Skip to content
2000
image of Improved Visualization Method of DNA Sequences and its Application in Phylogenetic Analysis

Abstract

Introduction

With a large number of species' genomes assembled, sequence comparison has become an effective method for further studying biological classification and evolution. Traditional sequence alignment relies on predefined scoring functions, but it is computationally intensive and lacks molecular justification for scoring the differences between sequences. Therefore, we have developed a graphical representation method for DNA sequences to facilitate better sequence comparison and evolutionary analysis.

Method

In this article, we introduce a novel method for representing DNA sequences using three-dimensional (3D) graphics. This method possesses two significant properties: (1) the graphical representation is acyclic; (2) each DNA sequence maintains a bijective relationship with its graphical representation.

Result

Leveraging this proposed visualization method, we computed the corresponding ALE index for any DNA sequence by converting it into an matrix and constructed a 12-dimensional feature vector. The feasibility of our proposed method has been validated through the construction of phylogenetic trees in four test sets: terrestrial vertebrates, hantavirus, fish and Japanese encephalitis virus.

Discussion

This method enables both quantitative analysis and visual comparison of DNA sequences, providing a versatile tool for evolutionary studies.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073379972250612103433
2025-07-01
2025-10-30
Loading full text...

Full text loading...

References

  1. Liu Y. Du H. Li P. Shen Y. Peng H. Liu S. Zhou G.A. Zhang H. Liu Z. Shi M. Huang X. Li Y. Zhang M. Wang Z. Zhu B. Han B. Liang C. Tian Z. Pan-genome of wild and cultivated soybeans. Cell 2020 182 1 162 176.e13 10.1016/j.cell.2020.05.023 32553274
    [Google Scholar]
  2. Nurk S. Koren S. Rhie A. Rautiainen M. Bzikadze A.V. Mikheenko A. Vollger M.R. Altemose N. Uralsky L. Gershman A. Aganezov S. Hoyt S.J. Diekhans M. Logsdon G.A. Alonge M. Antonarakis S.E. Borchers M. Bouffard G.G. Brooks S.Y. Caldas G.V. Chen N.C. Cheng H. Chin C.S. Chow W. de Lima L.G. Dishuck P.C. Durbin R. Dvorkina T. Fiddes I.T. Formenti G. Fulton R.S. Fungtammasan A. Garrison E. Grady P.G.S. Graves-Lindsay T.A. Hall I.M. Hansen N.F. Hartley G.A. Haukness M. Howe K. Hunkapiller M.W. Jain C. Jain M. Jarvis E.D. Kerpedjiev P. Kirsche M. Kolmogorov M. Korlach J. Kremitzki M. Li H. Maduro V.V. Marschall T. McCartney A.M. McDaniel J. Miller D.E. Mullikin J.C. Myers E.W. Olson N.D. Paten B. Peluso P. Pevzner P.A. Porubsky D. Potapova T. Rogaev E.I. Rosenfeld J.A. Salzberg S.L. Schneider V.A. Sedlazeck F.J. Shafin K. Shew C.J. Shumate A. Sims Y. Smit A.F.A. Soto D.C. Sović I. Storer J.M. Streets A. Sullivan B.A. Thibaud-Nissen F. Torrance J. Wagner J. Walenz B.P. Wenger A. Wood J.M.D. Xiao C. Yan S.M. Young A.C. Zarate S. Surti U. McCoy R.C. Dennis M.Y. Alexandrov I.A. Gerton J.L. O’Neill R.J. Timp W. Zook J.M. Schatz M.C. Eichler E.E. Miga K.H. Phillippy A.M. The complete sequence of a human genome. Science 2022 376 6588 44 53 10.1126/science.abj6987 35357919
