‐benefit ratio of long‐term antipsychotic treatment in people with schizophrenia? World Psychiatry 2018 17 2 149 160 10.1002/wps.20516 29856543
    [Google Scholar]
  10. Liu H. Tao T.J. Chan S.K.Y. Ma J.C.H. Lau A.Y.T. Yeung E.T.F. Hobfoll S.E. Hou W.K. Daily routine disruptions and psychiatric symptoms amid COVID-19: a systematic review and meta-analysis of data from 0.9 million individuals in 32 countries. BMC Med. 2024 22 1 49 10.1186/s12916‑024‑03253‑x 38302921
    [Google Scholar]
  11. Hao D.D. Shen D. Fu F.H. Research progress on the antidepressant effect of flavonoids based on microbiota-gut-brain axis. J. Food Sci. 2024 45 12 368 377
    [Google Scholar]
  12. Bowden J. Holmes M.V. Meta‐analysis and Mendelian randomization: A review. Res. Synth. Methods 2019 10 4 486 496 10.1002/jrsm.1346 30861319
    [Google Scholar]
  13. Huang W. Gan Z. Gao Z. Lin Q. Li X. Xie W. Gao Z. Zhou Z. Qiu Z. Qiu W. Du S. Chen L. Hong H. Ye W. Discrepancies between general and central obesity in arterial stiffness: Observational studies and Mendelian randomization study. BMC Med. 2024 22 1 325 10.1186/s12916‑024‑03546‑1 39113079
    [Google Scholar]
  14. Birney E. Mendelian randomization. Cold Spring Harb. Perspect. Med. 2022 12 4 a041302 34872952
    [Google Scholar]
  15. Chen X. Hong X. Gao W. Luo S. Cai J. Liu G. Huang Y. Causal relationship between physical activity, leisure sedentary behaviors and COVID-19 risk: A Mendelian randomization study. J. Transl. Med. 2022 20 1 216 10.1186/s12967‑022‑03407‑6 35562752
    [Google Scholar]
  16. Boef A.G.C. Dekkers O.M. le Cessie S. Mendelian randomization studies: A review of the approaches used and the quality of reporting. Int. J. Epidemiol. 2015 44 2 496 511 10.1093/ije/dyv071 25953784
    [Google Scholar]
  17. Sakaue S. Kanai M. Tanigawa Y. Karjalainen J. Kurki M. Koshiba S. Narita A. Konuma T. Yamamoto K. Akiyama M. Ishigaki K. Suzuki A. Suzuki K. Obara W. Yamaji K. Takahashi K. Asai S. Takahashi Y. Suzuki T. Shinozaki N. Yamaguchi H. Minami S. Murayama S. Yoshimori K. Nagayama S. Obata D. Higashiyama M. Masumoto A. Koretsune Y. Ito K. Terao C. Yamauchi T. Komuro I. Kadowaki T. Tamiya G. Yamamoto M. Nakamura Y. Kubo M. Murakami Y. Yamamoto K. Kamatani Y. Palotie A. Rivas M.A. Daly M.J. Matsuda K. Okada Y. FinnGen A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021 53 10 1415 1424 10.1038/s41588‑021‑00931‑x 34594039
    [Google Scholar]
  18. Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014 511 7510 421 427 10.1038/nature13595 25056061
    [Google Scholar]
  19. Stahl E.A. Breen G. Forstner A.J. McQuillin A. Ripke S. Trubetskoy V. Mattheisen M. Wang Y. Coleman J.R.I. Gaspar H.A. de Leeuw C.A. Steinberg S. Pavlides J.M.W. Trzaskowski M. Byrne E.M. Pers T.H. Holmans P.A. Richards A.L. Abbott L. Agerbo E. Akil H. Albani D. Alliey-Rodriguez N. Als T.D. Anjorin A. Antilla V. Awasthi S. Badner J.A. Bækvad-Hansen M. Barchas J.D. Bass N. Bauer M. Belliveau R. Bergen S.E. Pedersen C.B. Bøen E. Boks M.P. Boocock J. Budde M. Bunney W. Burmeister M. Bybjerg-Grauholm J. Byerley W. Casas M. Cerrato F. Cervantes P. Chambert K. Charney A.W. Chen D. Churchhouse C. Clarke T.K. Coryell W. Craig D.W. Cruceanu C. Curtis D. Czerski P.M. Dale A.M. de Jong S. Degenhardt F. Del-Favero J. DePaulo J.R. Djurovic S. Dobbyn