Skip to content
2000
image of Hua-Zhuo-Ning-Fu Decoction Ameliorates Psoriasis by Inhibiting TNF-Α/IL-6 and PI3K/AKT Signaling Pathway: A Network Pharmacology Approach and Experimental Validation

Abstract

Introduction

Hua-Zhuo-Ning-Fu decoction (HZD) is a traditional Chinese medicine prescription that has been clinically used by Chinese medical master Wang Xinlu for treating psoriasis. However, the specific molecular mechanisms remain unclear.

Methods

To identify the effective compounds of HZD and psoriasis-related genes, we conducted comprehensive searches in public databases, including TCMSP, SwissTargetPrediction, Gene Cards, and OMIM. Based on the degree values, core genes of HZD against psoriasis were determined. Furthermore, the affinity energy between the active compounds of HZD and their core targets was validated molecular docking. Finally, the anti-psoriasis effects and potential mechanisms of HZD were examined in M5-stimulated HaCaT cells and IMQ-induced psoriasis mice .

Results

Network pharmacological analysis of HZD for psoriasis treatment identified 43 active components and 243 targets. Topological and molecular docking analyses identified interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) as core targets for its anti-psoriasis effects. Specifically, the docking energy of isovitexin with IL-6 was lower (-7.30 kcal/mol), and that of baicalin with TNF-α was lower (-6.70 kcal/mol). KEGG analysis revealed that the main pathway was the PI3K/AKT pathway. HZD inhibited cell viability, inflammation, and oxidative stress in M5-induced HaCaT cells. Animal experiments demonstrated that HZD alleviated psoriatic dermatitis, histopathological features, and inflammation in IMQ-induced mice with psoriatic plaques. Notably, HZD inhibited the expression of TNF-α and IL-6 and the activation of the PI3K/AKT pathway both and .

Discussion

Specific upstream/downstream regulators of the PI3K/AKT axis regulated by HZD still need to be explored. Further investigation is essential to clarify the functional relationship between the predicted targets and active components.

Conclusion

In summary, HZD potentially mitigated inflammatory responses by targeting the TNF-α and IL-6 proteins, interfered with the PI3K/AKT pathway, and consequently drove the anti-psoriatic effect in IMQ-induced mice. Our findings provide a theoretical basis for HZD’s clinical use in psoriasis treatment.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073390038250723201614
2025-08-15
2025-10-30
Loading full text...

Full text loading...