    [Google Scholar]
  3. Chen J. Wang Z. Tan K. Huang W. Shi J. Li T. Hu J. Wang K. Wang C. Xin B. Zhao H. Song W. Hufford M.B. Schnable J.C. Jin W. Lai J. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 2023 55 7 1221 1231 10.1038/s41588‑023‑01419‑6 37322109
    [Google Scholar]
  4. Shen F. Xu S. Shen Q. Bi C. Lysak M.A. The allotetraploid horseradish genome provides insights into subgenome diversification and formation of critical traits. Nat. Commun. 2023 14 1 4102 10.1038/s41467‑023‑39800‑y 37491530
    [Google Scholar]
  5. Zhang C. Xie L. Yu H. Wang J. Chen Q. Wang H. The T2T genome assembly of soybean cultivar ZH13 and its epigenetic landscapes. Mol. Plant 2023 16 11 1715 1718 10.1016/j.molp.2023.10.003 37803825
    [Google Scholar]
  6. Wang T. Wang B. Hua X. Tang H. Zhang Z. Gao R. Qi Y. Zhang Q. Wang G. Yu Z. Huang Y. Zhang Z. Mei J. Wang Y. Zhang Y. Li Y. Meng X. Wang Y. Pan H. Chen S. Li Z. Shi H. Liu X. Deng Z. Chen B. Zhang M. Gu L. Wang J. Ming R. Yao W. Zhang J. A complete gap-free diploid genome in Saccharum complex and the genomic footprints of evolution in the highly polyploid Saccharum genus. Nat. Plants 2023 9 4 554 571 10.1038/s41477‑023‑01378‑0 36997685
    [Google Scholar]
  7. He Y. Chu Y. Guo S. Hu J. Li R. Zheng Y. Ma X. Du Z. Zhao L. Yu W. Xue J. Bian W. Yang F. Chen X. Zhang P. Wu R. Ma Y. Shao C. Chen J. Wang J. Li J. Wu J. Hu X. Long Q. Jiang M. Ye H. Song S. Li G. Wei Y. Xu Y. Ma Y. Chen Y. Wang K. Bao J. Xi W. Wang F. Ni W. Zhang M. Yu Y. Li S. Kang Y. Gao Z. T2T-YAO: A telomere-to-telomere assembled dpiloid reference genome for Han Chinese. Genomics Proteomics Bioinformatics 2023 21 6 1085 1100 10.1016/j.gpb.2023.08.001 37595788
    [Google Scholar]
  8. Shi X. Cao S. Wang X. Huang S. Wang Y. Liu Z. Liu W. Leng X. Peng Y. Wang N. Wang Y. Ma Z. Xu X. Zhang F. Xue H. Zhong H. Wang Y. Zhang K. Velt A. Avia K. Holtgräwe D. Grimplet J. Matus J.T. Ware D. Wu X. Wang H. Liu C. Fang Y. Rustenholz C. Cheng Z. Xiao H. Zhou Y. The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding. Hortic. Res. 2023 10 5 uhad061 10.1093/hr/uhad061 37213686
    [Google Scholar]
  9. Shi J. Tian Z. Lai J. Huang X. Plant pan-genomics and its applications. Mol. Plant 2023 16 1 168 186 10.1016/j.molp.2022.12.009 36523157
    [Google Scholar]
  10. Rhie A. Nurk S. Cechova M. Hoyt S.J. Taylor D.J. Altemose N. Hook P.W. Koren S. Rautiainen M. Alexandrov I.A. Allen J. Asri M. Bzikadze A.V. Chen N.C. Chin C.S. Diekhans M. Flicek P. Formenti G. Fungtammasan A. Garcia Giron C. Garrison E. Gershman A. Gerton J.L. Grady P.G.S. Guarracino A. Haggerty L. Halabian R. Hansen N.F. Harris R. Hartley G.A. Harvey W.T. Haukness M. Heinz J. Hourlier T. Hubley R.M. Hunt S.E. Hwang S. Jain M. Kesharwani R.K. Lewis A.P. Li H. Logsdon G.A. Lucas J.K. Makalowski W. Markovic C. Martin F.J. Mc Cartney A.M. McCoy R.C. McDaniel J. McNulty B.M. Medvedev P. Mikheenko A. Munson K.M. Murphy T.D. Olsen H.E. Olson N.D. Paulin L.F. Porubsky D. Potapova T. Ryabov F. Salzberg S.L. Sauria M.E.G. Sedlazeck F.J. Shafin K. Shepelev V.A. Shumate A. Storer J.M. Surapaneni L. Taravella Oill A.M. Thibaud-Nissen F. Timp W. Tomaszkiewicz M. Vollger M.R. Walenz B.P. Watwood A.C. Weissensteiner M.H. Wenger A.M. Wilson M.A. Zarate S. Zhu Y. Zook J.M. Eichler E.E. O’Neill R.J. Schatz M.C. Miga K.H. Makova K.D. Phillippy A.M. The complete sequence of a human Y chromosome. Nature 2023 621 7978 344 354 10.1038/s41586‑023‑06457‑y 37612512