A.L. Dumont A. Elvsåshagen T. Escott-Price V. Fan C.C. Fischer S.B. Flickinger M. Foroud T.M. Forty L. Frank J. Fraser C. Freimer N.B. Frisén L. Gade K. Gage D. Garnham J. Giambartolomei C. Pedersen M.G. Goldstein J. Gordon S.D. Gordon-Smith K. Green E.K. Green M.J. Greenwood T.A. Grove J. Guan W. Guzman-Parra J. Hamshere M.L. Hautzinger M. Heilbronner U. Herms S. Hipolito M. Hoffmann P. Holland D. Huckins L. Jamain S. Johnson J.S. Juréus A. Kandaswamy R. Karlsson R. Kennedy J.L. Kittel-Schneider S. Knowles J.A. Kogevinas M. Koller A.C. Kupka R. Lavebratt C. Lawrence J. Lawson W.B. Leber M. Lee P.H. Levy S.E. Li J.Z. Liu C. Lucae S. Maaser A. MacIntyre D.J. Mahon P.B. Maier W. Martinsson L. McCarroll S. McGuffin P. McInnis M.G. McKay J.D. Medeiros H. Medland S.E. Meng F. Milani L. Montgomery G.W. Morris D.W. Mühleisen T.W. Mullins N. Nguyen H. Nievergelt C.M. Adolfsson A.N. Nwulia E.A. O’Donovan C. Loohuis L.M.O. Ori A.P.S. Oruc L. Ösby U. Perlis R.H. Perry A. Pfennig A. Potash J.B. Purcell S.M. Regeer E.J. Reif A. Reinbold C.S. Rice J.P. Rivas F. Rivera M. Roussos P. Ruderfer D.M. Ryu E. Sánchez-Mora C. Schatzberg A.F. Scheftner W.A. Schork N.J. Shannon Weickert C. Shehktman T. Shilling P.D. Sigurdsson E. Slaney C. Smeland O.B. Sobell J.L. Søholm Hansen C. Spijker A.T. St Clair D. Steffens M. Strauss J.S. Streit F. Strohmaier J. Szelinger S. Thompson R.C. Thorgeirsson T.E. Treutlein J. Vedder H. Wang W. Watson S.J. Weickert T.W. Witt S.H. Xi S. Xu W. Young A.H. Zandi P. Zhang P. Zöllner S. Adolfsson R. Agartz I. Alda M. Backlund L. Baune B.T. Bellivier F. Berrettini W.H. Biernacka J.M. Blackwood D.H.R. Boehnke M. Børglum A.D. Corvin A. Craddock N. Daly M.J. Dannlowski U. Esko T. Etain B. Frye M. Fullerton J.M. Gershon E.S. Gill M. Goes F. Grigoroiu-Serbanescu M. Hauser J. Hougaard D.M. Hultman C.M. Jones I. Jones L.A. Kahn R.S. Kirov G. Landén M. Leboyer M. Lewis C.M. Li Q.S. Lissowska J. Martin N.G. Mayoral F. McElroy S.L. McIntosh A.M. McMahon F.J. Melle I. Metspalu A. Mitchell P.B. Morken G. Mors O. Mortensen P.B. Müller-Myhsok B. Myers R.M. Neale B.M. Nimgaonkar V. Nordentoft M. Nöthen M.M. O’Donovan M.C. Oedegaard K.J. Owen M.J. Paciga S.A. Pato C. Pato M.T. Posthuma D. Ramos-Quiroga J.A. Ribasés M. Rietschel M. Rouleau G.A. Schalling M. Schofield P.R. Schulze T.G. Serretti A. Smoller J.W. Stefansson H. Stefansson K. Stordal E. Sullivan P.F. Turecki G. Vaaler A.E. Vieta E. Vincent J.B. Werge T. Nurnberger J.I. Wray N.R. Di Florio A. Edenberg H.J. Cichon S. Ophoff R.A. Scott L.J. Andreassen O.A. Kelsoe J. Sklar P. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 2019 51 5 793 803 10.1038/s41588‑019‑0397‑8 31043756
    [Google Scholar]
  20. Chen J.H. Lei H. Wan Y.F. Zhu X.C. Zeng L.Y. Tang H.X. Zhao Y.F. Pan Y. Deng Y.Q. Liu K.X. Frailty and psychiatric disorders: A bidirectional Mendelian randomization study. J. Affect. Disord. 2024 356 346 355 10.1016/j.jad.2024.04.024 38626809
    [Google Scholar]
  21. Cai J. Chen X. Wang H. Wei Z. Li M. Rong X. Li X. Peng Y. Iron status may not affect amyotrophic lateral sclerosis: A mendelian randomization study. Front. Genet. 2021 12 617245 10.3389/fgene.2021.617245 33747043
    [Google Scholar]
  22. Verbanck M. Chen C.Y. Neale B. Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018 50 5 693 698 10.1038/s41588‑018‑0099‑7 29686387