References

  1. Gniadecki R. Osman M. Hennesey D. O’Keefe S. Thomsen S.F. Iyer A. Architecture of skin inflammation in psoriasis revealed by spatial transcriptomics. Clin. Immunol. 2023 256 109771 10.1016/j.clim.2023.109771 37708923
    [Google Scholar]
  2. Jairath V. Acosta Felquer M.L. Cho R.J. IL-23 inhibition for chronic inflammatory disease. Lancet 2024 404 10463 1679 1692 10.1016/S0140‑6736(24)01750‑1 39461795
    [Google Scholar]
  3. Korman N.J. Management of psoriasis as a systemic disease: What is the evidence? Br. J. Dermatol. 2020 182 4 840 848 10.1111/bjd.18245 31225638
    [Google Scholar]
  4. Maronese C.A. Valenti M. Moltrasio C. Romagnuolo M. Ferrucci S.M. Gilliet M. Costanzo A. Marzano A.V. Paradoxical psoriasis: An updated review of clinical features, pathogenesis, and treatment options. J. Invest. Dermatol. 2024 144 11 2364 2376 10.1016/j.jid.2024.05.015 38958610
    [Google Scholar]
  5. Jo H.G. Kim H. Baek E. Lee D. Hwang J.H. Efficacy and key materials of east asian herbal medicine combined with conventional medicine on inflammatory skin lesion in patients with psoriasis vulgaris : A meta-analysis, integrated data mining, and network pharmacology. Pharmaceuticals 2023 16 8 1160 10.3390/ph16081160 37631075
    [Google Scholar]
  6. Roy T. Boateng S.T. Uddin M.B. Banang-Mbeumi S. Yadav R.K. Bock C.R. Folahan J.T. Siwe-Noundou X. Walker A.L. King J.A. Buerger C. Huang S. Chamcheu J.C. The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds. Cells 2023 12 12 1671 10.3390/cells12121671 37371141
    [Google Scholar]
  7. Zhang L. Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol. Ther. 2020 207 107452 10.1016/j.pharmthera.2019.107452 31836457
    [Google Scholar]
  8. Sugumaran D. Yong A.C.H. Stanslas J. Advances in psoriasis research: From pathogenesis to therapeutics. Life Sci. 2024 355 122991 10.1016/j.lfs.2024.122991 39153596
    [Google Scholar]
  9. Alves C.O. Novaes R.D. Bernardes M.T.C.P. Gonçalves R.V. da Silva L.P. Agostini S.B.N. Pereira G.R. Carvalho F.C. Evaluation of methotrexate-loaded surfactants, ceramides and cholesterol-based lamellar phases as a topical treatment for psoriasis. J. Pharm. Pharmacol. 2022 74 9 1342 1352 10.1093/jpp/rgac006 35355075
    [Google Scholar]
  10. Sharma K.S. Kumar S. Current strategies for the management of psoriasis with potential pharmacological pathways using herbals and immuno-biologicals. Curr. Mol. Pharmacol. 2023 17 1 10.2174/1874467217666230915125613 37724681
    [Google Scholar]
  11. Zhang Q. Xie J. Li G. Wang F. Lin J. Yang M. Du A. Zhang D. Han L. Psoriasis treatment using Indigo Naturalis: Progress and strategy. J. Ethnopharmacol. 2022 297 115522 10.1016/j.jep.2022.115522 35872288
    [Google Scholar]
  12. Chen Y. Yan Y. Liu H. Qiu F. Liang C.L. Zhang Q. Huang R.Y. Han L. Lu C. Dai Z. Dihydroartemisinin ameliorates psoriatic skin inflammation and its relapse by diminishing CD8 + T-cell memory in wild-type and humanized mice. Theranostics 2020 10 23 10466 10482 10.7150/thno.45211 32929360
    [Google Scholar]
  13. Dai D. Wu H. He C. Wang X. Luo Y. Song P. Evidence and potential mechanisms of traditional Chinese medicine for the treatment of psoriasis vulgaris: A systematic review and meta-analysis. J. Dermatolog. Treat. 2022 33 2 671 681 10.1080/09546634.2020.1789048 32610023
    [Google Scholar]