    [Google Scholar]
  11. Bai M. Jiang S. Chu S. Yu Y. Shan D. Liu C. Zong L. Liu Q. Liu N. Xu W. Mei Z. Jian J. Zhang C. Zhao S. Chiu T.Y. Simonsen H.T. The telomere-to-telomere (T2T) genome of Peucedanum praeruptorum Dunn provides insights into the genome evolution and coumarin biosynthesis. Gigascience 2024 13 giae025 10.1093/gigascience/giae025 38837945
    [Google Scholar]
  12. Li M. Chen C. Wang H. Qin H. Hou S. Yang X. Jian J. Gao P. Liu M. Mu Z. Telomere-to-telomere genome assembly of sorghum. Sci. Data 2024 11 1 835 10.1038/s41597‑024‑03664‑8 39095379
    [Google Scholar]
  13. Nguinkal J.A. Zoclanclounon Y.A.B. Brunner R.M. Chen Y. Goldammer T. Haplotype-resolved and near-T2T genome assembly of the African catfish (Clarias gariepinus). Sci. Data 2024 11 1 1095 10.1038/s41597‑024‑03906‑9 39375414
    [Google Scholar]
  14. Yang C. Zhou Y. Song Y. Wu D. Zeng Y. Nie L. Liu P. Zhang S. Chen G. Xu J. Zhou H. Zhou L. Qian X. Liu C. Tan S. Zhou C. Dai W. Xu M. Qi Y. Wang X. Guo L. Fan G. Wang A. Deng Y. Zhang Y. Jin J. He Y. Guo C. Guo G. Zhou Q. Xu X. Yang H. Wang J. Xu S. Mao Y. Jin X. Ruan J. Zhang G. The complete and fully-phased diploid genome of a male Han Chinese. Cell Res. 2023 33 10 745 761 10.1038/s41422‑023‑00849‑5 37452091
    [Google Scholar]
  15. Li Q. Qiao X. Li L. Gu C. Yin H. Qi K. Xie Z. Yang S. Zhao Q. Wang Z. Yang Y. Pan J. Li H. Wang J. Wang C. Rieseberg L.H. Zhang S. Tao S. Haplotype-resolved T2T genome assemblies and pangenome graph of pear reveal diverse patterns of allele-specific expression and the genomic basis of fruit quality traits. Plant Commun. 2024 5 10 101000 38859586
    [Google Scholar]
  16. Garg V. Bohra A. Mascher M. Spannagl M. Xu X. Bevan M.W. Bennetzen J.L. Varshney R.K. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat. Genet. 2024 56 9 1788 1799 39048791
    [Google Scholar]
  17. Wang Y. Dong M. Wu Y. Zhang F. Ren W. Lin Y. Chen Q. Zhang S. Yue J. Liu Y. Telomere-to-telomere and haplotype-resolved genome of the kiwifruit Actinidia eriantha. Mol. Hortic 2023 3 1 4 37789444
    [Google Scholar]
  18. Tao Y. He C. Lin D. Gu Z. Pu W. Comprehensive identification of mitochondrial Pseudogenes (NUMTs) in the human telomere-to-telomere reference genome. Genes 2023 14 11 2092 38003036
    [Google Scholar]
  19. Feng Y. Zhou J. Li D. Wang Z. Peng C. Zhu G. The haplotype-resolved T2T genome assembly of the wild potato species Solanum commersonii provides molecular insights into its freezing tolerance. Plant Commun. 2024 5 10 100980 10.1016/j.xplc.2024.100980 38807365
    [Google Scholar]
  20. Tong Z. Huang Y. Zhu Q.H. Fan L. Xiao B. Shen E. Retrospect and prospect of Nicotiana tabacum genome sequencing. Front Plant. Sci. 2024 15 1474658 39354948
    [Google Scholar]
  21. Chao K.H. Zimin A.V. Pertea M. Salzberg S.L. The first gapless, reference-quality, fully annotated genome from a Southern Han Chinese individual. G3 (Bethesda) 2023 13 3 321 36630290