    [Google Scholar]
  23. Chen X. Kong J. Pan J. Huang K. Zhou W. Diao X. Cai J. Zheng J. Yang X. Xie W. Yu H. Li J. Pei L. Dong W. Qin H. Huang J. Lin T. Kidney damage causally affects the brain cortical structure: A Mendelian randomization study. EBioMedicine 2021 72 103592 10.1016/j.ebiom.2021.103592 34619639
    [Google Scholar]
  24. Bowden J. Davey Smith G. Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015 44 2 512 525 10.1093/ije/dyv080 26050253
    [Google Scholar]
  25. Burgess S. Thompson S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017 32 5 377 389 10.1007/s10654‑017‑0255‑x 28527048
    [Google Scholar]
  26. Bowden J. Davey Smith G. Haycock P.C. Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016 40 4 304 314 10.1002/gepi.21965 27061298
    [Google Scholar]
  27. Ong J.S. MacGregor S. Implementing MR‐PRESSO and GCTA‐GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner’s perspective. Genet. Epidemiol. 2019 43 6 609 616 10.1002/gepi.22207 31045282
    [Google Scholar]
  28. Chen X. Kong J. Diao X. Cai J. Zheng J. Xie W. Qin H. Huang J. Lin T. Depression and prostate cancer risk: A Mendelian randomization study. Cancer Med. 2020 9 23 9160 9167 10.1002/cam4.3493 33027558
    [Google Scholar]
  29. Lin S.H. Brown D.W. Machiela M.J. LDtrait: An online tool for identifying published phenotype associations in linkage disequilibrium. Cancer Res. 2020 80 16 3443 3446 10.1158/0008‑5472.CAN‑20‑0985 32606005
    [Google Scholar]
  30. Zhou J. Yuan X. Liu Y. The gut microbiota-constipation connection: Insights from a two sample bidirectional Mendelian randomization study. Microb. Pathog. 2024 192 106667 10.1016/j.micpath.2024.106667 38685361
    [Google Scholar]
  31. Wu S. Yuan G. Wu L. Zou L. Wu F. Identifying the association between depression and constipation: An observational study and Mendelian randomization analysis. J. Affect. Disord. 2024 359 394 402 10.1016/j.jad.2024.05.124 38806066
    [Google Scholar]
  32. Cai J. Wei Z. Chen M. He L. Wang H. Li M. Peng Y. Socioeconomic status, individual behaviors and risk for mental disorders: A Mendelian randomization study. Eur. Psychiatry 2022 65 1 e28 10.1192/j.eurpsy.2022.18 35431011
    [Google Scholar]
  33. Lai S. Zhu C. Zhou X. Zeng Q. Huang L. Cao X. Zhou Q. Zhong Y. Huang J. Liu J. Zeng G. Chen H. Effect of physical activity on the association between diet and constipation: Evidence from the national health and nutrition examination survey 2007-2010. J. Neurogastroenterol. Motil. 2024 30 3 322 331 10.5056/jnm23134 38972867
    [Google Scholar]
  34. Wang H.X. Wang Y.P. Gut microbiota-brain axis. Chin. Med. J. (Engl.) 2016 129 19 2373 2380 10.4103/0366‑6999.190667 27647198
    [Google Scholar]
  35. Simon G.E. VonKorff M. Piccinelli M. Fullerton C. Ormel J. An international study of the relation between somatic symptoms and depression. N. Engl. J. Med. 1999 341 18 1329 1335 10.1056/NEJM199910283411801 10536124
    [Google Scholar]
  36. Burgess S. Davey Smith G. Davies N.M. Dudbridge F. Gill D. Glymour M.M. Hartwig F.P. Kutalik Z. Holmes M.V. Minelli C. Morrison J.V. Pan W. Relton C.L. Theodoratou E. Guidelines for performing Mendelian randomization investigations: Update for summer 2023. Wellcome Open Res. 2019 4 186 10.12688/wellcomeopenres.15555.3 32760811