  14. Xing M. Luo Y. Kuai L. Ru Y. Ding X. Yan X. Li B. Li X. DNA methylation expression profile of blood heat syndrome and blood stasis syndrome in TCM psoriasis. Evid. Based Complement. Alternat. Med. 2022 2022 1 20 10.1155/2022/9343285 36193156
    [Google Scholar]
  15. Tang B. Zheng X. Luo Q. Li X. Yang Y. Bi Y. Chen Y. Han L. Chen H. Lu C. Network pharmacology and gut microbiota insights: Unraveling Shenling Baizhu powder’s role in psoriasis treatment. Front. Pharmacol. 2024 15 1362161 10.3389/fphar.2024.1362161 38425649
    [Google Scholar]
  16. He K. Wang Z. Liu M. Du W. Yin T. Bai R. Duan Q. Wang Y. Lei H. Zheng Y. Exploring the effect of xiao-chai-hu decoction on treating psoriasis based on network pharmacology and experiment validation. Curr. Pharm. Des. 2024 30 3 215 229 10.2174/0113816128288527240108110844 38532341
    [Google Scholar]
  17. Wang Z. Li S. Network pharmacology in quality control of traditional Chinese medicines. Chin. Herb. Med. 2022 14 4 477 478 10.1016/j.chmed.2022.09.001 36405067
    [Google Scholar]
  18. Gu X. Hao D. Xiao P. Research progress of Chinese herbal medicine compounds and their bioactivities: Fruitful 2020. Chin. Herb. Med. 2022 14 2 171 186 10.1016/j.chmed.2022.03.004 36117669
    [Google Scholar]
  19. Zhang B. Yan G. Li F. Tang Y. Xu G. Zhang Y. Ze K. Qingxiong ointment and its active ingredient, shikonin treat psoriasis through HIF-1 signaling pathway. Curr. Pharm. Des. 2024 30 24 1927 1938 10.2174/0113816128287142240529120346 38835124
    [Google Scholar]
  20. Salgaonkar S.P. Purewal J.S. Doshi G.M. Fernandes T. Gharat S. Sawarkar S.P. New insights in psoriasis management using herbal drug nanocarriers. Curr. Pharm. Des. 2024 30 32 2550 2561 10.2174/0113816128330298240708110336 39051579
    [Google Scholar]
  21. Xin LI Discussion on new ideas of herbs for resolving blood turbidity on clinical application based on the theory of blood turbidity of WANG Xin-lu. Tianjin J Tradit Chin Med 2017 34 18 21
    [Google Scholar]
  22. Man S. Ma W. Jiang H. Haider A. Shi S. Li X. Wu Z. Song Y. Evaluating the efficacy and mechanisms of Hua-Zhuo-Ning-Fu-Decoction on psoriasis using integrated bioinformatics analysis and metabolomics. J. Ethnopharmacol. 2024 325 117856 10.1016/j.jep.2024.117856 38316220
    [Google Scholar]
  23. Liu D. Fu Q. Liu L.G. Li W. Qi F. Liu J. Shang L. Wang X. Yang F. Li J. Lu D. Feng H. Zhang Z. Chen Y. Liang J. Yao J. Lv H. Li R. Wang J. Wu D. Liu Y. Xia C. Li W. Screening of potentially active compounds against rheumatoid arthritis in the Juan-Bi decoction using systems pharmacology and animal experiments. Front. Cell Dev. Biol. 2024 12 1396890 10.3389/fcell.2024.1396890 38983788
    [Google Scholar]
  24. Xu A. Li W. Cai J. Wen Z. Wang K. Chen Y. Li X. Guan D. Duan C. Screening of key functional components of Taohong Siwu Decoction on ischemic stroke treatment based on multiobjective optimization approach and experimental validation. BMC Complement. Med. Ther. 2023 23 1 178 10.1186/s12906‑023‑03990‑1 37264383
    [Google Scholar]
  25. Xu A. Wen Z.H. Su S.X. Chen Y.P. Liu W.C. Guo S.Q. Li X.F. Zhang X. Li R. Xu N.B. Wang K.X. Li W.X. Guan D.G. Duan C.Z. Elucidating the synergistic effect of multiple chinese herbal prescriptions in the treatment of post-stroke neurological damage. Front. Pharmacol. 2022 13 784242 10.3389/fphar.2022.784242 35355727