    [Google Scholar]
  22. Wang Y.H. Liu P.Z. Liu H. Zhang R.R. Liang Y. Xu Z.S. Li X.J. Luo Q. Tan G.F. Wang G.L. Xiong A.S. Telomere-to-telomere carrot (Daucus carota) genome assembly reveals carotenoid characteristics. Hortic. Res. 2023 10 7 uhad103 37786729
    [Google Scholar]
  23. Yang H. Lian C. Liu J. Yu H. Zhao L. He N. Liu X. Xue S. Sun X. Zhang L. Wang L. Yang J. Fu Y. Ma R. Zhang B. Ye L. Chen S. High-quality assembly of the T2T genome for Isodon rubescens f. lushanensis reveals genomic structure variations between 2 typical forms of Isodon rubescens. Gigascience 2024 13 giae075 39388604
    [Google Scholar]
  24. Kalbfleisch T.S. McKay S.D. Murdoch B.M. Adelson D.L. Almansa-Villa D. Becker G. Beckett L.M. Benítez-Galeano M.J. Biase F. Casey T. Chuong E. Clark E. Clarke S. Cockett N. Couldrey C. Davis B.W. Elsik C.G. Faraut T. Gao Y. Genet C. Grady P. Green J. Green R. Guan D. Hagen D. Hartley G.A. Heaton M. Hoyt S.J. Huang W. Jarvis E. Kalleberg J. Khatib H. Koepfi K.P. Koltes J. Koren S. Kuehn C. Leeb T. Leonard A. Liu G.E. Low W.Y. McConnell H. McRae K. Miga K. Mousel M. Neibergs H. Olagunju T. Pennell M. Petry B. Pewsner M. Phillippy A.M. Pickett B.D. Pineda P. Potapova T. Rachagani S. Rhie A. Rijnkels M. Robic A. Rodriguez Osorio N. Safonova Y. Schettini G. Schnabel R.D. Sirpu Natesh N. Stegemiller M. Storer J. Stothard P. Stull C. Tosser-Klopp G. Traglia G.M. Tuggle C.K. Van Tassell C.P. Watson C. Weikard R. Wimmers K. Xie S. Yang L. Smith T.P.L. O’Neill R.J. Rosen B.D. The Ruminant Telomere-to-Telomere (RT2T) Consortium Nat. Genet. 2024 56 8 1566 1573 39103649
    [Google Scholar]
  25. Wang L. Li L.L. Chen L. Zhang R.G. Zhao S.W. Yan H. Gao J. Chen X. Si Y.J. Chen Z. Liu H. Xie X.M. Zhao W. Han B. Qin X. Jia K.H. Telomere-to-telomere and haplotype-resolved genome assembly of the Chinese cork oak (Quercus variabilis). Front. Plant. Sci. 2023 14 1290913 10.3389/fpls.2023.1290913 38023918
    [Google Scholar]
  26. Mo C. Wang H. Wei M. Zeng Q. Zhang X. Fei Z. Zhang Y. Kong Q. Complete genome assembly provides a high-quality skeleton for pan-NLRome construction in melon. Plant J. 2024 118 6 2249 2268 38430487
    [Google Scholar]
  27. Gao Z. Lu Y. Chong Y. Li M. Hong J. Wu J. Wu D. Xi D. Deng W. Beef cattle genome project: Advances in genome sequencing, assembly, and functional genes discovery. Int. J. Mol. Sci. 2024 25 13 7147 10.3390/ijms25137147 39000250
    [Google Scholar]
  28. Zhao H. Zhou H. Sun G. Dong B. Zhu W. Mu X. Li X. Wang J. Zhao M. Yang W. Zhang G. Ji R. Geng T. Gong D. Meng H. Wang J. Telomere-to-telomere genome assembly of the goose Anser cygnoides. Sci. Data 2024 11 1 741 10.1038/s41597‑024‑03567‑8 38972874
    [Google Scholar]
  29. Manley B.F. Lotharukpong J.S. Barrera-Redondo J. Llewellyn T. Yildirir G. Sperschneider J. Corradi N. Paszkowski U. Miska E.A. Dallaire A. A highly contiguous genome assembly reveals sources of genomic novelty in the symbiotic fungus Rhizophagus irregularis. G3 (Bethesda) 2023 13 6 jkad077 10.1093/g3journal/jkad077 36999556
    [Google Scholar]