    [Google Scholar]
  37. Bińkowska G.A. Krygier S.D. Kozłowska E. The microbiota–gut–brain axis in psychiatric disorders. Int. J. Mol. Sci. 2022 23 19 11245 10.3390/ijms231911245 36232548
    [Google Scholar]
  38. Sekula P. Del Greco M F. Pattaro C. Köttgen A. Mendelian randomization as an approach to assess causality using observational data. J. Am. Soc. Nephrol. 2016 27 11 3253 3265 10.1681/ASN.2016010098 27486138
    [Google Scholar]
  39. Burgess S. Daniel R.M. Butterworth A.S. Thompson S.G. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol. 2015 44 2 484 495 10.1093/ije/dyu176 25150977
    [Google Scholar]
  40. Joshi Y.B. Thomas M.L. Braff D.L. Green M.F. Gur R.C. Gur R.E. Nuechterlein K.H. Stone W.S. Greenwood T.A. Lazzeroni L.C. MacDonald L.R. Molina J.L. Nungaray J.A. Radant A.D. Silverman J.M. Sprock J. Sugar C.A. Tsuang D.W. Tsuang M.T. Turetsky B.I. Swerdlow N.R. Light G.A. Anticholinergic medication burden–associated cognitive impairment in schizophrenia. Am. J. Psychiatry 2021 178 9 838 847 10.1176/appi.ajp.2020.20081212 33985348
    [Google Scholar]
  41. Deng H.F. Wang Y.L. Feng Z.Z. The mechanism and clinical progress of non-motor symptoms of constipation in Parkinson's disease. J. Liaoning Uni. Tradit. Chinese Med. 1 15
    [Google Scholar]
  42. Shirazi A. Stubbs B. Gomez L. Moore S. Gaughran F. Flanagan R. MacCabe J. Lally J. Prevalence and predictors of clozapine-associated constipation: A systematic review and meta-analysis. Int. J. Mol. Sci. 2016 17 6 863 10.3390/ijms17060863 27271593
    [Google Scholar]
  43. Talley N.J. Jones M. Nuyts G. Dubois D. Risk factors for chronic constipation based on a general practice sample. Am. J. Gastroenterol. 2003 98 5 1107 1111 10.1111/j.1572‑0241.2003.07465.x 12809835
    [Google Scholar]
  44. Olianas M.C. Dedoni S. Ambu R. Onali P. Agonist activity of N-desmethylclozapine at δ-opioid receptors of human frontal cortex. Eur. J. Pharmacol. 2009 607 1-3 96 101 10.1016/j.ejphar.2009.02.025 19239909
    [Google Scholar]
  45. Gross J.J. John O.P. Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. J. Pers. Soc. Psychol. 2003 85 2 348 362 10.1037/0022‑3514.85.2.348 12916575
    [Google Scholar]
  46. Kalokerinos E.K. Greenaway K.H. Denson T.F. Reappraisal but not suppression downregulates the experience of positive and negative emotion. Emotion 2015 15 3 271 275 10.1037/emo0000025 25286074
    [Google Scholar]
  47. Dimidi E. Christodoulides S. Scott S.M. Whelan K. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Adv. Nutr. 2017 8 3 484 494 10.3945/an.116.014407 28507013
    [Google Scholar]
  48. Collamati A. Martone A.M. Poscia A. Brandi V. Celi M. Marzetti E. Cherubini A. Landi F. Anticholinergic drugs and negative outcomes in the older population: from biological plausibility to clinical evidence. Aging Clin. Exp. Res. 2016 28 1 25 35 10.1007/s40520‑015‑0359‑7 25930085
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073378253250428071105
Loading
/content/journals/cchts/10.2174/0113862073378253250428071105
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the article.


  • Article Type:
    Research Article
Keywords: Constipation ; mendelian randomization study ; schizophrenia ; GWAS ; psychiatric disorders
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test