    [Google Scholar]
  26. Shi S. Jiang H. Ma W. Guan Z. Han M. Man S. Wu Z. He S. Preclinical studies of natural flavonoids in inflammatory bowel disease based on macrophages: A systematic review with meta-analysis and network pharmacology. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 3 2293 2318 10.1007/s00210‑024‑03501‑0 39422746
    [Google Scholar]
  27. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  28. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  29. Stelzer G. The genecards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016 54 1.30.1 1.30.33 10.1002/cpbi.5 27322403
    [Google Scholar]
  30. Zhou Y. Zhang Y. Zhao D. Yu X. Shen X. Zhou Y. Wang S. Qiu Y. Chen Y. Zhu F. TTD: Therapeutic target database describing target druggability information. Nucleic Acids Res. 2024 52 D1 D1465 D1477 10.1093/nar/gkad751 37713619
    [Google Scholar]
  31. Piñero J. Queralt-Rosinach N. Bravo A. Deu-Pons J. Bauer-Mehren A. Baron M. Sanz F. Furlong L.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database 2015 2015 0 bav028 10.1093/database/bav028 25877637
    [Google Scholar]
  32. Amberger J. Bocchini C.A. Scott A.F. Hamosh A. McKusick’s online mendelian inheritance in man (OMIM(R)). Nucleic Acids Res. 2009 37 Database D793 D796 10.1093/nar/gkn665 18842627
    [Google Scholar]
  33. Witzel M.G.W. Gebhard C. Wenzel S. Kleier S. Eichhorn B. Lorenz P. Heyden L. Kuhn M. Luedeke M. Döcker M. Jüngling J. Schulte B. Hörtnagel K. Glaubitz R. Knippenberger S. Teubert A. Abicht A. Neuhann T.M. Prospective evaluation of NGS-based sequencing in epilepsy patients: Results of seven NASGE-associated diagnostic laboratories. Front. Neurol. 2023 14 1276238 10.3389/fneur.2023.1276238 38125836
    [Google Scholar]
  34. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  35. Li L. Yang L. Yang L. He C. He Y. Chen L. Dong Q. Zhang H. Chen S. Li P. Network pharmacology: A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin. Med. 2023 18 1 146 10.1186/s13020‑023‑00853‑2 37941061
    [Google Scholar]
  36. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  37. Choudhary S. Pradhan D. Khan N.S. Singh H. Thomas G. Jain A.K. Decoding psoriasis: Integrated bioinformatics approach to understand hub genes and involved pathways. Curr. Pharm. Des. 2020 26 29 3619 3630 10.2174/1381612826666200311130133 32160841
    [Google Scholar]
  38. Tang D. Chen M. Huang X. Zhang G. Zeng L. Zhang G. Wu S. Wang Y. SRplot: A free online platform for data visualization and graphing. PLoS One 2023 18 11 e0294236 10.1371/journal.pone.0294236 37943830
    [Google Scholar]
  39. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019 47 D1 D1102 D1109 10.1093/nar/gky1033 30371825
    [Google Scholar]
  40. Varadi M. Bertoni D. Magana P. Paramval U. Pidruchna I. Radhakrishnan M. Tsenkov M. Nair S. Mirdita M. Yeo J. Kovalevskiy O. Tunyasuvunakool K. Laydon A. Žídek A. Tomlinson H. Hariharan D. Abrahamson J. Green T. Jumper J. Birney E. Steinegger M. Hassabis D. Velankar S. AlphaFold protein structure database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024 52 D1 D368 D375 10.1093/nar/gkad1011 37933859
    [Google Scholar]
  41. Li Y. Li S. Xue X. Wang T. Li X. Integrating systematic pharmacology-based strategy and experimental validation to explore mechanism of Tripterygium glycoside on cholangiocyte-related liver injury. Chin. Herb. Med. 2022 14 4 563 575 10.1016/j.chmed.2022.02.006 36405068