  30. Sun M. Yao C. Shu Q. He Y. Chen G. Yang G. Xu S. Liu Y. Xue Z. Wu J. Telomere-to-telomere pear (Pyrus pyrifolia) reference genome reveals segmental and whole genome duplication driving genome evolution. Hortic. Res. 2023 10 11 uhad201 10.1093/hr/uhad201 38023478
    [Google Scholar]
  31. Wei M. Huang Y. Mo C. Wang H. Zeng Q. Yang W. Chen J. Zhang X. Kong Q. Telomere-to-telomere genome assembly of melon (Cucumis melo L. var. inodorus) provides a high-quality reference for meta-QTL analysis of important traits. Hortic. Res. 2023 10 10 uhad189 10.1093/hr/uhad189 37915500
    [Google Scholar]
  32. Zheng Y. Yang D. Yin X. Yang X. Chen M. Li X. Yang T. Strijk J.S. Hinsinger D.D. Yang Y. Kong X. Yang Y. The chromosome‐level genome assembly of Cananga odorata provides insights into its evolution and terpenoid biosynthesis. New Phytol. 2024 243 6 2279 2294 10.1111/nph.19977 39031984
    [Google Scholar]
  33. Song J. Tang H. A new 2-D graphical representation of DNA sequences and their numerical characterization. J. Biochem. Biophys. Methods 2005 63 3 228 239 15939477
    [Google Scholar]
  34. Li Y. Xiao W. Circular helix-like curve: An effective tool of biological sequence analysis and comparison. Comput. Math. Methods Med. 2016 2016 1 12 10.1155/2016/3262813 27403205
    [Google Scholar]
  35. Mo Z. Zhu W. Sun Y. Xiang Q. Zheng M. Chen M. Li Z. One novel representation of DNA sequence based on the global and local position information. Sci. Rep. 2018 8 1 7592 10.1038/s41598‑018‑26005‑3 29765099
    [Google Scholar]
  36. Gong W. Fan X.Q. A geometric characterization of DNA sequence. Physica A 2019 527 121429 10.1016/j.physa.2019.121429
    [Google Scholar]
  37. Wu R. Liu W. Mao Y. Zheng J.Z.J. Jie Z. 2D graphical representation of DNA sequences based on variant map. IEEE Access 2020 8 173755 173765 10.1109/ACCESS.2020.3025591
    [Google Scholar]
  38. Bielińska-Wąż D. Wąż P. Panas D. Applications of 2D and 3D-Dynamic representations of DNA/RNA sequences for a description of genome sequences of viruses. Comb. Chem. High Throughput Screen. 2022 25 3 429 438 10.2174/1386207324666210804120454 34348613
    [Google Scholar]
  39. Murad T. Ali S. Khan I. Patterson M. Spike2CGR: An efficient method for spike sequence classification using chaos game representation. Mach. Learn. 2023 112 10 3633 3658 10.1007/s10994‑023‑06371‑4
    [Google Scholar]
  40. Gates M.A. A simple way to look at DNA. J. Theor. Biol. 1986 119 3 319 328 3016414
    [Google Scholar]
  41. Nandy A. Graphical representation of long DNA sequences. Curr. Sci. 1994 66 821
    [Google Scholar]
  42. Nandy A. A new graphical representation and analysis of DNA sequence structure: I Methodology and application to globin genes. Curr. Sci. 1994 66 309 331
    [Google Scholar]
  43. Leong P.M. Morgenthaler S. Random walk and gap plots of DNA sequences. Comput. Appl. Biosci. 1995 11 5 503 507 8590173
    [Google Scholar]
  44. Guo X.F. Randić M. Basak S.C. A novel 2D graphical representation of DNA sequences of low degeneracy. Chem. Phys. Lett. 2001 350 106 112
    [Google Scholar]
  45. Randic M. Vracko M. Lers N. plavsic, D. Analysis of similarity/dissimilarity of DNA sequences based on novel 2D graphical representation. Chem. Phys. Lett. 2003 371 202 207
    [Google Scholar]
  46. Randić M. Vračko M. Lerš N. Plavšić D. Novel 2-D graphical representation of DNA sequences and their numerical characterization. Chem. Phys. Lett. 2003 368 1-2 1 6 10.1016/S0009‑2614(02)01784‑0
    [Google Scholar]
  47. Li C. Wang J. On a 3-D representation of DNA primary sequences. Comb. Chem. High Throughput Screen. 2004 7 1 23 27 14965258
    [Google Scholar]
  48. Hamori E. Ruskin J. H curves, a novel method of representation of nucleotide series especially suited for long DNA sequences. J. Biol. Chem. 1983 258 2 1318 1327 6822501
    [Google Scholar]
  49. Randić M. Balaban A.T. On A. On a four-dimensional representation of DNA primary sequences. J. Chem. Inf. Comput. Sci. 2003 43 2 532 539 12653518
    [Google Scholar]
  50. Yang Y. Zhang Y. Jia M. Li C. Meng L. Non-degenerate graphical representation of DNA sequences and its applications to phylogenetic analysis. Comb. Chem. High Throughput Screen. 2013 16 8 585 589 23617263
    [Google Scholar]
  51. Bielińska-Wąż D. Wąż P. Non-standard bioinformatics characterization of SARS-CoV-2. Comput. Biol. Med. 2021 131 104247 33611129
    [Google Scholar]
  52. Ramanathan N. Ramamurthy J. Natarajan G. Numerical characterization of DNA sequences for alignment-free sequence comparison: A review. Comb. Chem. High Throughput Screen. 2022 25 3 365 380 34382516
    [Google Scholar]
  53. Nandy A. Mapping biomolecular sequences: Graphical representations - Their origins, applications and future prospects. Comb. Chem. High Throughput Screen. 2022 25 3 354 364 10.2174/1386207324666210510164743 33970841
    [Google Scholar]
  54. Yu H.J. Huang D.S. Graphical representation for DNA sequences via joint diagonalization of matrix pencil. IEEE J. Biomed. Health Inform. 2013 17 3 503 511 10.1109/TITB.2012.2227146 24592449
    [Google Scholar]
  55. Sun X. Sajda P. Circular clustering with polar coordinate reconstruction. IEEE/ACM Trans Comput. Biol. Bioinformat. 2024 21 5 1591 1600 10.1109/TCBB.2024.3406341 38805330
    [Google Scholar]
  56. Randić M. Zupan J. Highly compact 2D graphical representation of DNA sequences. SAR QSAR Environ. Res. 2004 15 3 191 205 10.1080/10629360410001697753 15293546
    [Google Scholar]
  57. Randić M. Novič M. Vikić-Topić D. Plavšić D. Novel numerical and graphical representation of DNA sequences and proteins. SAR QSAR Environ. Res. 2006 17 6 583 595 10.1080/10629360601033549 17162388
    [Google Scholar]
  58. Dai Q. Liu X. Wang T. A novel 2D graphical representation of DNA sequences and its application. J. Mol. Graph. Model. 2006 25 3 340 344 10.1016/j.jmgm.2005.12.004 16515870
    [Google Scholar]
  59. Zou S. Wang L. Wang J. A 2D graphical representation of the sequences of DNA based on triplets and its application. EURASIP J. Bioinform. Syst. Biol. 2014 2014 1 1 24383852
    [Google Scholar]
  60. Liu X.Q. Dai Q. Xiu Z. Wang T. PNN-curve: a new 2D graphical representation of DNA sequences and its application. J. Theor. Biol. 2006 243 4 555 561 16945387
    [Google Scholar]
  61. Qi Z.H. Qi X.Q. Numerical characterization of DNA sequences based on digital signal method. Comput. Biol. Med. 2009 39 4 388 391 19261267
    [Google Scholar]