    [Google Scholar]
  42. Zhou B. Qian Z. Li Q. Gao Y. Li M. Assessment of pulmonary infectious disease treatment with Mongolian medicine formulae based on data mining, network pharmacology and molecular docking. Chin. Herb. Med. 2022 14 3 432 448 10.1016/j.chmed.2022.07.001 36118001
    [Google Scholar]
  43. Rabeony H. Petit-Paris I. Garnier J. Barrault C. Pedretti N. Guilloteau K. Jegou J.F. Guillet G. Huguier V. Lecron J.C. Bernard F.X. Morel F. Inhibition of keratinocyte differentiation by the synergistic effect of IL-17A, IL-22, IL-1α, TNFα and oncostatin M. PLoS One 2014 9 7 e101937 10.1371/journal.pone.0101937 25010647
    [Google Scholar]
  44. Su J. Li Y. Liu Q. Peng G. Qin C. Li Y. Identification of SSBP1 as a ferroptosis-related biomarker of glioblastoma based on a novel mitochondria-related gene risk model and in vitro experiments. J. Transl. Med. 2022 20 1 440 10.1186/s12967‑022‑03657‑4 36180956
    [Google Scholar]
  45. Chen P. Wen X. Wang B. Hou D. Zou H. Yuan Q. Yang H. Xie J. Huang H. PI3K/Akt inhibitor LY294002 potentiates homoharringtonine antimyeloma activity in myeloma cells adhered to stromal cells and in SCID mouse xenograft. Ann. Hematol. 2018 97 5 865 875 10.1007/s00277‑018‑3247‑3 29450644
    [Google Scholar]
  46. Man S. Wu Z. Sun R. Guan Q. Li Z. Zuo D. Zhang W. Wu Y. W436, a novel SMART derivative, exhibits anti‐hepatocarcinoma activity by inducing apoptosis and G2/M cell cycle arrest in vitro and in vivo and induces protective autophagy. J. Biochem. Mol. Toxicol. 2021 35 8 e22831 10.1002/jbt.22831 34155709
    [Google Scholar]
  47. Zheng D. Wu Z. Han J. Guan Q. Li Z. Zuo D. Zhang W. Wu Y. 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ) inhibits cancer cell metastasis behavior of TNBC via suppressing EMT and VEGF. Chem. Biol. Interact. 2020 329 109202 10.1016/j.cbi.2020.109202 32717189
    [Google Scholar]
  48. Gangwar R.S. Gudjonsson J.E. Ward N.L. Mouse models of psoriasis: A comprehensive review. J. Invest. Dermatol. 2022 142 3 884 897 10.1016/j.jid.2021.06.019 34953514
    [Google Scholar]
  49. Gao J. Chen F. Fang H. Mi J. Qi Q. Yang M. Daphnetin inhibits proliferation and inflammatory response in human HaCaT keratinocytes and ameliorates imiquimod-induced psoriasis-like skin lesion in mice. Biol. Res. 2020 53 1 48 10.1186/s40659‑020‑00316‑0 33081840
    [Google Scholar]
  50. Mattei P.L. Corey K.C. Kimball A.B. Psoriasis area severity index (PASI) and the dermatology life quality index (DLQI): The correlation between disease severity and psychological burden in patients treated with biological therapies. J. Eur. Acad. Dermatol. Venereol. 2014 28 3 333 337 10.1111/jdv.12106 23425140
    [Google Scholar]
  51. Chen J. Xu Q. Zhang Y. Zhang H. RNA profiling analysis of the serum exosomes derived from patients with chronic hepatitis and acute-on-chronic liver failure caused by HBV. Sci. Rep. 2020 10 1 1528 10.1038/s41598‑020‑58233‑x 32001731
    [Google Scholar]
  52. Lian N. Chen Y. Chen S. Zhang Y. Chen H. Yang Y. Gu H. Chen Q. Li M. Chen X. Gasdermin D-mediated keratinocyte pyroptosis as a key step in psoriasis pathogenesis. Cell Death Dis. 2023 14 9 595 10.1038/s41419‑023‑06094‑3 37673869
    [Google Scholar]