  62. Bari A.T.M.G. Reaz R. Islam A.K.M.T. Choi H.J. Jeong B.S. Effective encoding for DNA sequence visualization based on nucleotide’s ring structure. Evol. Bioinform. Online 2013 9 EBO.S12160 10.4137/EBO.S12160 23908584
    [Google Scholar]
  63. Xie G.S. Jin X.B. Yang C. Pu J. Mo Z. Graphical representation and similarity analysis of DNA sequences based on trigonometric functions. Acta Biotheor. 2018 66 2 113 133 29675730
    [Google Scholar]
  64. Xie G. Mo Z. Three 3D graphical representations of DNA primary sequences based on the classifications of DNA bases and their applications. J. Theor. Biol. 2011 269 1 123 130 20969878
    [Google Scholar]
  65. Bielińska-Wąż D. Wąż P. Lass A. Karamon J. 4D-dynamic representation of DNA/RNA sequences: Studies on genetic diversity of Echinococcus multilocularis in red foxes in Poland. Life 2022 12 6 877 35743908
    [Google Scholar]
  66. Fu X. Liao B. Zhu W. Cai L. New 3D graphical representation for RNA structure analysis and its application in the pre-miRNA identification of plants. RSC Advances 2018 8 54 30833 30841 35548744
    [Google Scholar]
  67. Yao Y.H. Dai Q. Nan X.Y. He P.A. Nie Z.M. Zhou S.P. Zhang Y.Z. Analysis of similarity/dissimilarity of DNA sequences based on a class of 2D graphical representation. J. Comput. Chem. 2008 29 10 1632 1639 18293304
    [Google Scholar]
  68. Wąż P. Bielińska-Wąż D. Nandy A. Descriptors of 2D-dynamic graphs as a classification tool of DNA sequences. J. Math. Chem. 2014 52 1 132 140 32214592
    [Google Scholar]
  69. Qi X.Q. Wen J. Qi Z.H. New 3D graphical representation of DNA sequence based on dual nucleotides. J. Theor. Biol. 2007 249 4 681 690 17931659
    [Google Scholar]
  70. Wąż P. Bielińska-Wąż D. Non-standard similarity/dissimilarity analysis of DNA sequences. Genomics 2014 104 464 471.(6 Pt B) 25173573
    [Google Scholar]
  71. Liu S.W.A. Li J.X. Zou L. Liu X.Q. Xu G. Xiong Y. Long Z.E. Orthohantavirus infections in humans and rodents in the Yichun region, China, from 2016 to 2021. PLoS Negl. Trop. Dis. 2023 17 8 e0011540 37552670
    [Google Scholar]
  72. Tian H. Tie W.F. Li H. Hu X. Xie G.C. Du L.Y. Guo W.P. Orthohantaviruses infections in humans and rodents in Baoji, China. PLoS Negl. Trop. Dis. 2020 14 10 e0008778 33075097
    [Google Scholar]
  73. Yao P.P. Zhu H.P. Deng X.Z. Xu F. Xie R.H. Yao C.H. Weng J.Q. Zhang Y. Yang Z.Q. Zhu Z.Y. Molecular evolution analysis of hantaviruses in Zhejiang Province. Chin. J. Virol. 2010 26 6 465 470 [ 21344751
    [Google Scholar]
  74. Wang Q.W. Tao L. Lu S.Y. Zhu C.Q. Ai L.L. Luo Y. Yu R.B. Lv H. Zhang Y. Wang C.C. Tan W.L. Genetic and hosts characterization of hantaviruses in port areas in Hainan Province, P. R. China. PLoS One 2022 17 3 e0264859 35239751
    [Google Scholar]
  75. Zhang X.Y. Jin W.H. Wang J. Wang Y.T. Genetic diversity of five cyprinidae fishes in yarkant river based on COI gene. Anhui Nongye Kexue 2023 51 16 86 89
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073379972250612103433
Loading
/content/journals/cchts/10.2174/0113862073379972250612103433
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: phylogenetic analysis ; L/L matrix ; virus ; nondegeneracy ; graphical representation ; ALE-index ; DNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test