  53. Jiang B.W. Zhang W.J. Wang Y. Tan L.P. Bao Y.L. Song Z.B. Yu C.L. Wang S.Y. Liu L. Li Y.X. Convallatoxin induces HaCaT cell necroptosis and ameliorates skin lesions in psoriasis-like mouse models. Biomed. Pharmacother. 2020 121 109615 10.1016/j.biopha.2019.109615 31707343
    [Google Scholar]
  54. Gourraud P.A. Le Gall C. Puzenat E. Aubin F. Ortonne J.P. Paul C.F. Why statistics matter: Limited inter-rater agreement prevents using the psoriasis area and severity index as a unique determinant of therapeutic decision in psoriasis. J. Invest. Dermatol. 2012 132 9 2171 2175 10.1038/jid.2012.124 22592157
    [Google Scholar]
  55. Guillaume P. Rupp T. Froget G. Goineau S. Evaluation of clobetasol and tacrolimus treatments in an imiquimod-induced psoriasis rat model. Int. J. Mol. Sci. 2024 25 17 9254 10.3390/ijms25179254 39273201
    [Google Scholar]
  56. Carswell E.A. Old L.J. Kassel R.L. Green S. Fiore N. Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 1975 72 9 3666 3670 10.1073/pnas.72.9.3666 1103152
    [Google Scholar]
  57. van Horssen R. ten Hagen T.L.M. Eggermont A.M.M. TNF-alpha in cancer treatment: Molecular insights, antitumor effects, and clinical utility. Oncologist 2006 11 4 397 408 10.1634/theoncologist.11‑4‑397 16614236
    [Google Scholar]
  58. Sen T. Li J. Neuen B.L. Neal B. Arnott C. Parikh C.R. Coca S.G. Perkovic V. Mahaffey K.W. Yavin Y. Rosenthal N. Hansen M.K. Heerspink H.J.L. Effects of the SGLT2 inhibitor canagliflozin on plasma biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS trial. Diabetologia 2021 64 10 2147 2158 10.1007/s00125‑021‑05512‑5 34415356
    [Google Scholar]
  59. Guo W. Zhang Q. Du Y. Guo J. Zhao T. Bai L. An X. Immunomodulatory activity of polysaccharides from Brassica rapa by activating Akt/NF-κB signaling. Chin. Herb. Med. 2022 14 1 90 96 10.1016/j.chmed.2021.10.003 36120126
    [Google Scholar]
  60. Pan Y. You Y. Sun L. Sui Q. Liu L. Yuan H. Chen C. Liu J. Wen X. Dai L. Sun H. The STING antagonist H‐151 ameliorates psoriasis via suppression of STING/NF‐κB‐mediated inflammation. Br. J. Pharmacol. 2021 178 24 4907 4922 10.1111/bph.15673 34460100
    [Google Scholar]
  61. Danesh M.J. Koo E.B. Kimball A.B. Effects of TNF‐alpha antagonism in patients with metabolic syndrome and psoriasis. J. Eur. Acad. Dermatol. Venereol. 2016 30 11 e152 e154 10.1111/jdv.13461 26558474
    [Google Scholar]
  62. Tokuyama M. Mabuchi T. New treatment addressing the pathogenesis of psoriasis. Int. J. Mol. Sci. 2020 21 20 7488 10.3390/ijms21207488 33050592
    [Google Scholar]
  63. Hunter C.A. Jones S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015 16 5 448 457 10.1038/ni.3153 25898198
    [Google Scholar]
  64. Sobolev V.V. Denisova E.V. Chebysheva S.N. Geppe N.A. Korsunskaya I.M. IL-6 gene expression as a marker of pathological state in psoriasis and psoriatic arthritis. Bull. Exp. Biol. Med. 2022 173 1 77 80 10.1007/s10517‑022‑05497‑0 35622251
    [Google Scholar]
  65. Hu X. Qi C. Feng F. Wang Y. Di T. Meng Y. Wang Y. Zhao N. Zhang X. Li P. Zhao J. Combining network pharmacology, RNA-seq, and metabolomics strategies to reveal the mechanism of Cimicifugae Rhizoma - Smilax glabra Roxb herb pair for the treatment of psoriasis. Phytomedicine 2022 105 154384 10.1016/j.phymed.2022.154384 35963195
    [Google Scholar]
  66. Shou Y. Yang L. Yang Y. Xu J. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell Death Dis. 2021 12 11 1009 10.1038/s41419‑021‑04284‑5 34707088
    [Google Scholar]
  67. Sivasami P. Obesity-induced dysregulation of skin-resident PPARγ+ Treg cells promotes IL-17A-mediated psoriatic inflammation. Immunity 2023 56 8 1844 1861.e6 10.1016/j.immuni.2023.06.021 37478855
    [Google Scholar]
  68. Lochner M. Wang Z. Sparwasser T. The special relationship in the development and function of t helper 17 and regulatory T cells. Prog. Mol. Biol. Transl. Sci. 2015 136 99 129 10.1016/bs.pmbts.2015.07.013 26615094
    [Google Scholar]
  69. Kim J. Lee J. Li X. Lee H.S. Kim K. Chaparala V. Murphy W. Zhou W. Cao J. Lowes M.A. Krueger J.G. Single-cell transcriptomics suggest distinct upstream drivers of IL-17A/F in hidradenitis versus psoriasis. J. Allergy Clin. Immunol. 2023 152 3 656 666 10.1016/j.jaci.2023.05.012 37271319
    [Google Scholar]
  70. Sulaimani J. Cluxton D. Clowry J. Petrasca A. Molloy O.E. Moran B. Sweeney C.M. Malara A. McNicholas N. McGuigan C. Kirby B. Fletcher J.M. Dimethyl fumarate modulates the Treg–Th17 cell axis in patients with psoriasis. Br. J. Dermatol. 2021 184 3 495 503 10.1111/bjd.19229 32438447
    [Google Scholar]
  71. Yu J. Zhao Q. Wang X. Zhou H. Hu J. Gu L. Hu Y. Zeng F. Zhao F. Yue C. Zhou P. Li G. Li Y. Wu W. Zhou Y. Li J. Pathogenesis, multi-omics research, and clinical treatment of psoriasis. J. Autoimmun. 2022 133 102916 10.1016/j.jaut.2022.102916 36209691
    [Google Scholar]
  72. Tang Z.L. Zhang K. Lv S.C. Xu G.W. Zhang J.F. Jia H.Y. LncRNA MEG3 suppresses PI3K/AKT/mTOR signalling pathway to enhance autophagy and inhibit inflammation in TNF-α-treated keratinocytes and psoriatic mice. Cytokine 2021 148 155657 10.1016/j.cyto.2021.155657 34425525
    [Google Scholar]
  73. Wen S. An R. Li D. Cao J. Li Z. Zhang W. Chen R. Li Q. Lai X. Sun L. Sun S. Tea and Citrus maxima complex induces apoptosis of human liver cancer cells via PI3K/AKT/mTOR pathway in vitro. Chin. Herb. Med. 2022 14 3 449 458 10.1016/j.chmed.2021.09.015 36118010
    [Google Scholar]
  74. Farouk H. Nasr M. Elbaset M.A. Shabana M.E. Ahmed-Farid O.A.H. Ahmed R.F. Baicalin nanoemulsion mitigates cisplatin-induced hepatotoxicity by alleviating oxidative stress, inflammation, and restoring cellular integrity. Toxicol. Appl. Pharmacol. 2025 495 117231 10.1016/j.taap.2025.117231 39832566
    [Google Scholar]
  75. Jia Y. Gengji J. Gong T. Zhang Z. Deng L. An amorphous solid dispersion of baicalin and its oral therapeutic effect on ulcerative colitis. Pharm. Res. 2024 41 12 2377 2389 10.1007/s11095‑024‑03804‑0 39668326
    [Google Scholar]
  76. Tremmel M. Kiermaier J. Heilmann J. In vitro metabolism of six C-glycosidic flavonoids from Passiflora incarnata L. Int. J. Mol. Sci. 2021 22 12 6566 10.3390/ijms22126566 34207335
    [Google Scholar]
  77. Bhagat S. Yadav S. Singh S. Use of pH-sensitive microcapsules for selective delivery of nanozymes and biological enzymes in small intestine. Int. J. Biol. Macromol. 2025 306 Pt 3 141347 10.1016/j.ijbiomac.2025.141347 40023412
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073390038250723201614
Loading
/content/journals/cchts/10.2174/0113862073390038250723201614
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: molecular docking ; psoriasis ; TNF-α/IL-6 ; PI3K/AKT ; network pharmacology ; in vivo and in vitro ; HZD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test